## Some thoughts on distributive justice

Lloyd Carr (Fall 2021)
Philosophy (Emeritus)
Rivier University

## I. Setting up the problem

Three people are lost in a wilderness desert area. They have been lost for weeks and each might not survive. One is an elderly man who has run out of food but has a gallon of water left. Another is a middle-aged woman who has been lost the longest and who has run out of water but still has a loaf of bread. The third is a teen aged girl who has also run out of water but has a pound of cheese. One night the elderly man starts a campfire, and its light attracts the middleaged woman and the teen aged girl. As they sit around the fire, they discuss their situation and quickly realize that any chance of survival will depend on sharing what each has. But how? Their initial condition can be represented in a $3 \times 3$ grid, where " 1 " represents complete possession of a resource:

| Initial distribution: | Man(M) | Girl(G) | Woman(W) |
| :---: | :---: | :---: | :---: |
| water (w): | 1 | 0 | 0 |
| cheese(c): | 0 | 1 | 0 |
| bread(b): | 0 | 0 | 1 |

One possibility is that they each divide what they have into three equal portions, and each gives two-thirds to the others, each getting an equal third. The elderly man gets to keep a third of his water and has gained a third of a pound of cheese and a third of a loaf of bread. And so on for the other two individuals: each would have equal portions of the water, the bread, and the cheese.

But the elderly man hesitates at this plan. He says that water is more important than food in their desert situation, that without water each of the others would quickly die but without food he could survive for quite some time with just his water. The other two acknowledge that the man is right, that his water is more valuable than their food in their circumstance. The man suggests it would be only right that for a third of his water he should get more than a third of
the bread, and for a third of his water he should get more than a third of the cheese, at least half each. The woman and the girl agree that the man makes a good point. Given the value of his water, the man will end up with the largest share of the resources that all three need to survive.

At this point the girl speaks up and says that she agrees with the man that equality isn't the best way to divide what each has. She points out that the elderly man has lived most of his life already but that she has most of her life still to be lived; in light of this, her life is more valuable than his. She goes on to say that the middle-aged woman has the least chance of survival even though she has more years ahead of her than the elderly man if she were to survive. If they look at the value of their lives, clearly the girl's life is worth more than the woman's and the woman's life is worth more than the elderly man's life. If it's a question of which of the three has the strongest claim to survive their ordeal, it is clearly the girl. The man and the woman acknowledge that the girl has a good point and agree that her life, in virtue of her young age, is worth more than theirs and that it is customary to show greater concern for the survival of the young over that of adults in life-threatening situations. The girl then proposes that they should divide the water, bread and cheese according to the value of the life of each. It would be only right, the girl suggests, that she get more (at least half) of the water, cheese and bread than either of the other two. The man and the woman agree that the girl makes an excellent point and that it is the norm in emergency situations to show special favor to the young.

But now the middle-aged woman speaks up; she agrees that sharing according to the rule of equality shouldn't apply in their life-threatening situation. She describes how much she has struggled to make it this far and points out that she is clearly in the weakest condition of the three. The man and the girl acknowledge that the woman appears to be in much worse condition and to have suffered more than they, and that of the three she is clearly the weakest, the most vulnerable and the neediest. The woman then suggests that the water, bread and cheese should be divided according to need and that because their ordeal has taken more of a toll on her than on the other two, she should receive the largest portion of each of their three provisions, at least half. This, she argues, would give her a fair chance of survival and thus be the best distribution. The man and the girl see that the woman has made a very compelling case and that the neediest typically have a strong moral claim to welfare.

Here we have four possible ways to divide something that each of the three individuals need (not just want), namely, water and food in order to try to survive a hardship with no guarantees of survival. There is not enough for all three to have as much as each believes $s / h e$ should receive. The food and water might be distributed: a) equally; or b) according to the value of the item, water being the most valuable; or $c$ ) according to the value of the life to be favored, the
girl's life being the most valuable; or d) according to need, the woman being in greatest need. Here are the important points about their situation.

1) All three agree that they can't do nothing; that they can't just keep what they have and go their own ways as if they hadn't met. They realize that by sharing what they have they will increase each's chance of survival, but by not sharing they believe that each is doomed. Thus, any reasonable division of their resources is better than not sharing. Each resource is divisible into very small portions, allowing for wide range of sharing possibilities. ${ }^{1}$
2) None of the three parties agrees to receiving an equal share of water and food. They know that an equal distribution is better than not sharing at all, but each believes there is a better and more just distribution than by the principle of equality. Thus, an equal distribution will not be voluntary; either it will have to be imposed by an authority outside these three, of which there isn't any, or they must change their minds about it (perhaps because upon reflection there is no better alternative to which they can agree; see E below).
3) Each of the remaining three principles of distribution (the different values of what each has, the different values of each life, and the appeal of need) has been argued for by one of the three and it has been agreed by all three parties that each is an equally reasonable ways of distributing the food and water. But they see that all three can't be satisfied; they must decide on one of these or come up with some other alternative. They realize that they cannot decide the issue by voting, for each of these three alternatives to equal portions will have two of three votes against it.
4) The three people see that the principle of distribution each has proposed is not an attempt to fool the others in order to get more resources unjustly. Even though each distribution scheme will favor a different party, and in this respect each is a self-serving proposal by the favored party, they are not expressions of selfishness or greed. Rather, the appeal in each case is to an objective and an impersonal (as well as a subjective and personal) feature of each person's condition. They all agree that in their situation the man's water is more valuable than the others' food. They all agree that the girl's youth makes her life more valuable than the lives of the other two. And they all agree that the woman is in the worse condition than the other two. All three see the strength, the objective validity, of what each proposes, even though in each case only one of the three will be favored.

