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          MAKING GOOD CHOICES: AN INTRODUCTION TO PRACTICAL REASONING
 
 
CHAPTER 5:     RISK AND PROBABILITY 
 
 

Many of our decisions are not under conditions of certainty but involve risk.  Decision under risk 

means that the agent is not practically certain, for each option, that the intended outcome will 

happen, but can estimate the chance that it does.  The agent, in a risky choice situation, realizes 

that there is some chance that one or more alternative states might be in place, or that the 

required state could change before the intended outcome happens.  If either should be the case 

then the intended outcome will not happen but another one will, perhaps one that threatens the 

agent’s goal.  When risk is real, the agent knows that any one action has two or more possible 

outcomes, depending on which state will exist when the action is done, but does not know which 

one it will be. Thus, the outcome is uncertain.  

 

The simple example of flipping a coin provides a convenient and clear model of choice under risk. 

For contrast we will make the agent’s menu of options mixed, containing a certain and a risky 

option. Let’s suppose an agent has a goal of making money and is offered a choice between (a) 

$10 for sure or (b) the flip of a fair coin with $25 as outcome for heads and $0 as outcome for 

tails.  The agent is certain (assuming the agent can trust the offer) that option (a) has a $10 

outcome, but is uncertain about the outcome of option (b); it is uncertain to the agent that heads 

will land up and the agent knows that there is an alternative – tails – that threatens the goal.  But 

at least the agent can estimate the degree of uncertainty that $25 will be gained in option (b).  

 

Risk is the agent’s uncertainty about the outcome of an option, when the degree of uncertainty is 

known or can be estimated. Uncertainty is a very important factor in practical reasoning, and will 

be represented by an estimation of the probability that the required state exists versus the 

probability that an alternative state exists.  By formally representing risk as probabilities, several 

things are accomplished. First, it makes it difficult for an agent to neglect or forget the risk factor 

when it is a decision under risk. Second, it makes the agent think about the degree to which risk 
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might detract from the utility of the outcome of an option. Third, for an agent who might be unduly 

afraid of risk, or one who might be thrilled by risk, it provides a moderating counterbalance toward 

realistic risk estimates.  

 

In this chapter we will set up the method by which risk will be represented in decisions.  Then, in 

the next chapter we will apply this method to various risky decision problems.  

 
 
5.1   Risky decisions  

Where is risk located in a decision? Risk is a feature of the belief an agent has about the required 

state-of-the-world, it is not a feature of the desire the agent has for the goal. In risky decisions, 

the agent is less than maximally certain that the state is (or will be) in place; the agent is 

uncertain to some degree about the state, but can estimate the likelihood or probability that the 

required state exists. This means that in risky decisions the degree of uncertainty is greater than 

zero (zero or no uncertainty would mean that it is a case of certainty) but less than total (total 

uncertainty would mean complete ignorance).  In risky decisions, the agent belkieves that there is 

a real possibility that some alternative state, one or more, might exist, in which case an act the 

agent might decide to do would have an alternative outcome.  These other possible outcomes 

could affect the goal negatively, distancing it from the agent and perhaps even destroying any 

opportunity to achieve the goal at all. The basic structure for a risky option is: 

 
                                                           state 1                        outcome1 
                          Act                                                                                                    goal 
                                                           state 2                        outcome 2 
                                                                  

 

Because one of these outcomes might threaten the agent’s goal, outcome, for decisions under 

risk, is defined as the sub-set of all consequences of an option that changes the level of goal 

achievement or degree of goal fulfillment, positively or negatively.  If we expand the basic 

structure for decisions under risk to, say, three options, we have this diagram: 
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                                                 state 1                       outcome 1.1 
                         act 1 
                                                 state 2                       outcome 1.2  
 
                                                 state 3                       outcome 2.3 
  Agent:          act 2                                                                                                           goal 
                                                 state 4                       outcome 2.4 
 
                                                 state 5                       outcome 3.5 
                       act 3                  state 6                       outcome 3.6 
                                                 state 7                       outcome 3.7                          
 
 
In risky decisions, the idea is that the agent examines the alternative states for each option and 

tries to estimate the likelihood that one or another state will occur. On the basis of the likelihood, 

the agent forms a reasonable degree of expectation that doing an act will produce the intended 

outcome.  

 

Flipping a coin provides a convenient and familiar way to illustrate decisions under risk. Suppose 

someone offered you the following little gamble. They flip a fair coin, and you call heads or tails. If 

you call it correctly, you win $5. If you call it incorrectly, you pay the person $5. Let’s say that your 

goal is to win $5. We can easily fill in the above decision structure to get this: 

 
      Agent                acts                         state                   outcome                             goal 
 
                                                          heads (1/2)                win  $5 
                           call heads 
                                                            tails (1/2 )                lose  $5 
    You                                                                                                                         win  $5 
 
                                                          heads (1/2)               lose $5 
                            call tails 
                                                           tails (1/2 )                 win $5     
 
 
There are several things to note.  First, each time you accept this gamble the best you can expect 

as an outcome is $5 and this equals your goal. The best outcome is the upper limit of what you 

can rationally hope for in a risky decision; your hope limit. Second, the worse you can expect is 

to lose $5. This is not only the complete loss of your goal, it is also a payment you must give. This 

is your security limit in a risky decision; you have no reason to fear that any worse outcome can 
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happen in the decision situation. Third, you can form a reasonable degree of expectation of 

achieving your goal for each option.  In this case, you would be reasonable to expect a $5-gain 

outcome (your hope limit) no stronger and no weaker than the strength of your expectation of a 

$5-loss outcome (your security limit). Equal expectations in this case are based on the fact that 

for each option the state that promotes and the state that frustrates your goal achievement can 

occur with equal likelihood (1/2). Most risky decisions, as we will see, require unequal 

expectations.  With this example in mind, we now want to make the idea of an agent’s degree of 

confidence or expectation, both under certainty and under risk, more clear than it has been thus 

far presented.  

 
 
 
 
5.2    Belief and belief strength  

Both certainty and risk are connected to the agent’s beliefs, not the agent’s desires.  We will 

accept a theory of belief that holds that beliefs can have a range of possible strengths. Someone 

might hold a belief very strongly, another person might have the same belief but hold it weakly, 

and a third person might believe the same thing with a strength falling somewhere between 

strong and weak. Take, for example, the statement:  There is extra-terrestrial life in our universe.  

There are those who believe this very strongly, and others who disbelieve it equally strongly. 

