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Abstract

The problem of redistribution of translational and
rotational cnergy has been solved for diatomic gases
within the framework of the Chapman-Enskog method and
the Parker model. The nonequilibrivm gasdynamic
equations were obtained for rotational-translational
processes in diatomic gas. The calculations of relaxation
time, viscosity and thermal conductivity coefficients were
carried out jn the temperature range 200 < T < 10,000
K for nitrogen. The calculated parameters and coefficients
were compared with the values obtained by the Mason-
Monchick approximate method as well as experimental
data under the testing conditions in ultrasonic, shock-
wave, and vacwum devices. ‘The correlation of the
theoretical and cxperimental data is satisfactory. The
applicability of ome- and iwo-temperature relaxation
models was discussed. The solution of the obtained
system of the Navier-Stokes equations was analyzed for
the case of spherical expanding nitrogen flow in rarefied
gas media.

Introduction

The gas dynamic equations and transfer coefficients
were received by Ferziger and Kaper,! and Kogan® for
noncquilibrium polyatomic gas mixtures by using the
Chapman-Enskog iteration method to solve the Boltzmann
cquation in the simple cases of near-equilibrivm and slow-
relaxation processes of the energy exchange between
internal and translational degrees of molecnlar freedom.
This technique was developed by Alekseev,® Galkin et
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al.,* Matsuk and Rykov,* and Kogan and Makashev® for
the case of the arbitrary energy exchange ratio. However,
these studies had more academic interest. The practical
results were received by Matsuk and Rykov® for the
model system of equations.

In this study the general case of the arbitrary energy
exchange ratio is considered for the real diatomic gas with
rotational degrees of freedom.

The transfer coefficients and reaction rates for
rotational excited gas are received by using the technigue
of integral brackets.! In calculating of the correction term
to the distribution function of the zero approximation, the
lincar-dependence transformation of the diffusion
thermodynamic force vectors to the linear-independence
vector set was done by the linear transformation method
of Matsuk and Rykov.’ The matrix transformation
elements are the Waldmann-Trbenbaher polynomials.
Integral brackets were calculated in terms of classical
mechanics. The collision molecule mode] is based on the
Parker concept.” The energy and momentum parameters
could be presented in the analytical form in this case. The
form was used for caiculations.

The collision model was applied for prediction of the
rotational -translational relaxation time . The six multiple
integrals were evaluated by the Monte-Carlo technigue in
the temperature range from 200 to 10,000 K for nitrogen.
The viscosity and thermal conductivity are compared with
Mason-Monchick

approximations.* The conditions of one- and two-

experimental data and the

temperature approximations for the relaxation time are

considered for nitrogen. The two-temperature
approximation was analyzed by Lebed  and Riabov®!° for
parahydrogen. The applications of the theory are
discussed for testing in ultrasonic devices, shock-wave
tubes, and underexpanded jets in vacuum chambers.

The thermodynamic force transformation technique and
the Mason-Monchick approximation were used {o receive

the analytical expressions for heat flux and diffusion



velocity of the rotational levels.

‘The Chapman-Enskog iteration method to solve the
Boltzmann cquation for this case was described by l.ebed’
and Riabov’ in detail. The calculating of rotational
relaxation time and transfer coefficients was done by the
technique of 1ebed  and Riabov®,

The Chapman-Enskog Method and Rotational Relaxation

To solve the Bolt/mann equation in the case of
rotational-translational relaxation, we will follow the
technique described by Galkin et al.,* Matsuk and Rykov,’
Kogan and Makashev,® and Lebed and Riabov®. The
introducing of the Koundsen number Kn and parameter
Knj, which characterizes the ratio of the specific non-
clastic collision probability to the specific elastic one, is
necessary  to  apply the Chapman-Enskog itcration
technique.

At the hydrodynamic stage the solution of the
Boitzmann cquation is presented as an asympiolic series
The first
approximation term was received by Galkin et al.* The
analysis of Galkin et al.,* Kogan and Makashev,® and
Iebed” and Riabov® indicated that the clastic collision

according to the small parameter Kn.

term and the non-elastic collision onc have the order of
the unit and O(Kip), respectively.