The question is: are these four proposals the only ways to distribute the water, bread, and cheese? Is there a way that hasn't been suggested? If not, then how are these three parties to decide which of the four suggestions is most just? This is the general problem of distributive justice: (a) the goal of peoples' welfare, (b) divisible scarce resources that people need, (c) competing claims to these resources, (d) finding the most just way to distribute the resources,
preferably a way to which the recipients will agree. This fictional case can serve as a model of real-world situations. For example, after a 20-year drought, Colorado River water has become an increasingly scarce resource in western US States served by this river. The affected parties, each with a strong claim to more water than the other parties, are trying to negotiate (in 2021) the best way to ration this dwindling supply of water. For another recent (2020/2021) example, hospitals around the world were overwhelmed with Covid-19 patients and quickly ran out of ICU space as well as medical equipment needed to treat them; distributing life-saving medical resources was a difficult decision confronting medical personnel.

Let's look into the above four possible distributions schemes more deeply before turning to some theories of distributive justice that might apply to this case of three individuals whose lives are at risk.

1) Equal distribution. Why would equal distribution be a consideration? It must be based on a deeper equality, namely that the three individuals are in some fundamental way equal. The differences that make them unequal - for example their age, their gender, their wealth (i.e., the resource each brings to their plight), their social status, their careers, etc. - should not count in their situation. Each is a human being whose survival is at issue, in need of life-sustaining resources, and in this respect, they are equals. Each is equally vulnerable, we might say. An equal distribution, justified by being based on fundamental human equality, can be represented as follows:

| Equal distribution: |  | $M$ | G | W | sum |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | w: | $1 / 3$ | $1 / 3$ | $1 / 3$ | $=1$ |
|  | c: | $1 / 3$ | $1 / 3$ | $1 / 3$ | $=1$ |
|  | b: | $\underline{1 / 3}$ | $\underline{1 / 3}$ | $\underline{1 / 3}$ | $=1$ |
|  | sum: | 1 | 1 | 1 |  |

2) Distribution by value of resource. How might this distribution scheme be justified? The value of water is based on basic human biology, namely that as a living organism each person requires food and water to stay alive, and of the two, water is more biologically necessary. The value in question is non-moral; it is factual or instrumental. In assessing the means a typical human requires to sustain life, water is more important than food. While both are necessary for
a human to live, if one had to be given up in an emergency it is rational to give up food over water because, given the desire to remain alive, a typical person will live much longer without food than without water. The man's distribution proposal according to the relative (instrumental) value of the resource he brings to their situation can be represented as follows:

| Distribution by value of resource: |  | M | G | W | sum |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | w: | $1 / 3$ | $1 / 3$ | $1 / 3$ | $=1$ |
|  | c: | $1 / 2$ | $1 / 4$ | $1 / 4$ | $=1$ |
|  | b: | $1 / 2$ | $1 / 4$ | $1 / 4$ | $=1$ |
|  | sum: | 1.34 | .83 | .83 |  |

3) Distribution by value of life. What considerations might justify dividing the resources according to the value of each person's life? Every living thing has an average life span and any death earlier than the average life span for the living thing in question represents to it a loss of something having fundamental value. We must add "to it" because a premature death of one living thing might extend or improve the life of another living thing. If being alive is a good thing for a living thing, then premature death is a bad thing for it. It would seem to follow that the more premature the death, the more of a good thing is lost. Of the three people under consideration the youngest will suffer the greatest loss, for her death would be much more premature than the death of anyone older; in this case the man and the woman. I am assuming that a living thing's life is a biological event, and this includes human life. Thus, the life of a human being represents to that human a non-moral value, the most fundamental instrumental value of all for without it nothing else could be pursued. The girl's argument for a greater share of the resources than the others is based on her life's value in her own eyes, but it is an argument that is universal in the sense that all human beings agree that the younger a person dies, the greater the value that person loses. The girl's distribution proposal according to the greater value of her life compared to the lives of the other two can be represented as follows:

| Distribution by the value of life: |  | M | G | W | sum |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  | w: | $1 / 4$ | $1 / 2$ | $1 / 4$ | $=1$ |
|  | c: | $1 / 4$ | $1 / 2$ | $1 / 4$ | $=1$ |
|  | b: | $1 / 4$ | $1 / 2$ | $1 / 4$ | $=1$ |
|  | sum: | .75 | 1.5 | .75 |  |