Most people, however, are not so sure of its truth and have some doubt. They are uncertain, to a 

degree, of its truth. It is not that they disbelieve the statement, which would mean that they take it 

to be false. And they are not neutral, refusing to believe it to any degree, as well as refusing to 

disbelieve it to any degree. Rather they believe it, but not with the maximum degree of strength. It 

is quite common for a person to state what they believe and then add the phrase “but that’s just 

my opinion” to indicate that they are not completely confident that their belief is correct.  Strong 

believers will not add such a phrase to their belief; strong believers will demand a lot of negative 

evidence before they give up a belief, while those whose beliefs are less strong will more easily 

give it up.  
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We now stipulate that in every case of belief there is a degree of confidence, and the degree of 

confidence is the strength with which a believer holds a belief.  At one extreme there is the 

maximum degree of confidence possible; this is certainty. At the other extreme there is the 

maximum degree of doubt possible; this is disbelief. In between these two extremes there are 

many different degrees of confidence with which a believer might hold a belief.  A common way 

we have to get a person to reveal his/her degree of confidence in a belief is asking how much the 

person is willing to bet that her belief is true. If she answers, “I’ll bet my life on it.”, then we know 

her degree of confidence is maximal: certainty. If she answers, “I won’t bet anything at all, all bets 

are off.”, then the degree of confidence is minimal. If she answers, “I’m willing to bet $10 (my car, 

my house, all my savings…) that I’m right.”, then we know she has a degree of confidence 

between maximal and minimal and a rough estimate of its strength is the value of what she is 

willing to bet. 

 

Given this definition of degree of confidence, we must now ask: for any given belief, what would 

be a reasonable degree of confidence for a believer to have? What determines the degree of 

confidence that a person should have, and a rational person would have, with respect to a belief?  

In the theory of belief we are accepting, it is the evidence the person has that their belief is 

correct that determines what level of confidence is reasonable.  As a general rule: the more 

evidence a person has that a belief is correct, the stronger the degree confident the person can 

hold that belief. Likewise, the poorer the evidence, the less confident believer should be about the 

correctness of their belief.  Suppose, for example, that you are told that you lost $5 because you 

called tails and the coin landed heads. However, you did not see the coin land. You ask on what 

basis you should believe that the coin landed heads. The person tells you that he heard it from a 

friend, who heard it from another friend, who was told by the person who flipped the coin. Is this 

good evidence? With what strength would you believe that the coin landed heads?  How ready 

would you be to hand over $5? You would probably have doubts, and quite reasonably not be 

very confident in believing the statement. But now compare this to the evidence you would have if 

you directly observed the coin land heads. In this case your degree of confidence that the coin 
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landed heads would no doubt approach certainty.  A reasonable degree of confidence, then, is 

one that matches, that is proportional to, the amount of evidence the believer has that the belief is 

correct.   

 
 

5.3   Belief and risk   

Given these concepts of belief and reasonable degree of confidence, it is now time to return to 

decisions under risk to see how the element of risk is represented within the decision framework.  

Using the decision diagram above containing 3 options, 7 states, and 7 outcomes (section 5.2) 

you will see that for each option there are two or more alternative states-of-the-world, each 

leading to different outcomes. Each states has a certain chance of happening; we will say each 

has a probability of existing. The agent, however, though certain that any given option from the 

menu will yield an outcome, is uncertain which one it will be. The agent is uncertain which 

possible outcome an option will yield because the agent is uncertain which possible state-of-the-

world is or will be in place if that option is chosen.   

 

Even though uncertain, in decisions under risk (by definition) the agent can form reasonable 

degrees of confidence about which outcome. And this means that the agent has some evidence 

concerning the alternative possible states-of-the-world; otherwise reasonable degrees of 

confidence could not be formed.  Because the agent cannot be certain about the state (for 

example, no one can be certain that a fair coin flipped will land heads) the evidence must be the 

probability that a given state exists.  So: in decisions under risk, the agent’s degree of confidence 

that an outcome will result should reflect the evidence that the required state exists or will exist, 

and this means that an agent’s degree of confidence that an option will yield a given outcome 

should be no more and no less than the probability of the required state. To return to our 

convenient little model of flipping a coin for $5, you should not expect a $5 outcome from calling 

heads with more confidence than the probability of heads landing up, both of which is ½.  The 

general rule is: 
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 The more probable a state (S) is, the more confidently the agent should believe that the 

option containing S will yield the outcome requiring S. 

 The less probable S is, the less confidently the agent should believe that the option 

containing S will yield the outcome requiring S.      

 

An agent’s degree of confidence about the outcome of an option is rational, then, if it accurately 

and reliably reflects the probability with which the state required for that outcome happens. In 

framing a decision under risk, a number will be used to represents the agent’s degree of 

confidence, and that number should match the probability that the required state exists. 

 

 5.4  Probability 

How is evidence concerning probability acquired?  There are two basic sources. First, there is the 

actual experience and the records of the rate of frequency of a given state happening. This is a 

matter of statistics and gathering real data. We will group this under the heading: factual 

probability. Second, probabilities can sometimes be calculated by counting possibilities out of a 

larger set of possibilities. This comes under the heading: pure probability.  These two sources will 

typically allow an agent to estimate and assign initial probabilities to states. Once initial 

probabilities are assigned to states, some basic rules of the probability calculus will allow the 

agent to combine initial probabilities.  An agent’s degree of confidence about the outcome of an 

option should accurately and reliably reflects either the factual or the pure probability with which 

the state required for that outcome happens.  Before turning to the method of assigning initial 

factual and pure probabilities, here are some examples to help make these ideas clear 

 

Example 1: Suppose that you have evidence from the past records that 6 out of every 10 

automobile traffic accidents involve no injuries to anyone, only vehicle damage. What is the 

rational degree of confidence with which you should believe that no one will be hurt if you get into 

an automobile traffic accident?  Answer: .6 degree of confidence is rational, based upon this 

(hypothetical) statistical record. 
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Example 2:  Someone rolls a fair die. You stand to win $50 if the side with two dots lands up. With 

what degree of confidence should you believe: I am going to win $50?  Here is the evidence you 

need to form a reasonable degree of confidence. There are six possible sides to a die, each with 

a number of dots from 1 to 6.  Each side has an equal probability of landing up, for the die is fair. 

The desired side with two dots is, thus, one possibility out of six possibilities.  1/6 = .17. So, your 

degree of confidence should only be .17 you are going to win $50   

 

Example 3:  What is the rational degree of confidence that a fair coin flipped will land heads-up?  

The coin can land in only two possible ways, heads being one of the ways. Thus, a reasonable 

degree of confidence is .5. 

 

5.4.1       Estimating initial probabilities. 

We will first look at the category of factual probability, also called “statistical probability” or 

“empirical probability”. This is probability based on past frequencies of events, about which 

observations have been recorded, statistics kept, or a reliable memory (history) exists.  Our 

assumption is that the agent has access one way or another to the record of past frequencies. 

Let’s take a typical example. Suppose someone asked the question: what is the probability of a 

person who smoked one pack of cigarettes a day for 10 years getting chronic respiratory illness?  

