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        MAKING GOOD CHOICES: AN INTRODUCTION TO PRACTICAL REASONING 
 
 
CHAPTER 10:   PRACTICAL REASONING IN COMPETITIVE INTERDEPENDENT DECISIONS 
 

 
 

This chapter continues the topic begun in Chapter 9: competitive (zero sum) game decisions and 

strategic practical reasoning. In Chapter 9 we covered decision by the methods of dominance and 

maximin reasoning. However, not every competitive decision problem can be solved by these two 

methods of practical reasoning. We now consider mixed strategy reasoning and an interesting form of 

common ignorance.  

 

10.1   Competitive decisions: decision by mixed strategy 

What to do if interdependent competitive decisions can’t be solved either by dominance or by maximin 

reasoning? Let’s start with this example. 

 

Suppose a speeder wants to travel fast, say between home and work, on a daily basis. A patrol car 

wants to catch speeders, especially this one. The speeder can take the highway and do 30mph over 

the speed limit, or go the back roads at 15mph over the speed limit. Of course, the speeder would like 

to avoid a speeding ticket. The patrol car can cruise the highway or can cruise the back roads looking 

out for speeders. To be caught speeding at 30mph over the limit is the worse outcome for the speeder, 

but it is the best outcome for the patrol car. Conversely, to travel on the highway at 30mph over the 

limit and not get caught is best for the speeder, but the worse outcome for the patrol car. We can 

analyze this interdependent decision problem into these decision diagrams. 
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Agent             options                 state                             outcome                utility (-5…0…5) 
 
                                               patrol car                         speeder caught 
                                               cruises highway               doing +30mph          -5 
 
                  highway at  
                 +30mph  
                                               patrol car                         speeder saves                        Goal: speed 
                                               cruises back roads          most time                   5                    to save time 
Speeder  
                                               patrol car                        speeder saves 
                                               cruises highway              some time                   3 
 
                  back roads 
                  at +15mph  
                                               patrol car                         speeder caught 
                                               cruises back roads          doing +15mph           -2  
 
 
                                               speeder takes                  speeder caught 
                                               highway at +30                 doing +30mph           5 
 
                  cruise highway 
 
                                               speeder takes                  speeder gets 
                                               back roads at +15            away at +15              -3          Goal: catch  
Patrol car                                                                                                                             speeder 
                                               speeder takes                  speeder gets 
                                               highway at +30                away at +30              -5 
 
                  cruise back 
                  roads   
                                               speeder takes                 speeder caught 
                                               back roads at +15            doing +15                   2 
 
 
 
 
Transforming this analysis into a 2x2 outcome matrix gives us the following: 
 
                                                             Col: patrol car 
 
                                        C1: cruise highway   C2:  cruise back roads 
 
                 R1: highway  
                        at +30             -5,   5                                5,   -5   
Row: speeder 
              R2: backroads 
                    at +15                  3,   -3                              -2,    2        
  
                          
This is a zero sum game, but neither Row nor Col has a dominant option. If we try to arrive at the 

rational choice for Row and for Col by maximin reasoning, we find that there is no saddle point cell.  

The minimum for R1 is -5, for R2 it is -2, and the maximin is -2. For C1 the minimum is -3, and for C2 it 
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is -5, yielding a maximin of -3.  No cell contains the outcome pair (-2, -3) (and if there were one the 

agents wouldn’t be in a zero sum game!). There is no equilibrium cell, and this game is unstable in 

the sense that the agents, given their goals, are always better off switching and so end up “chasing” 

each other around and around the matrix. If Row chooses his hope limit option R1 (hoping for a 5 

outcome), Col should prefer C1, for that option would give Col his hope limit (outcome 5) and hurt Row 

with Row’s security limit (outcome -5). But if Col chooses C1, Row should switch to R2 (go from a -5 to 

a 3 outcome). But if Row switches from R1 to R2, Col should switch from C1 to C2 (go from -3 to 2). 

But if Col chooses C2, Row should switch back to R1,…, and so forth. Strategic practical reasoning 

does not move the agents toward one option and one outcome cell; instead the agents systematically 

alternate back-and-forth between options, the better outcome always resulting from switching to the 

other option. 

 

In such unstable interdependent decisions, what form of strategic practical reasoning will lead to the 

rational choice?  There are two parts to this practical reasoning.  (1) One important principle is 

strategic ignorance. An agent in such a decision problem should withhold information from one’s 

opponent. This was not necessary in competitive decisions that are stable; recall that agents can 

announce their rational choices to each other in stable games and it would not matter. However, 

withholding a decision from one’s opponent is central to goal achievement in games that are unstable. 