4) Distribution by need: Need is probably the most common appeal for resources. To be needy not only typically causes altruistic actions on the part of those who are less needy, but it seems to generate a moral obligation to help the needy as best we can. Of course, need is relative: what is needed, how much is needed, who need what, and how needy are those in need? The answers to these and related questions have traditionally determined the practicality of distributing resources. "Need" is related to the concepts of "necessary" and "required" but it also carries the idea of "urgency" in the sense that addressing a "need" generally preempts satisfying "wants." A carpenter can be said to "need" tools, but if a carpenter says, "I need my hammer." the message we typically understand is that the carpenter needs her hammer now. Also, "need" seems to admit of degrees; with respect to, say, water, one person might be more (or less) needy than another person. The woman in our story is recognized by the other two to be more "needy" than they in the sense that she has suffered from her ordeal more than they have, and that the desert environment has done her more bodily damage than they have suffered. If they hadn't found each other all three agree that the woman would have perished first, being the worse off physically than the others. If this were a triage situation, the woman's weakened condition might be a reason not to help her and to take her loaf of bread and distribute it two-ways. The woman certainly isn't volunteering to forego all resources; she, as well as the other two, believes she might be saved and that she is not so bad off that any resources she receives are wasted. The woman's distribution proposal according to her relative need compared to the needy condition of the other two can be represented as follows:

| Distribution by need: |  | M | G | W | sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | w: | $1 / 4$ | $1 / 4$ | $1 / 2$ | $=1$ |
|  | c: | $1 / 4$ | $1 / 4$ | $1 / 2$ | $=1$ |
|  | b: | $\underline{1 / 4}$ | $\underline{1 / 4}$ | $\underline{1 / 2}$ | $=1$ |
|  | sum: | .75 | .75 | 1.5 |  |

## II. Theories of distributive justice

There are several theories of distributive justice that we can rule out as not applying to our fictional case. For example, the Sophist rule as presented in Book I of Plato's Republic, namely, "distribute harms to your enemies and benefits to your friends in proportion to the strength of these bonds," ${ }^{2}$ won't apply here because these three desperate people are neither enemies nor friends; they are strangers who find themselves in similar danger. The Platonic theory of justice as a rational harmony of the tripartite soul ${ }^{3}$ (on a micro level) and its extension to the polis (on a macro level) won't apply because the three people in our story are already "just" in this sense and yet are faced with a decision between what they believe to be equally rational distribution schemes. The Thomistic rule "give to each what each has earned or deserve, and thus to each what they are owed" ${ }^{4}$ doesn't apply here because none of the three has done anything such that credits have been earned and owed. The old common law rule, "the primogenitor is to receive the greatest share," or as we might put it more modern terms, "first come, first serve," doesn't apply for it would leave each with what they come with, and our three desperate people have agreed that they must share what they have.

There are several theories of distributive justice we might try to apply. These theories are not to be thought of as forced on the three individuals in our story, against their will so-to-speak; rather, we examine them assuming that the three people, for each theory, accepts it and are ready to comply voluntarily with what the theory recommends. We will see that each theory offers some insight but does not provide a completely acceptable way of settling the question.

## A) Aristotle's doctrine of hitting the "mean between extremes" ${ }^{5}$

According to Aristotle, virtue is both a rational way of emotionally reacting to a situation and a rational way of acting upon it. In both cases, virtue consists in avoiding the extremes of excess and deficiency (vices) and hitting the appropriate mean. For example, when it comes to our reaction to dangerous events, we might show the virtue of courage; but we might react as a coward and run away (deficiency) or react in a foolhardy way unnecessarily endangering ourselves (excess), two vices associated with the virtue of courage. The mean of a courageous reaction to a dangerous event will depend on discovering the specific relevant variables unique to the circumstances calling for courage. The bravery of a firefighter in a burning building will not be the same as the courage it takes to stand up to a schoolyard bully; an extreme reaction in one situation might not be extreme in a different situation. For Aristotle, an excellent human
life is a virtuous life, and we can achieve a virtuous life, first, by discovering in each situation what the extremes are that must be avoided and what the appropriate "mean" would be (given the relevant variables unique to the situation) and, second, by practicing virtuous actions and reactions until they become second nature.

How might this theory of excellence-in-action/reaction be applied to the three people in our story? For each, it is clear what the vices would be: the excess of giving away all of the resource each brings to the situation (excessive generosity), and the deficiency of sharing none of it (excessive hording). Let's say that each person avoids these vices. The theory leaves us in somewhat of a quandary as to what the "mean" for each is. Is it virtuous to share a third, a half, or two-thirds, of what each has? Or perhaps give an even exchange for what each receives? The theory gives us no way of deciding which of all the possible divisions of the three resources is the correct "mean between the extremes." If, for example, the man believes that virtue in his case is to share half of his water, is he to give more of the half he is giving up to the woman in need or should more go to the young girl increasing her chances of survival?