There are two things to identify in this question. First, there is a specific property or event of 

interest. In this case it is:  getting a chronic respiratory illness. Second, there is a set of 

properties or events within which the property or event of interest is to be located. In this case it 

is:  all people who smoked one pack of cigarettes a day for 10 years. This large set of events 

within which the event of interest is located is called the sample space.   So, our question can be 

rephrased to this: Of all the people who smoked one pack of cigarettes per day for 10 years 

(count them up and this = the sample space), how many have had chronic respiratory illness 

(from the sample space count these up and this = the event of interest)?  The records have to be 

consulted. Perhaps government agencies have kept statistics, perhaps the medical profession is 
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doing a long-term study on just this issue, or perhaps the tobacco industry is amassing 

observations in anticipation of future legal battles. Whatever the source, we will end up with two 

numbers. Suppose the records reveal that, say, 150,000 out of 600,000 (=1 in 4) pack-a-day 10-

year smoker gets a chronic respiratory illness.  The number 1 is the count of the event of interest, 

and the number 4 is the count of the sample space.  The probability, then, is the frequency with 

which the event or property of interest happens relative to the frequency with which the sample 

space event or property happens.  This ratio is then expressed as a decimal (divide the event of 

interest number by the sample space number).  In this (imaginary) case, the answer to our 

question is: a probability of .25. Note that this answer requires that the future will continue to take 

place more or less similar to the way the past has happened; if we have evidence to the contrary, 

then we can’t use past frequencies to arrive at the probability of a future event. We will accept this 

important general assumption. Applying it to the smoking example, we have the assumption that 

future 10 year pack-a-day smokers will succumb to chronic respiratory illness at roughly the same 

rate as past 10 year pack-a-day smokers have. With this assumption and these statistics, it is 

reasonable to believe with a confidence degree of .25 that a given individual who qualifies to be in 

the sample space will also qualify for the event of interest.  In other words, if you took a large 

group of pack-a-day 10-year cigarette smokers and said of each, one-by-one, “You will get a 

chronic respiratory illness”, your prediction is true roughly one out of four times.  

 

Let’s look at another example. Suppose that you just bought a certain brand new tire for your car. 

What is the probability that your tire will go flat within the first week of use due to a factory defect?  

To find this probability you must first construct a sample space. Let’s say that you had access to 

the manufacture’s records of all the new tires sold in the past year, and this was 100,000 tires.  

This is now your sample space. What is the event or property of interest?  It is those tires that 

went flat within the first week of use due to a factory defect. The records (we’ll suppose) are 

reliable and reveal that 200 tires are in this event-of-interest category. The probability, then, is 

200 out of 100,000 = 1/500 = .002. With what degree of confidence is it reasonable for you to 

believe that your new tire will go flat in the first week of use due to a factory defect?  Using the 
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factual probability as evidence, you should believe this statement with confidence strength .002 

(which is to say that it should be very far down on your list of worries).   

 

Summary – here are the steps in estimating and assigning factual probability: 

1) Identify the sample space, defined as the set of events (or a good sample of such event if all 

the events can’t be counted) within which the event of interest happens, and count them.  

This is done by consulting records, data bases, or making observations.  

2) Identify the property or event of interest and count the frequency with which it happens within 

the sample space. 

3) The probability is the ratio of the number for the frequency of the event of interest to the 

number for the sample space, expressed as a decimal. 

4) The factual probability assigned to an event or property (i.e. that it will happen) determines 

the rational degree of confidence a believer should have about the truth of the statement 

describing that event or property. 

 

 

Now we’ll look at assigning pure probability, also called “a priori probability” or “classical 

probability”.  For pure probability, we count possibilities, not the relative frequency of actual past 

events. Here is an example. Suppose you wanted to know the probability of picking the ace of 

spades from a full deck of cards that has been completely shuffled.  Note again that there are two 

important things.  First, there is the full set of possibilities. A complete deck of cards contains 52 

possibilities that you can pick from. They are equally possible picks because the deck has been 

completely shuffled. These possibilities make up the sample space. Second, there is the event 

you are interested in, namely, picking the ace of spades. There is only 1 ace of spades in a full 

deck of cards, so there is only one possibility that it will be picked. As in the case of factual 

probability, pure probability is a ratio of two numbers: the number of possibilities for the event or 

property of interest to happen relative to a base number of total possibilities in the sample space.  

Here, in the case of picking the ace of spades, we have 1/52, expressed as a decimal .02 
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(rounded off).  As in the case of factual probability, there is an important assumption – actually 

two assumptions – to make. First, that the sample space count has covered all possibilities; in 

this case, a perfectly complete deck of 52 possible cards to pick from. Second, that the sample 

space events or property are equally possible; in this case, the deck is thought of as perfectly 

shuffled into a random distribution of cards so that each card has the same chance (1 out of 52) 

of being picked.  Given these two assumptions of completeness and equi-possibility, and given 

these counts, it is reasonable to believe with a .02 degree of confidence that the ace of spades is 

picked.  

 

Here is another example of assigning probability that is done by counting pure possibilities.  

Suppose that 8 people are sitting around a circular table, evenly spaced apart.  In the middle of 

the table there is a spinning arrow that will randomly stop, pointing to one of the people. The lucky 

person the arrow stops at will receive $1000 prize.  Mary is one of the 8, and she believes that 

she is going to win the $1000 prize. If Mary is rational, what is the degree of confidence of her 

belief?  The sample space of possibilities = 8. They are equally possible winners. Mary is 1 out of 

8. Thus, the pure probability is .125.  This, then, should be her degree of confidence that she will 

win the $1000 prize (and, of course, she should disbelieve that she will win with a .875 strength).  

 

Here is a third example.  You roll a pair of fair dice.  With what degree of confidence should you 

believe that a total of 7 dots will face up?  Each die has 6 faces and each face has equal 

probability of landing up (because the dice are fair). So, there are 36 possible combinations that 

are equally possible. This is your sample space.  Now, count the possible ways the event of 

interest can happen. Let’s call one die A and the second one B. A can land 1 and B 6, or A can 

land 6 and B 1. A can land 2 and B 5, or the other way around. Finally, A = 3 and B = 4, or the 

other way around. No other possibilities than these 6 for the event of interest, right?  So, 6/36 = 

1/6 = .17.  Your reasonable degree of confidence believing that 7 dots will land up should be .17.     
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Summary – the steps in calculating pure probability are these: 

1) Identify the sample space, defined as the complete set of equal possibilities within which the 

event or property of interest is possible, and count these possibilities.    

2) Identify the possibility that is the property or event of interest and count these within the 

sample space. 

3) The probability is the ratio of the number for the possible events of interest to the number for 

the possibilities in sample space, expressed as a decimal. 