What is the best way for an agent in such a decision situation to keep her intentions from his 

opponent, that is, to keep his opponent guessing as to how she will choose, and yet gain as much of 

the goal as possible?  For present purposes let’s think of an unstable competitive decision as one that 

the agents are playing repeatedly. Adopting a strategy of mixing options, switching – not 

systematically back-and-forth between options – but unpredictably, is certainly the best method to 

keep the opponent guessing about which option an agent will be choosing next.  

 

(2) A second important principle is proportion. If an agent switches between options in a certain 

proportion, it will gain the agent more of the goal than any other proportion, assuming the other agent 

is likewise rationally doing the same thing using a mixed strategy. These two principles give us the 
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method of solution by optimal mixed strategies: unpredictably switching among options keeping to a 

certain ratio or proportion.  

 

The well-known child’s game rock-paper-scissors provides a handy example to illustrate these two 

practical reasoning requirements for rational choice in unstable games: (1) unpredictability of choice at 

(2) a suitable proportion. The rules of this game are: scissors cuts paper (win for scissors, loss for 

paper); paper covers rock (win for paper, loss for rock); rock breaks scissors (win for rock, loss for 

scissors). Each player must decide on and simultaneously indicate to each other one of these three 

possibilities. The matrix looks like this 

 
 
                                                      Col 
                                  scissors         paper         rock 
 
                                   
               scissors        tie               w,  l            l,  w  
 
Row:       paper           l,  w             tie               w,  l   
 
               rock             w,  I             l,  w             tie                                                 
 
 
Suppose two children play this game for a penny a play and that the penny represents outcome utility: 

receive a penny for each win, pay a penny for each loss, neither gain nor pay a penny for a tie. The 

payoff matrix (with minimum outcomes indicated) looks like this:  

 
                                                       Col 
                                   C1               C2              C3 
                                 scissors        paper         rock            Row’s minima: 
                                  
          R1:scissors        0,  0           1,  -1           -1,  1                 -1  
               
Row:  R2: paper         -1,  1            0,  0            1,  -1                 -1  
 
          R3: rock            1,  -1           -1,  1            0,  0                 -1                                              
 
            Col’s minima:      -1                 -1                 -1 
 
 

What is the rational choice for each player in this game?  Clearly, there is no one option for Row or 

one option for Col that would be each player’s rational choice; no option dominates, and maximin 
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reasoning can’t apply. Notice that as soon as one player could predict a pattern of choice on the part 

of the other player, that player could use this information to form a degree of confidence about what 

choice to expect and adjust his decision accordingly to gain pennies. Even if there were no outright 

pattern one agent perceived in the repeated choices of the other player, if the other player favored an 

option (say, liked to choose paper with more frequency than the other options) this could be used to 

increase that one agent’s frequency of wins. So, in order for each agent to end up with the same 

amount of pennies, each must: 

1)  avoid any pattern of choosing among options that might be detected; that is, keep the opponent 

guessing about the next choice by the strategy of mixing options in an unpredictable way (there should 

be common ignorance, not just ignorance in common!), and 

2)  distribute or proportion the choices so that (in the scissors-paper-stone game) each option receives 

1/3
rd

 play; that is, do not favor any option or neglect any option that would allow the opponent more 

gain than the absolute minimum he would receive given your best play.    

 

This is a good example of a symmetrical game. Because the two players are equals (that is, each 

player has the same menu of option-outcome strategies to choose from), if these two rules of practical 

reasoning are followed in the game of rock-paper-scissors, each child at the end of the day will come 

out equal, one will not come out ahead in pennies. Each will have held the other to minimum winnings. 

Each will have made the rational choice – not of one option – but of the strategy of choosing the right 

proportion or mix of options in an unpredictable way.  

 

10.2    Mixed strategy concepts 

Before returning to the speeder/patrol car decision problem, let’s define some concepts that are 

central to unstable competitive decision problems. 

 

Optimal mixed strategy – this is the proportion or distribution of choices among options for an agent 

to make in a mixed strategy game that will guarantee the agent a minimum loss (or a minimum gain), 

given that the other agent chooses as rationally as possible (that is, given that the other agent plays 
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his optimal mixed strategy). Playing the optimal mixed strategy (OMS), then, means that an agent may 

do better (if the other agent departs from his OMS), but cannot do worse than a certain minimum 

payoff or goal achievement. Equivalently, the OMS is guaranteed to holds the opponent to a minimum 

goal achievement that can be increased only by an agent departing from his OMS.  In the rock-paper-

scissors game, the OMS for each agent is 1/3
rd

 for each option yielding a minimum payoff of equal 

wins and losses.   