Still, we might attempt a reasonable application of Aristotle's theory. Each person has argued for receiving more of the three resources than the other two individuals. To satisfy this aspect, we might apply the "mean" amount to what each person originally owns: water in the case of the man, cheese for the girl, and bread for the woman. In each case the exact (arithmetical) mean between the extremes all or nothing is half. So, we might suppose that each person judges it best to part with half of what each has. Let's further assume that for the man, the appeal of the woman and that of the young girl carry equal weight; for the woman, the appeal of the man and the girl likewise carries equal weight; and for the girl, the appeal of the man and that of the woman carries equal weight. Thus, each will divide the half they give up equally between the other two. The following distribution will be just, given our (reasonable) assumptions, according to Aristotle's theory of virtue:

## Distributive justice according to Aristotle's theory of ethics

|  | M | G | W | sum |
| :---: | :---: | :---: | :---: | :---: |
| w: | $1 / 2$ | $1 / 4$ | $1 / 4$ | $=1$ |
| c: | $1 / 4$ | $1 / 2$ | $1 / 4$ | $=1$ |
| b: | $\underline{1 / 4}$ | $\underline{1 / 4}$ | $\underline{1 / 2}$ | $=1$ |
| sum: | 1 | 1 | 1 |  |

Each person ends up with equal total resources to be used in the attempt to survive their ordeal, but each has a greater amount of a different resource. The problem that stands out in
this distribution is that it favors the man; because water is more valuable than food, the "mean" for the man enables him to keep the largest share of the most valuable resource. Both the girl and the woman would seem to have justified complaint that this distribution of water is not the "mean" for them and thus is unfair to them, and that they have as much claim to the one resource most needed for survival as the man. The fact that it happens to be the man's water does not make it just that he gets to keep the greater share of it, no more than would the fact that he happens to be physically the strongest of the three and can simply take more make it just that he gets more.
B) The utilitarian rule: "distribute so as to maximize the overall welfare" 6

Let's suppose that the three desperate people in our story are utilitarians. How might they decide to distribute their resources? In the situation in which they find themselves, "welfare" means the maximum chance for survival; equivalently, the minimum chance of perishing. And this chance must not be expressed individually; the rule requires that it be an average. This presents an obvious plan for distributing resources, namely, eliminate the least likely to survive and distribute the total resources to the remaining two most likely to survive. A central flaw in utilitarian theory, according to its critics, is that the average welfare of any group can be increased by leaving the worse off as they are and increasing the welfare of the most well off. E.g., if the rich get richer and the poor no poorer, the utilitarian rule has been complied with and the resulting distribution would be just. In the situation we are considering of three lost people trying to survive with very limited resources, the worst case is that no one survives; the survival of just one would be better, and the survival of two even better. The maximum possible average welfare would be the survival of all three. The problem is: resources and chances of survival vary directly; the more (less) resources each has the greater (lesser) their chance of survival. So, the utilitarian question is: if one of the three were sacrificed by denying them any resources, to what degree would the chances of survival of the remaining two be enhanced? To answer this, we need to make some reasonable assumptions. (1) Let's assume that the chance of survival is almost assured if one of the three is given all the water, all the bread, and all the cheese, providing that this lucky individual is not otherwise incapacitated. (2) Further, let's assume that the chance of survival decreases proportionally with any decrease in resources from maximum. So, for example, receiving $1 / 3$ of each resource gives that person .33 chance of surviving their ordeal. (This is not quite correct, given that water is more important for survival than food, but it's a start in setting up a utilitarian distribution). All three agree that the woman has least chance of surviving because of the greater hardships she has endured compared to the man and the girl. In line with this reasoning, here is one possible utilitarian distribution:

## One possible utilitarian distribution

|  | M | G | W | sum |
| :---: | :---: | :---: | :---: | :---: |
| w: | $1 / 2$ | $1 / 2$ | 0 | $=1$ |
| c: | $1 / 2$ | $1 / 2$ | 0 | $=1$ |
| b: | $\underline{1 / 2}$ | $\underline{1 / 2}$ | $\underline{0}$ | $=1$ |
| sum: | 1.5 | 1.5 | 0 |  |