The set of diffusion thermodynamic forces is lincarly
dependent. According to the technique of Maisuk and
Waldmann-Trubenbaher
polynomials, we creatc the new set of linearly

Rykov,” and using the

independent vectors for solving the problem on this stage.
The general solution of the problem was found as the sum
of the particular solution and the general solution of the

uniform equation. This solution is as the following?
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The coefficients A, B, A**, and G, arc the roots of the
intcgral equations given in the study by Lcbed and
Riabov.” The solutions of the integral equations could be
fonnd as series of the Sohnin (S,,”) and Waldmann-
Trubenbaher P polynomials:™+%°
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In calenlations we used two first non-zero terms in the
series {2). The linear system of second order cquations
was solved by the maximum principle and variation
technique.'** Using equations (1) - (2), the expressions
for the components of diffusion velocity vector V!, heat

flux vector g,, and viscous stress tensor P, are as the

following:®
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The scaler term of the solution (1) can be nsed for
evaluation of the correction terms in the rotational rates .’
The transfer cocfficients can be found by the coefficients
of the equations (3).

The Interaction Potential Model for Diatomic Molecules

Within the framework of the Parker modcl,” the
interaction potential of the molecules is represented as the
sum of the exponential attraction between the centers of
mass and the cxponential repulsion between the centers of
force, placed on the internuclear axis at a distance d* <
d from each other, where d is the internuclear distance.
Expansion of the short-acting part of the potential in a
Fouricr series let to the generally accepted form of an
expansion in powers of the cosines of the angles between
the interatomic and intermolecular axes. The retention of
only the first two terms of this expansion was justificd by
the fact that anisotropy parameter & = 2L(y)/[(y) is



small; here y = ad /2, « is the inverse radius of action of
the intermolecular forces, I, and I, are modified Bessel
fuactions.

The interaction potential is represented in the form:’

V,=Qe™™(1+¢cos20,+ecos20) “)

where ( is a constant, r is the intermolecular distance,
and 0, and 6, are the anples between the intermolecular
and interatomic axes of the molecules 1 and j.

The system of classical equations of motion with
potential (4) developed by Parker’ was solved within the
framework of the theory of perturbations with respect to
the parameter &. In the zeroth approximation the rotational
state of the molecules does not change as a result of the
collision. In the nartow range of action of the
intermolccular potential at » ~ 1/e, the centrifugal energy
w*b?2r°, which varies only slightly with r, in accordance
with the cffective-wave-number approximation developed
by Nikitin and Osipov," is replaced with the constant
value uvb*/2r 2, where p is the mass of an atom of the
motecule, b is a larget parameter, v is the velocity of
relative motion of the participating entities which do not
act on cach other, r, is a parameter which takes on a
value in a narrow range 1/a around the point of turning
rp.

In the first order of the theory of perturbations with
respect to the parameter ¢, analytic expressions for the

resulling angular velocities of the molecules are:™"
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where p; and ¢; are the initial reduced angular momenta
and initial phases counted from the direction of the initial
velocily of relative motion of the molecules.

The additional acceleration in the region of interaction
as a result of the remote-acting forces is taken into
account in Eq. 5 according to the study of Nikitin and
Osipov'! by replacing #%/2 with wv/2+¢,, where ¢, =

96.6 K is the depth of the potential well.'*??

The cxpressions for the enerpy AE = AE [in?/2 = AE,
+ AFE; and the momentum AM = AM'/uvr, = AM; +
AM, transferred at the time of collision from the
translational to the rotational degrees of freedom take the

form:*©
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The isotropic interaction poteatial for the nitrogen
molecules, Vi(r), was approximated by data from the
study of Belyaev et al.” in the range r > 3.1096A. The
short-acting branch of Vi (r) was approximated by the
exponential function Qexp(-ar) at each point of turning r,.
The value of the parameter a was evaluated as a(r,)) = -
dinVy(r)/dr at r,. The parameter r, was equated to the
integral vQ®*", calculated by Belyaev et al.'* for the
cxact potential Vo (r) at r ~ 1/a.

The functions of a(T), (), r(T), and r(T),
corresponding to d° = 0.62 were calculated by Lebed’
and Riabov.*%°

The angle of elastic scattering for a short-acting
potential was approximated by the angle of scattering of
solid spheres as in the studies of Lebed’ and Riabov,*™
and Nikitin and Osipov.** The calculations of the angle of
scatlering is carried out on the assumption that the cnergy
transfer from the translational to the rotational degrees of
freedom takes place inétantaneons]y at the point r.

Rotational Relaxation Time

Two independent definitions of relaxation time are
widely used. In the first casc the general expression for
the temperature dependence of the rotation time, z,(7),
is obtained by using the Chapman-Enskog iteration
mcthod 1o solve the Boltzmann equation for a gas of
particles which possess internal degrees of freedom.' In
the second case the relaxation time, g, (1), is found
directly from the relaxation equation by calculating the
rate of increase of the internal energy of the molecules
which originally were not internally excited.!