 

Fair – any zero sum mixed strategy game in which, if each agent plays their OMS, the result for each 

agent is zero. In a fair competitive decision situation, the rational choice yields each agent zero gain 

and zero loss of the goal. The rock-paper-scissors game is fair. Assuming that the goal is to win 

pennies, if each child started with 10 pennies and each played the OMS, at the game’s end each child 

will come away with 10 pennies (in theory, that is; in reality they may have to stop playing at a moment 

when one child is ahead by one or more pennies, but this does not make this game unfair or biased).  

Note that “fair” is closely related to the concept of a symmetrical game; it should not matter to the 

agents who takes the row and who takes the col position, for they are equal in goal achievement (if 

each is making rational choices). But “fairness” in an OMS game might not mean the game is morally 

just. Justice might require that one agent gains more of the goal than other agents if, say, one was 

more deserving or, perhaps, more needy. “Fair” in this context means “equal,” and “equal” might or 

might not be just when viewed by moral standards.  

 

Biased – any zero sum mixed strategy game in which, if each agent plays their OMS, the result is a 

gain in goal achievement greater than zero for one agent and a goal loss for the other agent in an 

equal amount.  A row biased game favors Row’s OMS (yielding the row agent more goal achievement 

than the column agent), while a column biased game favors Col’s OMS (yielding the column agent on 

average more of the goal than the row agent). In a biased competitive decision problem, the agents 

can have zero gain/loss only if at least one chooses irrationally. (Again, this is in theory; in reality, the 

agents might have to quit the decision situation at a moment when neither is ahead.) Note that 

“biased” is closely related to the idea of an asymmetrical game; it should matter very much to the 
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agents who occupies the row and who occupies the column position, for these represent unequal goal 

achievement if each is playing rationally.  However, “biased” does not necessarily mean that the game 

is morally unjust. “Biased” means “unfair” in the sense of “unequal”;  by moral standards it could be 

perfectly just that one agent gains more of the goal at the other agent’s expense, for example if one 

agent were more deserving or, perhaps, more needy of the goal.  

 

Let’s now return to speeder/patrol car problem and apply the practical reasoning principles for 

unstable zero sum decisions. We will not be explaining or calculating the exact OMS for each agent. 

There is a relatively simple formula for doing this, but presenting it would take us away from the 

general principles of practical reasoning and rational choice that we are focusing on. But the following 

will serve to reinforce the general ideas presented above in the scissors-paper-stone example that an 

unpredictable proportion of switching among options is the rational choice. 

 
                                                           Col: patrol car 
                                        C1: cruise highway   C2:  cruise back roads 
 
                 R1: highway  
                        at +30             -5,   5                                5,   -5                              5   
Row: speeder                                                                                                                  
              R2: backroads 
                    at +15                  3,   -3                              -2,    2                             10 
 
 
                                                          7                                   8 
                                                                      
 
Let’s say that Row’s OMS is to distribute choice between options R1 and R2 in a 1/3 to 2/3 proportion. 

(We get this by dropping the negative (disutility) sign, adding the two outcome utilities for R1 = 10, 

adding the two outcome utilities for R2 = 5; we switch these and get a 5/15 or 1/3, (.33)  for R1, and a 

10/15 or 2/3 (.67) proportion for R2.)  Likewise, suppose that Col’s OMS is to distribute choice 

between options C1 and C2 in a 7/15 (.47) to 8/15 (.53) proportion. (We get this by dropping Col’s 

negative (disutility) signs, adding the outcome utilities for C1 = 8, adding the outcome utilities for C2 = 

7; switching these gives Col a 7/15 frequency of choice for C1, leaving an 8/15 frequency of choice for 

C2.)  The general idea you should see here is that the result would be that Row achieves a certain 

average outcome utility, Row’s portion of his goal (rounded off it will be .66 in this game, the sum of (-5 
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x .47) + (5 x .53) and (3 x .47) + (-2 x .53)). Similarly, Col would achieve an average outcome utility, 

Col’s portion of his goal (rounded off, -.66 in this game, the sum of (5 x .33) + (-3 x .67) and (-5 x .33) 

+ (2 x .67). Because this is a zero sum game, the sum of Row’s and Col’s OMS values will be zero.  