This distribution assumes, we see, that the man and the girl have equal chances of making it by sharing resources equally; each has roughly a .5 chance of survival - on average, at least one of the two will survive, and both will survive .25 of the times they face their present situation. In keeping with our assumptions, as we move resources from the man and the girl to the woman, we are lessening their chance of survival to a greater degree than we are increasing the woman's chance of survival. This is because the woman has an added handicap: she is in poor physical condition compared to the others. But being the worse off means that the woman, by deciding to give up her claim to a portion of the resources, maximize average survival chances by increasing the chance of survival of the man and the girl. And this is exactly what the utilitarian rule requires. Critics, however, have grounds to point out that "averages" don't apply to the situation in which these three individuals find themselves. They are in a one-time emergency that won't be repeated. Why should reasoning that works with averages, which assumes that events will be repeated, help to decide a distribution of resources in a one-time event? If you are guaranteed being correct calling heads half the times that a fair coin is repeatedly flipped, how does this knowledge help you if your life depended on a correct call of heads in only one flip? This problem is a clear weakness in a utilitarian distribution scheme.
C) The deontology rule: "distribute so as to fulfill one's moral duty" ${ }^{7}$

As deontologists, our three desperate individuals believe that they have an obligation to help one another survive and that it is their moral duty to distribute their resources in the most just way to fulfill this obligation. It is reasonable to assume that (given each accepts a deontological ethics) they believe that it is wrong to treat another human being only as a means to an end; so, they would not propose, nor would they allow, one to give up receiving any resource in order for the other two to have a better chance of surviving. And if they can't survive their ordeal, then their obligation is to keep each other alive as long as possible. How might they agree to distribute their resources?

Each person is placed in a dilemma by the deontological rule between the moral duty to care for oneself and the moral duty to help others who ask for (and are perceived to need) help. The man has an obligation to offer some of his water to the others as well as an obligation not to endanger himself by giving away too much. Likewise with respect to the girl and her cheese, and the woman and her bread; they each have a duty to try to save themselves by keeping their resource and a duty to try to save the others by giving some of it away. The one in most need of help is the woman, so they agree that she should receive the largest share of water, cheese, and bread. Between the man and the girl, they agree that there is a greater moral obligation to assist the young than to assist adults when it comes to life-threatening circumstances. Thus, the young girl should receive more of the resources than the man receives. Thus, in keeping with what they agree is their moral duty to each other, their resources should be distributed according to the rule: $\mathrm{W}>\mathrm{G}>\mathrm{M}$. If the man keeps 3 portions of his water, then the girl should receive 4 portions and the woman should receive 5 portions: $5>4>3$ maps onto $W>G>M$. Thus, each will divide their resource into 12 equal portions and a possible deontological distribution yields the following:

## A possible deontological distribution

|  | M | G | W | sum |
| :--- | :--- | :--- | :--- | :--- |
| w: | $3 / 12$ | $4 / 12$ | $5 / 12$ | $=1$ |
| c: | $3 / 12$ | $4 / 12$ | $5 / 12$ | $=1$ |
| b: | $\underline{3 / 12}$ | $\underline{4 / 12}$ | $\underline{5 / 12}$ | $=1$ |
| sum: | .75 | 1.0 | 1.25 |  |

It is well known that Kant proposed the categorical imperative as a way of testing if a rule expressing one's moral duty might not be, in truth, one's obligation. ${ }^{8}$ This distribution does not violate Kant's categorical imperative: "distribute such that the rule of distribution can be made a universal law." Any universal law that favors the weakest and neediest over others, and favors the young over adults, results in neither a contradiction nor in an impossible community.
D) The Marxist rule: "from each according to ability, to each according to need" ${ }^{9}$

Suppose our three individuals were Marxists, how would they arrive at a distribution in keeping with the Marxist rule? The second part of the Marxist distribution rule clearly applies, the difficulty lies in applying the first part. "From each according to ability" seems to assume an ongoing process of production, whereas in our story each of the three lost and exhausted
individuals have just one item to contribute to a one-time exchange. To circumvent this problem, we will assume all three individuals are committed Marxists who believe in community ownership of the means of survival. Thus, each agrees that the resource each brings to their plight is under the control of all three, and the problem they face is how best to portion out this total to each. The second part of the rule "to each according to need" will determine the distribution. It is clear from the description of their situation that the woman is the neediest and the young girl the least needy. The girl is least needy in two respects: first, being in her teens, she requires less food and water than a full adult requires; second, her youth (on average) gives her the ability to survive the longest if the distribution of resources were exactly equal. The man, then, falls between the woman and the girl in needing resources to survive. These considerations give us the following possible distribution:

## A possible Marxist distribution

|  | G | M | W | sum |
| :--- | :--- | :--- | ---: | :--- |
| w: | $3 / 12$ | $4 / 12$ | $5 / 12$ | $=1$ |
| c: | $3 / 12$ | $4 / 12$ | $5 / 12$ | $=1$ |
| b: | $\underline{3 / 12}$ | $\underline{4 / 12}$ | $\underline{5 / 12}$ | $=1$ |
| sum: | .75 | 1.0 | 1.25 |  |

Ideally, the portions each receives would be proportional to the degree of each person's condition of need. While there is no scale of need, it would be reasonable to stipulate (given that there are no real facts-of-the-matter in this fictional story) that the column sums serve as a measure of comparative degrees of need; in other words, the exhausted woman might be thought of as .25 more needy than the elderly man, and the man thought of as likewise .25 more needy than the young girl.
E) Rawl's two principles of fair distribution ${ }^{10}$