4) The pure probability assigned to an event or property (i.e. that it will happen) determines the 

rational degree of confidence a believer should have about the truth of the statement 

describing that event or property. 

 

 

5.4.2    Potential errors to avoid in estimating initial factual or pure probabilities. 

Assigning accurate initial probabilities depends on a correct count of the items that make up the 

sample space and well as a correct count of the frequency of the event of interest. Sometimes 

these counts can easily be made, but often we must rely on our ability to estimate what these 

counts would be, for we are not able actually to perform a careful count (due perhaps to limited 

time or lack of resources or inability to access data, or even due to the relative low importance we 

give the decision). Whatever the reasons requiring us to estimate, it is well-known that when 

estimating probabilities we can go wrong in our judgments if we hold certain mistaken beliefs 

about probability.  Let’s look at some of these potential errors about probability; this will help us 

be on guard to avoid assigning inaccurate initial probabilities to states-of-the-world. 

 

1) Sometimes it is easy to misunderstand exactly what a statement of probability is claiming. 

This might happen because a statement of probability is not worded carefully and as a result 

it can be confusing and subject to misinterpretation as to what exactly the probability 

attaches.  Being clear about the meaning of probability statements will help you clearly 

express your own probability estimates. Suppose, for example, that you are listening to a 
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Boston, MA weather forecast for tomorrow and this is what you hear: The probability of rain in 

Boston tomorrow is 50%.  What does this mean?  Someone might think it means that it will 

rain over half of Boston tomorrow, but the experts are uncertain exactly where. Others might 

think it means that it will rain for half the day tomorrow over all of Boston, but the experts are 

not sure about the exact times. It might not rain all day in Boston tomorrow, and it might not 

rain everywhere in Boston tomorrow. But this is not what is being claimed in this forecast. 

The event of interest is rain in Boston tomorrow, it is not times of day of rain or exact 

locations of rain. What would the sample space be? It would be all the past days in Boston 

having similar variables of temperature, season, weather conditions, etc. as today, for which 

the forecasters have records. Given this data, the forecasters count how many days in this 

sample space had rain the next day. They find out, we’ll suppose, that one half of the sample 

space days did and the other half didn’t. Projecting these numbers from the past onto today 

and tomorrow in Boston gives us the forecast. (Note again the need to use the important 

assumption – the future will be similar to the past – in assigning factual probabilities such as 

this.)  

 

2) The second easily-made mistake has to do with the nature of memory. It is pretty well 

established by empirical studies that repetition strengthens memory. This is also common 

knowledge. If we want to remember something, a common method we use is to repeat it to 

ourselves over-and-over. So the rule is: frequent experience establishes and strengthens 

memory.  Of course, other things can also establish a strong memory. A traumatic 

experience might leave a person with a life-long vivid memory, even though it happened only 

once. Because frequent experience and repetition are not the only causes of strong memory, 

the rule does not work in reverse.  While it is true that frequency strengthens memory, it is 

not true that if a person has a strong memory of an experience and can easily recall it, then 

the experience being remembered happened frequently.  Yet people sometimes believe this 

reversed rule. This is called the availability error. The error is to think that if something 

easily comes to mind or is easily available to memory then it must be highly probable 
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because it must (have) happen frequently.  Here is an example where this error can easily 

lead to assigning inaccurate initial probabilities.  Let assume for the moment that trains and 

planes have about the same safety record. (I don’t know this for a fact, but it seems a not 

unreasonable assumption.) Thus, the probability of injury or death in a train wreck and the 

probability of injury or death in a plane crash are roughly equal, and both are very low, much 

lower than the probability of injury or death in an automobile accident. Yet in the aftermath of 

the September 11
th 

2001 terrorist attack on the WTC in New York City, these plane crashes 

were very available to many people’s memory. They were vivid and horrifying. There were 

wide spread reports that people decided to drive or take the train instead of flying because 

they were afraid of dying in a plane crash.  And yet the probability of dying in an automobile 

accident was, and still is, much greater than dying in a plane crash, and death by plane 

remained roughly equal (given our assumption) to death in a train wreck.  The availability 

error seems to be at work here, leading to exaggerated probability estimates, and therefore 

fears, of plane crashes. 

 

3) If asked to estimate the factual probability of some event, one strategy someone might resort 

to is imagination, especially in the absence of statistical data. Say someone asks you what 

the probability is of having a traffic accident while driving down the main street in your town.  

You know the main street very well, and feel that this is information you should be able to 

provide the questioner.  You realize that you do not know any actual statistics. Instead, in 

imagination you picture yourself driving down your familiar main street, and you try to 

estimate the chances of getting into a traffic accident. You recognize that there are over ten 

intersections on the main street and each one could, in your mind, easily lead to an imagined 

traffic accident. So, you answer that the probability is pretty good of a traffic accident while 

driving down the main street. You may sound knowledgeable to someone who does not know 

the facts, but your probability estimate is almost certainly way off base.  Substituting 

imagination for actual statistics is called scenario thinking. An agent will run through a 

scenario in imagination hoping to read off the frequencies from the imagined events.  Why is 
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scenario thinking bound to fail as a method of estimating probabilities?  It fails because an 

agent cannot extract information from an imaginary scene that does not contain the 

information in the first place. If the agent truly does not know the relevant frequencies, the 

statistics, then the agent cannot introduce them into the imagined scenario. If they are not 

contained in the imagined scenario, the agent cannot extract them from the imagined 

scenario. Scenario thinking will give an agent only imaginary probabilities, not factual 

probabilities.   

 

4) Suppose you are told that a high percentage of firefighters admitted being fascinated with fire 

as a teenager. Let’s say a district of a large city employs 20 firefighters and 80 police officers.  

Relatively few police officers admitted that they were fascinated with fire as a teenager, say 

only 20%. But a large number of firefighters admitted to this, say 80%. You are now 

introduced to someone employed by the district and are told that this person admitted to 

being fascinated with fire as a teenager, and that the person is either a police officer or a 

firefighter. You are asked to guess which one is more probable.  How would you answer? 

Many people would say that it is more probable that the person is a firefighter.  But this is 

false. It is a case of ignoring the base rate frequency. In fact, it is equally probably that the 

person is a police officer. While the relative number of police officer fascinated by fire as a 

teen is low, notice that there are many more police officers employed by the district than fire 

fighters. This is called the base rate frequency. Ignoring the base rate frequency leads to the 

error of assigning a higher probability that the person in question is a firefighter. Here is 

another case. Suppose you knew that stockbrokers loved to read the financial reports that 

companies put out, but that it is very rare for people who are not stockbrokers read such 

financial reports.  You are introduced to someone who tells you that she loves to read 

financial reports. What is more probable, that she is or is not a stockbroker?  If you ignore the 

base rate frequency, you’ll incorrectly think that it is more probable she is a stockbroker. The 

base rate frequency of people who are not stockbrokers is vastly greater than the frequency 

of stockbrokers.  As a result, the number of the former group who love to read financial 
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reports, even though rare, is bound to be much larger than the number of the latter group 

who love to read such reports.  Thus, it is far more probable that the person you are 

introduced to who loves to read financial reports is not a stockbroker than it is that she is a 

stockbroker.  