As you can now see, this is a Row biased game when each agent makes rational choices (OMS):   

(R = .66, C = -.66). 

 

Given these two OMS’s each agent must now make sure that choices are distributed in these 

proportions in an unpredictable way. How might this be done?  Speeder has a 1/3 R1 to 2/3 R2 

distribution, so she can perhaps put 5 red and 10 white pieces of paper in a container, shake them up 

and draw one; red its highway, white its back roads. Notice that this mixed strategy works whether 

speeder has to make a rational choice just once or has to make a rational choice repeatedly, say on a 

daily basis going between home and job. Also notice the interesting element of ignorance; the agent 

herself does not know beforehand and can not predict what option she will be “assigned” to choose by 

her selection device. Even a “truth serum” could not get it out of her! This is intentional ignorance as 

part of the method of practical reasoning within games: strategic ignorance.  

 

How about the patrol car?  How will the distribution of choosing options C1 at a 7/15 rate and C2 at a 

8/15 rate be made unpredictable? Again, a random selection mechanism is a handy way to achieve 

this. The patrol car driver might put 70 white and 80 red slips of paper in a box, shake them up and 

draw one each day. Clearly, neither the patrol car driver nor the speeder can predict whether the patrol 

car will cruise the highway or the back roads on any given day. Each agent, in assuming that the other 

is rational, assumes that they have common knowledge about this mutual inability to predict (a form of 

“common ignorance”!) how each will choose. 

 

10.2.1   Pause for questions 

You might protest at this point and think:  if the patrol car will be cruising the highway roughly 7/15 of 

the time, a smaller fraction than 8/15, isn’t it rational for speeder to stay away from the back roads and 

stick to speeding on the highway at 30mph over the limit? Yes, but remember that the patrol car is 
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equally rational (the assumption of common knowledge) and will quickly discover this pattern of 

choice. The patrol car will realize that speeder has eliminated R2 as an option, thus creating a new 

decision problem very easy for the patrol car to solve in its favor and to the speeder’s loss.  Also, by 

choosing R1, speeder gives up the outcome utility 3 which would have resulted at least some of the 

time from choosing R2. 

 

OK; then why wouldn’t speeder drive back roads 7/15 of the time and only speed on the highway 8/15 

of the time, the exact reverse of the patrol car’s mixed strategy? Well, if the patrol car is patrolling the 

back roads 8/15 of the time, the more the speeder uses the back roads at a 7/15 rate, the more the 

patrol car will catch him speeding, and the same for the highways rates of choice. This same poor 

choice would happen if the patrol car tried to adapt to the speeder’s 1/3 to 2/3 mix of choices. You can 

see the general problem: trying to “out-smart” the opponent is trying for goal achievement in a way that 

relies on the other agent’s irrationality. An agent might get lucky now and then, but it is clearly not 

good strategic practical reasoning to try to make one’s choice “rational” by making it depend on the 

other agent’s bad decisions. Much better to respect one’s opponent as a fully rational agent (that is: 

assume common knowledge) who will play his OMS in an unstable competition with you, against 

which you will only lose more of your goal by departing from your OMS than you will achieve by 

sticking to it. 

 

At this point, let’s return briefly to Chapter 9 and consider the opening example of two party-goers who 

are trying to outdo each other in how they dress for the party. You will see from the matrix that neither 

agent has a dominant option, nor can their decision problem be solved by the maximin method. They 

are in an unstable competitive game and so each should use an unpredictable mixed strategy. As in 

the scissors-paper-stone game, the proportion of choice Row assigns to R1 and R2 should be equal, 

and the same for Col. You can see this by noticing that each has the same menu of options and that 

each option, unlike the case of the speeder/patrol car, yields equal payoffs. This, then, is a fair game – 

each agent achieving (and loosing) her goal an equal number of times (at least in theory!) providing 

each plays her OMS.       
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10.3.    Summary 

Here is a summary of the strategic practical reasoning steps for analyzing and evaluating zero sum 

interdependent decisions (Chapters 9 and 10). 

 

1.  For each agent, frame the decision into the standard option-outcome branching diagram and, using 

the goal as a single criterion, assign utility/disutility values to outcomes from a wide enough interval 

scale. 

2. Construct an outcome matrix, making sure that each cell sums to zero. 

3. Eliminate any dominated options for Row and for Col. This might solve the game and the rational 

choice for each agent will be clear. 