John Rawl's Theory of Justice contains two principles of distributive justice that apply to the problem of resource distribution confronting the three individuals in our story, if we make two reasonable assumptions. First, we must assume that the three form a liberal community; that is, they perceive each other as free and as equal, and that together they uphold the value of treating each other fairly. A fair distribution of their resources will be the morally best distribution. Second, they consider the differences (the pluralism within their "community") between each other as morally arbitrary; that is, they agree that no one deserves what might
otherwise give him or her claim to special status. Gender, wealth (in this case the value of the resource each brings to their situation), age, talent, intelligence, religion affiliation, social class, etc., are all basically a matter of chance and luck; they do not determine the moral worth of a person, which under the first assumption is one of equality.

The first principle of distributive justice, as applied to our "community" of three, states that each has the basic right to any resource necessary for survival, compatible with the equal basic right of the other two. This principle brings the three into conflict because there aren't enough resources sufficient for all three to be guaranteed survival. It is a "zero sum" situation, we might say, in which anyone's gain of a resource means a lowered chance of survival of others. Thus, this principle requires cooperation on the part of each in arriving at a fair distribution, and cooperation in their situation means compromising the claim to all the resources with a "satisficing" acceptance of only some, compatible with equal compromise of the others.

The second principle, the "difference principle," as applied to our "community" of three, states that in distributing resources inequalities are only justified if they contribute to everyone's benefit and gives the greatest benefit to the least advantaged. The middle-aged woman, in our story, is the comparatively worst off of the three, so any unequal distribution that is fair must benefit her more than the man or the girl without, however, making these two any worse off. This, we see, is impossible given the limited quantity of food and water available. The following appears to be the only fair distribution according to Rawl's principles:

## A possible Rawlsian distribution

|  | M | G | W | sum |
| :--- | :---: | :---: | :---: | :---: |
| w: | $1 / 3$ | $1 / 3$ | $1 / 3$ | $=1$ |
| c: | $1 / 3$ | $1 / 3$ | $1 / 3$ | $=1$ |
| b: | $\underline{1 / 3}$ | $\underline{1 / 3}$ | $\underline{1 / 3}$ | $=1$ |
| sum: | 1 | 1 | 1 |  |

Even though all three survivors considerer equal distribution the least preferred arrangement (except for doing nothing and remaining in their initial condition) considerations of fairness within a liberal society has convinced them that, morally, it is the best distribution.

One problem applying Rawl's fairness rules to the situation in our story, and any similar situation, is that accounting for the available resources to be apportioned seems timedependent for its accuracy. Suppose that, after completing an equal distribution of the water, cheese, and bread, one of the three suddenly remembers an apple hidden away in their pocket.

Because the apple is added after the equal distribution has been completed, it could be divided into four equal parts and - according to the "difference principle" - two parts must go to the woman (the worst off) and one part each to the man and the girl. Everyone would be advantaged with the addition of the apple but especially the least advantaged, as the difference principle requires. But had the apple been part of the original bundle of resources, before the equal distribution took place, in keeping with a fair distribution it would have to be divided into thirds each person getting a third; the worst off in this case would not have been benefited more than the others because the equality principle would not allow an unequal distribution.

## F) Nozick's "entitlement principle" of just distributions ${ }^{11}$

The entitlement principle is backward-looking compared to any consequentialist (e.g., utilitarian) principle, which is forward-looking. As consequentialism looks at the effects of a distribution of resources, the entitlement principle asks us to look at the history of a distribution. A distribution is just if-and-only-if it has the right history, according to Nozick's analysis. The basic question is: how has an agent originally acquired an object (whatever it might be)? One possibility is that the agent has made it from unowned natural resources. This is the exemplary case of an agent being entitled to that object; creating it from unowned materials is the basic instance of a just acquisition entitling the creator to the object created. Another possibility is that the agent has stolen it from someone who was entitled to it. This represents the basic example of an unjust acquisition.

From an initial just acquisition, an object might be transferred to someone else in a just transaction. A voluntary exchange of equally valued resources would be the basic case of a just transfer, while an exchange in which one party was fooled about the value of the object she is to receive would be an example of an unjust transfer. Just transactions form chains such that the entitlement of a prior transaction is transmitted to a subsequent just acquisition.

With these concepts in place, the entitlement principle can be stated: an agent has entitlement to anything that the agent has acquired justly, and an agent has no entitlement to anything the agent acquired unjustly. Further, a distribution of resources over a population is just if-and-only-if each individual in that population is entitled to the resource they possess. On the collective level, the direction of dependence is to be noted: a just distribution of resources over a population depends on each individual's entitlement status with respect to the portion of resource in their possession, not the other way around (i.e., an individual's entitlement to a resource is not dependent on a just distribution of that resource over a population). In contrast, on the individual level entitlement depends on just acquisition.