 

5) Many people confuse the idea of average and the idea of frequency. If the average family 

has two children, should we believe that families with two children occur frequently and thus 

are more probable than, say, families having five children?  If the average income in a town 

is, say, $60,000, does this mean that $60,000 is the most frequently occurring income in the 

town? In each case the answer is no. To try to estimate probabilities by appealing to what is 

average is called the error of the raw mean.  Take a range of values: they could be incomes 

in a town, or temperatures every hour in a day or at noon every day in a week or a year, or 

the number of children in families that own farms,…, whatever.  As an example, lets suppose 

that temperatures are taken at noon for one week.  Mon. = 63 degrees F, Tues. = 68, Wed. = 

76, Thur. = 90, Fri. = 81 , Sat. = 84, Sun. = 84. The average temperature is the raw mean of 

this range of values.  You find this by adding these seven temperature values and dividing by 

7.  The average noontime temperature for this week is 78 degrees. Now notice how 

frequently 78 degrees F occurs – not at all. Clearly, “average” can’t mean the same thing as 

“most frequently occurring value”, and thus it is an error to believe that the closer to the 

average a value is the more probable it is. What is average might be probable, but clearly it 

need not be so.  Instead of “average”, the ideas of “ordinary”, “common”, “easy”, or “typical” 

are more closely linked to the idea of “frequently occurring”, and might sometimes provide a 

guide for estimating probability whereas “average” cannot.     

 

6)  Just as people sometimes confuse average with frequently occurring, there is a related error 

in confusing unique with infrequent.  Thus, many people believe that the more unique 

something is the more improbable it is. Let’s call this the uniqueness error. Here is a 

counterexample to this belief.  Let’s say that you flip a fair coin three times. It would be 
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unique if the coin came up heads three times in a row, more unique someone might think 

than if it came up some mixture of heads and tails, say, THT.  Thus, someone might be lead 

to believe that HHH is less probable (more improbable) than THT. But this belief is false. 

Getting HHH in three flips is just as probable as getting THT; each has a probability of .125. 

Just as it is easy to make the error of the raw mean by confusing “average” with “frequent,” in 

the uniqueness error it seems that “unique” is easily confused with the idea of “infrequent.” 

Being unique does not necessarily mean a thing or event is highly improbable.  

 

 

 

5.4.3        Combining initial probabilities. 

Once initial factual or pure probabilities have been assigned to states-of-the-world, these 

probabilities can be combined according to some basic rules of the probability calculus.  For our 

purposes, 4 rules are needed.  As we review these basic rules, examples will be offered to show 

how they are used in setting up the framework for decisions under risk. 

 

Rule 1.  All probabilities are normalized. Information is “normalized”, you will recall, if it is 

represented on a scale that sums to 1.0.   The scale for probability is: 0 – 1. A state-of-the-world 

that cannot fail to happen is assigned the value 1.  Thus, 1 represents the agent’s maximum 

degree of confidence – certainty. A state-of-the-world that cannot happen is assigned the value 0. 

Thus, 0 represents the agent’s minimum degree of confidence – disbelief. Thus, all degrees of 

confidence, are represented by numbers between 0 and 1. If we let “P” represent the probability 

and “a” represent a state-of-the-world, then we can symbolize rule 1 as:  0  P(a)  1  

 

Rule 2.  Two states-of-the-world, a and b, that are mutually exclusive (meaning only one can 

happen, not both) and jointly exhaustive (meaning there is no third state that can possibly 

happen) must have probabilities that sum to 1.  Thus,  P(a) + P(b) =1, and P(a) = 1 minus P(b), 

and P(b) = 1 minus P(a).   
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Rule 3.  The disjunction (addition) rule:  For any two states-of-the-world, a and b, that are 

exclusive:    P(a or b) = P(a) + P(b). 

 

Rules 1, 2 and 3 apply to the possible states-of-the-world for any one option.  Say an option has 

three possible states, each yielding a different outcome. The agent must assign initial factual or 

pure probabilities to each of these three states in such a way that rules 1, 2 and 3 are obeyed. 

The states are alternatives and so are connected by “or”. Their probabilities must sum to 1. In 

effect, the agent must include all states possible for an option under risk until the agent is certain 

that no alternative state has been left out (each one yielding a different outcome).  If we put this 

into our framework we get this structure for an agent with three options, two of which have three 

possible states and one (Act 2) having two possible states. 

 
                                    Options                                  State                                            Outcome  
                                                                                 state 1   P(-)                                   O1.1 
                                                                                 or         + 
                                       Act 1                                  state 2   P(-)                                   O1.2 
                                                                                 or         + 
                                                                                 state 3   P(-)                                   O1.3 
                                                                                               1.0 
                                                            
                                                                                 state 1   P(-)                                   O2.1 
   Agent                          Act 2                                  or         +   
                                                                                 state 2   P(-)                                   O2.2        
                                                                                              1.0 
 
                                                                                state 1  P(-)                                     O3.1 
                                                                               or         + 
                                       Act 3                                state 2   P(-)                                     O3.2 
                                                                               or         + 
                                                                               state 3   P(-)                                     O3.3 
                                                                                            1.0                      
 
 
 
In this decision diagram, each option has states as possible alternative conditions that lead to 

different outcomes. The agent must be certain that one or the other state will be in place for each 

option. What the agent is uncertain about is which state. The probability of each state happening 

(actual numbers has been left out of this diagram and little “-“ ’s put in their place) will provide the 

agent with the evidence to form a reasonable degree of confidence about each outcome for each 
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act. Note that the number of alternative states for decisions under risk must be more than one, 

but there is no upper limit on how many there might be. It is the agent’s responsibility to discover 

and list all alternative states within each option, if a rational choice is to be made.  

 

Before going on to the next rule, here are two examples where you should apply rules 1, 2 and 3.  

Suppose you are a reporter who must quickly leave a dangerous war zone. You must fly over a 

high mountain range for many hours until you reach safety. All planes have departed except two 

old small prop planes. You have a choice. One plane has one engine, and the other plane has 

two engines.  You are told by a good source that all three engines are in equal mechanical 

condition and that the reliability of these engines is that they fail once in every 100,000 trials. You 

are also told that the planes are in equal mechanical condition, the pilots equally skilled, and that 

the two-engine plane cannot fly with one engine. You must now quickly decide which plane to 

take to escape the danger. Which plane has the greater probability of yielding the outcome of 

your safety? Answer: The plane with one engine.  Why: It has a 1 in 100,000 probability of 

crashing. But the plane with two engines will go down if either engine #1 or engine #2 fails.  So, 

by rule 3, P(#1 or #2) failing = P(#1) + P(#2) = 1/100,000 + 1/100,000 = 2/100,000 = 1/50,000. 