4. If not, find the maximin for Row and for Col. If there is a saddle point outcome cell, this will be an 

equilibrium outcome pair that solves the game and the rational choice for each will be clear. 

5.  If there is no maximin equilibrium, the game is unstable and the rational choice is for each agent to 

play her OMS (that is: estimate the proportion of switching among options that yields the highest 

average utility, keeping the pattern of switching unpredictable). 

Note:  every 2-person competitive game has a rational choice by the methods of either dominance, 

maximin reasoning, or OMS.  

6.  If the game is biased against an agent, the rational choice is to opt out as soon as this option 

becomes available; opting out will dominate any OMS biased against an agent. (Note that if an agent 

desires to remain in a game biased against the agent’s goal achievement, say because the agent is 

having fun or likes competing or gets to meet new people or whatever, then it is not a zero sum game 

and the true goal should be made clear and its value reflected in the outcome utilities.) 

 

Before turning to our next topic, potentially cooperative interdependent decisions, let’s highlight three 

of the methods of practical reasoning that we have used to discover the rational choice in zero sum 

games. These same three methods will be at the center of the practical reasoning used in the next 
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chapter.  We saw that the important method of expected utility would not work to solve zero sum 

games, and this method will not be used for potentially cooperative games in the next chapter either. 

Also, for reasons that will become clear in the next chapter, we will not use the method of mixing 

options to solve cooperative decision problems. There are three methods of practical reasoning by 

which a rational choice is discovered that we will carry over to the next chapter. 1) Dominance -- an 

agent should eliminate dominated options and should choose a dominant option, if any. 2) Maximin -- 

an agent should eliminate options and choose by maximin reasoning. 3) Equilibrium -- agents should 

choose the option whose outcomes are in equilibrium (from which it would be irrational to be the only 

agent to switch).  

 

 
 
 
 
 
 
 
 
EXERCISES:  
 
For the following decision problems, explain which are stable and which unstable. For those that are 

stable, can it be solved by the method of dominance or maximin reasoning? For those that are not 

stable, estimate if the game is fair or biased.     

 

a)                            mouse                                         d)                                dealer   
                       run             stay                                                            ace      king       jack 
                                                                                                               
      spring    -5,  5            10,  -10                                             bid     7,  -7     5,  -5    -10, 10 
 cat                                                                                player                                      
       stalk      0,   0             2,  -2                                              hold     -1,  1     0,   0     -2,  2 
                                                                                                                                
                                                                                                 quit    -7,  7     -6,  6      -5,  5 
  
 
b)                              she                                             e)                               teacher                                            
                     leave            stay                                                              quiz             lesson   
                                                                                                               
        drink     - 8,  8          3, -3                                                 play     0,  0              -5,  5 
  he                                                                              student 
      smoke    - 4,  4          6, -6                                                sleep    3,  -3             1,  -1   
                                                                                                                 
                                                                                               study    8,  -8            -4,  4 
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 c)                           robbers                                         f)                                  nurse 
                      walk               run                                                          respond           ignore 
                                                                                                               
         walk     2,  -2             -2,  2                                              ring      7,  -7             -5,  5     
   cops                                                                           patient 
           run    -2,  2              2,  -2                                              yell      -6,  6              0,  0  
                                                                                                                 
                                                                                             silence    1,  -1            -1,  1                                
                                                                                          
                                                                              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sources and suggested readings: 

 

Chapters 9 and 10 draws on material from Davis (1983) Chapters 1 - 3, Luce and Raiffa (1957) 

Chapter 4, Mullen and Roth (2002) Chapter 8, Rapoport (1966) Chapters 3 - 7, Resnik (1987) Chapter 

5, and Straffin (1993) Chapter 1. Davis has become a classic and is especially recommended for its 

non-technical presentation and range of vivid examples. Straffin is highly recommended to anyone 

with an interest in mathematics or wishing to pursue either the full method for finding OMS or the 

shortcut used in this chapter.  Allingham (2002) Chapter 5 offers a very compact tour of zero sum 

games as well as several uncluttered examples. Casti (1996) Chapter 1 offers a clear popular 

introduction to games with a focus on the centrality of von Neumann’s minimax theorem, while Resnik 

presents an accessible proof of this theorem (called the maximin theorem) for the 2x2 case. 

Poundstone (1992) Chapter 3 is an engaging popular historical approach to games presented in a 

lively style.   

 
 

 