As we apply Nozick's entitlement theory of just distribution to the three individuals in our story, we will assume that each person is entitled to the resource he/she possesses: the man justly acquired his water, the girl justly acquired her cheese, and the woman justly acquired her bread. The question is now one of a just transfer of these resources, and any resulting distribution of them over our population of three individuals will by definition be just. In the process of exchanging portions of their resources, the man clearly has the upper hand; his water is more valuable to the woman and the girl than their food is to him. Based on his entitlement to his water, he can request unequal portions of exchange: a relatively small portion of water in exchange for a relatively large portion of food. The woman and the girl, needing his water more than he needs their food, would have little choice but to agree with what the man proposes. Yet the man runs the risk that if his offer is too one-sided, the others might be willing to risk survival by refusing an "insulting offer." Let's suppose that the man offers $1 / 4$ of his water to each of the others in exchange for $1 / 2$ of their food. After consideration, the others agree. And let's suppose that the woman and the girl make an even exchange of $1 / 4$ their remaining food. The following represents this distribution:

## A possible entitlement distribution

|  | M | G | W | sum |
| :--- | :--- | :--- | :--- | :--- |
| w: | $1 / 2$ | $1 / 4$ | $1 / 4$ | $=1$ |
| c: | $1 / 2$ | $1 / 4$ | $1 / 4$ | $=1$ |
| b: | $\underline{1 / 2}$ | $\underline{1 / 4}$ | $\underline{1 / 4}$ | $=1$ |
| sum: | 1.5 | .75 | .75 |  |

Such a distribution is just according to the entitlement theory. The exchange, we imagine, was difficult for the girl and the woman, but in the end it was transparent and voluntary.

## III. Concluding remarks.

We have attempted to apply six theories of distributive justice to a hypothetical case of three individuals in danger of perishing from an extended time being lost in a desert environment. They must share their remaining food and water as the only possible way of trying to survive. Each possible way of distributing the food and water has been provided with a justification, drawing on the principles of just distribution in each theory. As we have seen, each theory leaves us with moral discomfort to a more-or-less degree; while each seems to offer a reasonable way of dividing up the resources, each also fails to do complete justice to the three
hypothetical individuals caught in a life-threatening situation. Even if some theories produce an unfavorable outcome in the sense that there are more apparent problems with the results than we are willing to accept, it remains difficult to decide which of the remaining theories yields the best, the most morally just, distribution. Is the choice which distribution scheme to go with merely subjective, depending on how we feel today and being open to a change of mind tomorrow? Should we leave the final choice to chance, say a series of elimination coin flips, given that each of the six possible schemes can be viewed as equally justified by each's internal rational principles? Should we perhaps hold off a pick and continue to examine critically each scheme with the goal of arriving at one that has best survived criticism? Perhaps we might turn to the "wisdom of the crowd" by having several people read through this case and then having them vote, going with the scheme getting most votes? Each of these seems more-or-less intolerable, practically as well as philosophically. If we are forced to pick a scheme, on what grounds should we do it? There doesn't seem to be a rational way of picking one of the six, at least a way of which I'm aware, that can be justified on stronger grounds than the level of justification within each distribution scheme that generates this problem in the first place.

A distribution is a three term relation: $A$ distributes $X$ to $B . A=$ the distributor, examples of which are an individual, an agency, an institution, or a branch of government having the authority to distribute the good or service in question. $B=$ the target of the distribution, for example a population of individuals or a set of institutions that have a justified claim to what they are to receive. ${ }^{12} X=$ the good or service that $B$ is to receive from $A$. Typically, there will be a method or a principle of distribution and there will be the resulting outcome of how $X$ is spread or apportioned over $B$. In the above story, the man is to distribute some of his water to the woman and the girl, the woman some of her bread to the man and the girl, and the girl some of her cheese to the man and the woman. When a distribution is called "just," what exactly in this complex is being morally evaluated? A distribution might be just because the distributor is a just person or institution and this yields, derivatively, a just method and a just result. This seems to be the case with Aristotle's virtue theory. Or, a distribution might be just because the method of distribution is just and this issues, derivatively, in a just result, even if the distributor is not just. This seems to be the case with, for example, Rawl's fairness theory. Or, a distribution might be just because the result is just and this, derivatively, makes the method just but not (necessarily) the distributor. This seems to be the case, for example, with the utilitarian theory.

Given this analysis, are we in a better position to decide which of the six theories of distributive justice our three life-threatened individuals should choose to end their impasse in the most morally just way? It seems not; understanding the surface structure of the distribution relation and clarifying the aspect being judged "just" in the case of a just distribution doesn't bring us any closer to singling out one of the six as morally best.

However, this exercise in "testing" theories by applying them to imaginative situations reveals insights, lines of reasoning, strengths and weaknesses, and thus contributes to the critical evaluation of abstract moral concepts and principles that is central to philosophical ethics.