Thus, in this example you are twice as much at risk of dying due to engine failure in the plane 

with two engines than you are in the plane with one engine.  

 

We considered above an example of assigning an initial factual probability to a new tire going flat 

due to a manufactures defect.  In our imaginary example, we estimated the probability to be .002.  

Suppose that you have just bought a set of four such tires and they are now mounted on the four 

wheels of your car. What is the probability of getting a flat in one of the tires within the first week 

of use due to a defect?  Well, a flat could happen in new tire #1 or in #2 or in #3 or in #4. By rule 

3, the “or’s” become “+’s”. Tire #1 P(.002) + #2 P(.002) + #3 P(.002) +  #4 P(.002) = P(.008).  

Thus, it is reasonable to believe that you will get a flat (in this imaginary example) with a degree 

of confidence .008.  
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Rule 4.  The conjunction (multiplication) rule: For any two states-of-the-world, a and b, that are 

independent, P(a and b) = P(a) x P(b).  Two states are independent if the probability of either one 

does not depend on the probability of the other. For example, what is the probability of getting 

heads two times in a row flipping a fair coin?  Clearly, getting heads on one of the flips has no 

affect on getting heads on the other flip. So, P(heads and heads) = P(heads) x P(heads) = P(.5) x 

P(.5) = P (.25).  Here is another example. What is the probability of picking an ace from a full 

deck of perfectly shuffled cards and flipping tails with a fair coin?  Again, these are completely 

independent events. The probability of drawing an ace is 4/52 = 1/13 and the probability of getting 

tails is 1/2.  By rule 4: 1/13  x 1/2 = 1/26 = .04.  

 

If the states are not independent – that is, if the probability of one affects the probability of the 

other – then a variation of rule 4 must be used.  For any two states, a and b, such that b depends 

upon a,  P(a and b) = P(a) x P(b/a).  Read the second part of this rule as saying: the probability of 

state b given that state a happens.  For example, what is the probability of a college student 

graduating college and getting a job (as a college graduate) with a starting salary over $50,000?  

Clearly, the probability of getting a job with a starting salary of over $50,000 depends very much 

on whether a person is or is not a college graduate.  Let’s work this out with some imaginary 

numbers. Suppose 4 out of 5 college students graduate college. That would mean that 1 in 5 

college students, for whatever reason, never graduate college.  Let’s further suppose that only 1 

in 10,000 people who do not graduate college get jobs with starting salaries over $50,000, and 

the rest (9,999) get jobs with starting salaries under $50,000.  But suppose that 1 in 100 college 

graduates get jobs with starting salaries over $50,000, while 99 do not. Note that there are 

different probabilities of getting such a job, depending on whether a person graduates college or 

not.  So, the probability of a college student both graduating college and getting such a job (as a 

college graduate) must be calculated using the dependent version of rule 4.  P(4/5) x P(1/100) = 

4/500 = 1/125 = .008.   
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Here is another example that serves to contrast the difference between the independent and the 

dependent versions of rule 4.  Suppose you are asked to pick a card from a perfectly shuffled full 

deck of cards. What is the probability of picking the ace of spades? 1 in 52. What is the 

probability of picking the ace of spades on the second try if the first pick was not the ace of 

spades? Well, that depends on whether the first pick was randomly put back into the deck or not. 

If it was, the second try is independent of the first try and the probability is again 1/52. But if the 

first pick is not put back, then the probability of picking the ace of spades on the second try 

depends on the first try, for on the second try the deck now has one less card to worry about. The 

probability would now be 1/51.  

 

Rule 4 applies to decisions under risk when there are multi-stage states-of-the-world.  Sometimes 

an act will yield the intended outcome if a single state-of-the-world is in place.  For example, 

suppose it is getting dark in your dorm room and you need light to continue studying for a test. 

There are two light sources, a desk lamp and a ceiling light. You decide to put on the ceiling light, 

but there is a slight chance that the old burnt out bulb has not yet been replaced by the 

maintenance staff. Its replacement is the single state that must exist if your action is to yield the 

desired outcome of sufficient light from the ceiling light to continue studying.  In most decision 

situations, however, a whole sequence of states must exist if the action decided on is to yield the 

desired outcome. Look at someone who decides to get a college degree. A huge number of 

states-of-the-world must be in place, semester after semester, if this decision is to yield the 

outcome. A multi-stage state decision means that more than one state-of-the-world must exist if 

an option is to yield a given outcome.  Here is another example. Suppose that you are visiting a 

friend in an unfamiliar city. One night an emergency comes up and you must drive to the 

pharmacy for medicine for your friend. As you drive you notice that her car is almost out of fuel. 

Also, you are not sure if the pharmacy you were directed to is still open. In order for the desired 

outcome to happen, the world must “cooperate” in two ways with your decision to get the 

medication. First, the car can't run out of fuel (or an open fuel station has to be available). 

Second, the pharmacy must not have closed for the night. This is a case of multi-stage states. As 
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you can see, these two states are independent; the probability of one (having enough fuel) does 

not affect the probability of the other (pharmacy still open).  

 

For the case of a multi-stage decision with two options, the abstract diagram looks like this. 

 
 
                                  Options                                   States                                        Outcome 
 
                                                                                                     state1.1                    O1 
                                                                                  and            or 
                                                                     state1      and          state1.2                    O2 
                                                                                 and             or 
                                                                                                    state1.3                     O3 
                               Do act 1                           or 
                                                                                        and      state2.1                      O4 
                                                                    state2                      or 
                                                                                   and           state2.2                      O5        
                                                                                  
                                                                                                            +   state              O6 
  Agent                                                                                    state          or 
                                                                                      +                   +    state              O7 
                                                                   state                    or     
                                                                                     +                     +    state             O8    
                                                                                                  state        or 
                              Do act 2                           or                                     +  state             O9 
  
                                                                                            +         state                        O10  
                                                                    state                           or 
                                                                                      +              state                         O11  
 
 
In this hypothetical decision structure, note that there are 11 outcomes, depending on which 

sequence of multi-stage states exists.  Wherever the states are related by “or”, rule 3 applies and 

the probabilities of the states must sum to 1.  Wherever the states are connected by “and” (for 

example, outcome 5 requires state 2 and state 2.2 to exist), rule 4 applies and the agent’s degree 

of confidence is calculated by multiplying the probabilities of the required states.  Note that for 

option 1 there are two-stage states that are required for the outcomes, but that option 2 is an 

example of three-stage states.  Multi-stage states means that more than one state is required for 

the outcome to be produced, there is no limit to the number of states that might be needed. For 

each stage, however, the agent must try to discover and list all the alternative states that might 

compete with the desired one, and the probabilities of these must sum to 1, per rules 1, 2 and 3.  
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Shortly we will be applying these ideas to solve decision problems under risk. But before doing 

so, let’s look at two very common errors people make when combining probabilities.    