Notes:

1. That the object(s) to be distributed is divisible is not necessary for there to be a problem of distributive justice, but it does make for a particular kind of problem in which dividing the object into portions becomes an important step. An object that can't be divided requires its distribution over a population to use methods other than apportionment. If an object is a "whole greater than its parts," for example, a painting, an automobile, a chess set, or (in the case of King Solomon) a child, and is to be distributed to two or more people, it would be foolish to cut the painting or the child, divide the chess set, or break the automobile into pieces for this would in effect destroy the value for which it is desired. Some method of sharing such objects (say, putting the painting on display, or taking turns using the automobile, or renting the chess set) would have to be set up that would then be judged a just or an unjust distribution. If total possession were the goal, then perhaps a lottery with winner-take-all, or an auction with the highest bid gaining full possession, might be proposed and then examined with respect to whether it is a just method of distribution for the object and the potential recipients in question.
2. Republic, 332a-336a. In discussion with Socrates, Polemarchus asserts this concept of justice, attributing it to the poet Simonides whom Socrates groups with the "wise men."
3. Republic, Book IV, 430a-445e. In this section of Book IV, Socrates presents his analysis of justice in the individual person. In Books V - VII this tripartite concept of justice is applied to the just polis.
4. Summa Theologica, section "Of Justice," Eleventh Article: "Is the Act of Justice to Render to Each His Own?" Aquinas, after considering several objections, answers in the affirmative as his own positon.
5. Nicomachean Ethics, Book V "On Justice." Section 5.2 presents Aristotle's theory of justice as a virtue of hitting the means between extremes; section 5.4 covers distributive justice.
6. See the entry "Consequentialism" in SEP, Section 1: Classical Utilitarianism. Also, see the entry "Distributive Justice," especially section 5: Welfare-Based Principles.
7. See the entry "Deontological Ethics" in SEP. See also the entry "Distributive Justice," section 2: Strict Egalitarianism.
8. Groundwork of the Metaphysics of Morals contains the classic statement of Kant's

Categorical Imperative. See also the entry "Kant's Moral Philosophy" in SEP, especially section
4: Categorical and Hypothetical Imperatives.
9. A Critique of the Gotha Program, section "From Each According to His Ability, to Each According to His Needs."
10. A Theory of Justice contains Rawls' elaborate argument for his two principles. See the entry "John Rawls" in SEP, section 4 and especially subsection 4.3: The Two Principles of Justice as Fairness.
11. Anarchy, State, and Utopia, chapter "The Entitlement Theory." See the entry "Robert Nozick's Political Philosophy" in SEP, especially section 4: Justice as Holdings.
12. It is possible that A is included among the Bs , such that self-distribution takes place.

## Bibliography:

Kant, Immanuel. Groundwork to the Metaphysics of Morals.
Solomon, Robert and Murphy, Mark. eds. What is Justice? Classic and Contemporary Readings, $2^{\text {nd }}$ ed. Oxford University Press, 2000.

The Stanford Encyclopedia of Philosophy
Mack, Eric, "Robert Nozick's Political Philosophy", The Stanford Encyclopedia of Philosophy (Summer 2022 Edition), Edward N. Zalta (ed.), URL = [https://plato.stanford.edu/archives/sum2022/entries/nozick-political/](https://plato.stanford.edu/archives/sum2022/entries/nozick-political/).

Johnson, Robert and Adam Cureton, "Kant's Moral Philosophy", The Stanford Encyclopedia of Philosophy (Spring 2022 Edition), Edward N. Zalta (ed.), URL = [https://plato.stanford.edu/archives/spr2022/entries/kant-moral/](https://plato.stanford.edu/archives/spr2022/entries/kant-moral/).

Wenar, Leif, "John Rawls", The Stanford Encyclopedia of Philosophy (Summer 2021 Edition), Edward N. Zalta (ed.), URL = [https://plato.stanford.edu/archives/sum2021/entries/rawls/](https://plato.stanford.edu/archives/sum2021/entries/rawls/).

Lamont, Julian and Christi Favor, "Distributive Justice", The Stanford Encyclopedia of Philosophy (Winter 2017 Edition), Edward N. Zalta (ed.), URL = [https://plato.stanford.edu/archives/win2017/entries/justice-distributive/](https://plato.stanford.edu/archives/win2017/entries/justice-distributive/).

Alexander, Larry and Michael Moore, "Deontological Ethics", The Stanford Encyclopedia of Philosophy (Winter 2021 Edition), Edward N. Zalta (ed.), URL = [https://plato.stanford.edu/archives/win2021/entries/ethics-deontological/](https://plato.stanford.edu/archives/win2021/entries/ethics-deontological/).

Sinnott-Armstrong, Walter, "Consequentialism", The Stanford Encyclopedia of Philosophy (Fall 2021 Edition), Edward N. Zalta (ed.), URL = [https://plato.stanford.edu/archives/fall2021/entries/consequentialism/](https://plato.stanford.edu/archives/fall2021/entries/consequentialism/).