 

 

5.4.3.1       Potential errors to avoid in combining initial factual or pure probabilities 

Just as it is important to assign accurate initial probabilities if risky decision making is to be done 

rationally, it is likewise important to combine initial probabilities correctly. There are two easily 

made errors that can lead us astray when combining probabilities: (1) the gambler’s fallacy and 

(2) the equi-probability fallacy. Because it is so easy to make these errors, they are widely found. 

Describing them will help us be on guard to avoid making these errors when combining 

probabilities. 

 

(1) The gambler’s fallacy 

(i) The story is told that a roulette wheel in one of the gambling casinos in Monte Carlo once 

came up red, astonishingly, 26 times in a row.  Because the wheel was not biased toward red, 

each spin had an equal chance of the ball landing on red or black. Yet it landed on red over and 

over. As red came up again and again, the table increasingly drew the attention of the gamblers 

who were betting in the casino that night. They reasoned that with so many reds in a row, black is 

due to come up because the wheel was unbiased and would be correcting itself to restore the 

even balance between red and black. But with each new spin red came up, and the crowd 

became more excited in the expectation that black gained a stronger and stronger chance of 

coming up. The crowds around the table bet larger and larger sums on black. The more they lost 

because the ball kept landing on red, the more convinced they became that black was now the 

sure bet. Many people lost large amounts of money, and some lost all they had. Black did not 

come up until the 27
th
 spin. The error these gamblers were making has come to be called the 

“Monte Carlo Fallacy” and more commonly the “Gamblers Fallacy”.  Here are some other 

versions of it that you may recognize.  
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(ii) A person in a casino is losing at a slot machine, losing over and over. Yet she believes that 

her luck is due to change the very next try precisely because she has lost so many times.  And so 

she stays on the machine, and keeps losing.  

 

(iii) A person gets lucky and wins something with a lottery ticket.  When he buys another ticket he 

does not use the same set of numbers he used for the ticket he won with, reasoning that it is 

highly improbable that the same set of number would win for him twice. 

 

(iv) A person knows that automobile accidents are common but that train crashes are rare. There 

has just been a train crash. So she decides to travel by train, reasoning that it is even more 

improbable than usual that there will be a train crash soon, because there has just been one. 

   

(v) A person tells his friend that he drew the ace of spades from a well-shuffled deck of cards.  

The friend responds that that is a very unlikely event and so he must have been drawing and 

reshuffling cards for a long time before the ace of spades came up. 

 

These are all cases of the gambler’s fallacy. What is the error being made?  In each case there 

is a series of similar events. Spins of a roulette wheel, tries at a slot machine, selecting lottery 

ticket numbers, train crashes, picking cards from a deck. Even though the events in each of these 

series are similar, it is important to see that the events in each series are independent of one 

another. And yet in each case someone estimated the probability of one event in the series as if it 

was influenced by the earlier events in the series.  It is an error to treat independent events as if 

they were dependent; “similar events” does not mean “dependent events.” If you flip a fair coin 

and it comes up heads 5 times in a row, on the 6
th
 flip tails is still a 50-50 chance. Tails does not 

gain in probability just because the coin has landed heads 5 times in a row, as if the coin 

“remembers” this and now tries to “restore” the 50-50 balance with a run of tails. Roulette wheels 
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have no memory, nor do slot machines, lottery ticket numbers, train crashes, or cards picked from 

the deck. These events can’t influence how future events in the series will turn out, nor can the 

person’s knowledge of the past series influence how the future events in the series take place. 

The reason is that in each case we have a series of independent events.  If a person buys lottery 

tickets week after week believing that the day must soon come when he will win because he has 

lost so many times, this is the gambler’s fallacy. Likewise, if a person who has won the lottery 

stops buying tickets believing that the chance of winning again is now lower than the chance of 

winning once, this is again the same error. (Note that the probability of winning the lottery again is 

not affected by having won it before. But this is not the same as asking the probability of winning 

the lottery two times. Here we must use rule 4 to combine two initial probabilities, and winning two 

times is clearly less probable than winning again after having won before.) In each case the 

lottery, if it is fair, does not retain information as to who has and who has not won previous 

drawings. There is no way for it to influence who the next winner will be.  Understanding the 

difference between independent and dependent events will help you avoid using the wrong 

version of Rule 4 when combining initial probabilities. 

 

(2) The equi-probability fallacy 

If a fair coin is flipped, heads and tails have equal probability of landing up. Because there are 

only two possibilities, heads or tails (let’s rule out the possibility that the coin lands on its edge), it 

would be correct to say that heads and not heads are equally probable.  This is correct because 

“not heads” equals tails, and there are no other possibilities included in “not heads.” Landing tails 

is the only way for the coin to land not heads. It is certain that the coin will land heads or tails, so:  

P(H or T) = 1. Heads must get a probability equal to not heads (tails), and since there are only 

two possibilities over which the value 1 must be equally distributed, heads and not heads each 

has a probability of .5 and P(H or not H) = 1.  This reasoning is correct for the case of the coin, 

but it can easily be misapplied in cases to which it does not fit. The error is called the equi-

probability fallacy. Here are some examples of this error.   

 



 129 

(i)  From a full deck of perfectly shuffled cards, each card has an equal probability of being 

picked. But suppose someone reasoned that from such a deck of cards there are only two 

possibilities – drawing an ace or drawing a card that is not an ace. Because there are only two 

possibilities, they must be equally probable.  So, there is a 50-50 chance of picking an ace from a 

deck of cards. 

 

(ii)  Suppose a person thinks that his chance of dying from cancer is .5. He reasons like this: I can 

either die of cancer or not die of cancer; there are only these two possibilities. I must die, that’s 

certain. So, the probability of my dying = 1. Because there are only two possibilities, dying from 

cancer or not dying from cancer, there is a 50-50 chance of my dying from cancer.  

 

(iii)  Many families have 3 children. The probability that a family with 3 children will have 3 girls 

must be 1/3. Why would someone think this? Well, there are only three possibilities: there could 

be 3 girls, or there could be a mixture of girls and boys, or there could be 3 boys.  Given that 

there are 3 children and that there are just 3 possibilities for 3 children, the probability of 3 girls 

must be 1 out of 3. 

 

What is the error in these examples?  Look back at the case of flipping the coin. Heads and not 

heads are equi-probable because “not heads” has only one way to happen, namely, when tails 

lands up. This means that the number of ways for heads to happen equals the number of ways 

for not heads to happen. Thus, they are equi-probable. But in the first erroneous case, the 

number of ways for “not-ace” to be picked is not equal to the number of ways for an ace to be 

picked. There are 4 aces, and so “ace” has 4 possibilities. But there are 48 non-aces in a normal 

deck of cards, and so there are 48 ways for non-ace to happen when picking a card. Clearly, the 

probability of getting an ace is not equal to the probability of picking a non-ace card, the count of 

the event of interest yields very different numbers. The same analysis applies to not dying from 

cancer; this has many more ways to happen than the event of dying from cancer.  Finally, there 

are many more ways to get a mixture of girls and boys (6 ways) in a family with 3 children than 



 130 

there is to the event of all girls or all boys. Thus, these 3 possibilities can’t be equi-probable.  

What causes the error is a failure to count how many ways the alternative to the event of interest 

can happen.  One possibility, for example picking a non-ace from a deck of cards, might happen 

in many different ways; to correctly combine initial probabilities the number of ways cannot be 

overlooked or lumped together under one general possibility. 

 

 We are now in a position to frame and solve decision problems under risk, the topic of the next 

chapter.   

 

 

 

 

EXERCISE:   

 

This chapter is rich in new concepts that are central for understanding and practicing material that 

will be coming. Rather than practice in assigning initial probabilities and calculating combined 

probabilities (which you will have gotten if you already had a basic college level general 

mathematics course, and which we will be practicing in the exercises in the next two chapters), 

the exercises for this chapter are designed to reinforce your grasp of concepts.   

 

1)  Provide (i) a definition (in your own words!) and (ii) an example of each of these concepts. For 

any that you are not clear about, try to avoid consulting the Glossary and instead re-read the 

appropriate section in this chapter.  

 

a.  default certainty                                                                  m.  sample space                          

b.  direct evidence certainty                                                     n.  availability error 

c.  risk                                                                                      o.  scenario thinking 

d.  positive outcome                                                                 p.  ignoring base rate error 
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e.  negative outcome                                                               q.  error of raw mean 

f.   hope limit                                                                             r.  uniqueness error 

g.  security limit                                                                        s.  disjunction rule (add) 

h.  belief and disbelief (as propositional attitudes)                   t.  conjunction rule (multiply) 

i.   degree of confidence                                                          u.  single vs. multi-stage states  

j.   reasonable degree of confidence                                       v.  gambler’s fallacy 

k.  factual vs. pure probability                                                  w. equi-probability error  

l.   event of interest 

 

 

2)  For each of the following situations, say if the person is: 

            a. Someone who has an unreasonable degree of confidence  

            b. Someone who has an excessive hope limit  

            c. Someone who has an excessive security limit. 

Explain your answer. What in the situation makes the person unreasonable or excessive? Try to 

narrow each answer to just one of the above, but if you think more than one apply, say why. 

 

(i)   Mary has met John only once at a party. Conversation with John was easily, and they spent 

most of the evening talking, finding that they have many things in common. He seemed 

intelligent, interesting, and dynamic; Mary thought about him weeks after the party. One day 

several weeks later, to her surprise and delight, John calls Mary with an exciting offer, a chance 

to buy into a time-sharing apartment together at their favorite beach. He says that he’s been 

thinking of her and when this time-sharing opportunity came up he wanted to share it with her. 

However, John is between bonuses at this point and can’t come up with the money. He asks 

Mary to trust him, and to agree to send him the $3000 payment. She believes John and sends 

him the money. 
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(ii)  Harry must undergo surgery, and must decide between two widely used procedures: one 

involves lasers, and the other doesn’t. The doctors tell him that each procedure has 3 possible 

outcomes. (1) The most likely outcome is that the surgery will cure the problem completely. 

(2) There is a slight chance the surgery will temporarily cure the problem and it will return within 

3-to-5 years, in which case he will have to repeat the surgery. (3) In very rare cases the surgery 

will not work, in which case Harry will have to undergo the same surgery within a week. As Harry 

tries to decide which procedure to choose, he finds that he is becoming increasingly fearful that 

the outcome in his case will be death. 

 

(iii)  Sue has a tough semester coming up. She must take several of her math and science 

requirements next semester, and they are known to be “killer” courses. In the organic chemistry 

course, it is the rare student who earns higher than B grade. Sue has a super grade point 

average, 3.75 out of 4, primarily (she knows) because she has not yet had to take these hard 

courses. In addition, from her high school experience she believes that she’s “not good” at math 

and science. Instead of preparing to see her GPA go down, Sue hopes her GPA goes up next 

semester.   

 

(iv)  A video rental company has recently decided to open a branch in a local mall. They are sure 

that the branch will do well. The spot, however, is at the far end of the mall that gets minimal 

traffic. In addition, several small businesses have tried to make it in the same spot and have had 

to go out of business. On top of that, the in-store video rental market is rapidly declining due to 

on-line video rental services. Yet, the company continues to go ahead with its plans for a new 

branch there, feeling certain that it will succeed.  

 

(v)  Smith is selling her used car.  She looks up its value, given the condition it’s in, and finds that 

her model sells for a low of $1000 and a high of $1600. Smith, however, puts “$2000 firm” in the 

classified add for her car. 
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(vi)  Jones has taken his friend to a fancy restaurant, hoping to impress her. He is surprised at the 

prices; the cheapest offer, without wine, is $75 per person and the most expensive, again without 

wine, is $400 per person. He decides on the least expensive offer, but as he peruses the menu 

he worries that the bill could set him back over $600 not counting any wine they order.               

  

 

 

 

 

 

Sources and Suggested Readings: 

 

This chapter draws on material from: Skyrms (2000) Chapters VI and VII, Hacking (2001) 

Chapters 11-15, Resnik (1987) Chapter 3, and Mullen and Roth (2002) Chapter 4.  These authors 

are highly recommended both for presentations of probability and for the connection between 

belief and probability. Skyrms was particularly relied on in presenting objective relative frequency 

as evidence for forming reasonable subjective belief strengths. Of course, any student who has 

had a basic general mathematics course will already be familiar with probability (at least the 

objective or relative frequency concept) and the rules for combining probabilities. For belief in the 

context of decisions Jeffery’s (1983) Chapter 4 is both a clear and a seminal source. The classic 

work on our vulnerability to error in probability judgments is done by Kahneman and Tversky; 

their article “Judgements under uncertainty: heuristics and biases” is a must (in Moser (1990) 

Chapter 7). Part III of Holyoak and Morrison contains an excellent summary of the literature on 

the ways probability judgments can go wrong. Plous (1993) is a good source for experiments that 

build on the work of Kahneman and Tversky concerning the pitfalls of judging probability.       

  

 