To describe the rotational relaxation of a gas of



homonuclear diatomic molecules, the specific models of
the intcrmolecular interaction were used for calculating
the redistribution of the rotational and translational
cnergies upon collision. The main disadvantage of such
models’  like  the rough-sphere, loaded-sphere,
spherocylinder, and ellipsoid models is that the real
intcrmolecular interaction potential is replaced with the
potential of rigid frames of differcnt shape. As a result,
the average number of collisions calculated by means of
these models, which is required to put the system into
cquilibrium with respect lo the rolational degrees of
freedom, Zz (T) = 1,/7, where 7 is the translational
relaxation time, is independent of the temperature. This
fact contradicts the experimental data,”

The parameter Z,(7) = 174,/7, calculated in Parker’
and obtained more precisely by Brau and Jonkman,'
corresponding to the planc collision of the initially
unperturbed rotators, increased monotonically with the
increase in temperature because of the potential well. This
cffect in the range of temperatures tens of times as high
as the potential well depth was explained by Nycland."

The values of Z, (T}, and Zp(T) for nitrogen were
calculated by Lebed and Riabov™'® at T = 300 K.

The process of establishing equilibrium with respect to
the rotational degrees of freedom in terms of the 1-

approximation was described by the relaxation equation:'

gﬂ'ﬁ = b‘g__s_’?) (7

dt Te
where £y is the rotational cnergy per molecule and €,° is
its cquilibrium valuc. It was noted,'®'® that Eq. 7 holds
for small deviations from cquilibrivm (g,° - £3)/,° <€ 1.
Paramcter 73:(7) could be determined from Eq. 7 as the

ksl

ratio of £;° 10 the rate of growth of the cnergy of the
initially unexcited rotators.' In the case considered here,
this rate can be determined by averaging of the

parameiers in Fqs. 6, in which we musisetp, = p, = Ot
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The effect of the initial distribution with respect to the
rotational states was estimated by Lebed” and Riabov %10
They assumed that at time ¢ = ( this distribution

corresponds to the Boltzmann distribution with some
temperature T, # (. Under these conditions, the time of
rotational relaxation v, becomes a function not only T but
Ty as well, The values of prp(T, Ty) and Zy(T, T,) were
calculated by lebed” and Riabov'® for nitrogen and
parahydrogen at ) < Ty < 1200 K.

As in the case of the rotational relaxation of nitrogen,
investigated by Lebed and Riabov,' a strong dependence
of the relaxation time 75 on 7} in parahydrogen was
found. The use of two-parameter funciion 7,(T, T.)
improves the approximate calculation obtained with Iiq.
(7). The results™® indicated that the initial distribution
according to rotational levels must be taken into account
within the framework of the r-approximation.

The rotational-translational energy exchange process
was considered at Knp, ~ 1, and 7 < 7,(T) <€ 0, where
@ is the characteristic time of flow, Under the considered

o

conditions, the rotational energy parameters £,° and e,
differ from each other by a small quantity proportional to
the Knudsen number Kn. The general expression for
pru(T) is found by solving the Boltzmann cquation, using

the Chapman-Enskog method:"*'
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The temperature was determined on the basis of the
total molecular energy. Formula (9) differs by factor of
53/3 from the corresponding quantity obtained in
determining the temperature on the basis of the kinctic

energy of the molecules.'®

Numerical Method

The sixfold integrals were calculated at 200 points of
the range of temperatures 200 K = T < 10,000 K, using
the Monte-Carlo technique,'® with 4000 tests at cach
point. The data were drawn by mcans of the interpolation

technique™7

using cubic splines of defect 1 with
smoothing. The resulting estimated accuracy of the
calenlations is 1.5%. The higher orders of the theory of
perturbations with respeet to the parameter £ make a
substantial contribution at T < 400 K, and the accuracy

of the calculations is lower under these conditions.



Numerical Resulis

The results of calculations pre(T) and pre (7)
according to formulas (8) and (9) arc shown in Figs. 1,
and 2, correspondingly (solid lines and empty squares).
The cxperimental data (filled squares) were received by
Brau and Jonkman," and 1.ordi and Mates.'®

The calculations show that at 200 = T < 10,000 K,
Pre(d) i3 2 or 2.5 times as large as pry (7). This
difference is apparently due to the adiabatic nature of the
energy cxchange between the highly excited rotational
states of the molecnles.'® The quantity pry (T} was used
for interpreting the cxperimental data on the scattering
and absorption of uitrasound, where the effect of the
ultrasound frequency on pry (T) was disrcgarded.™ The
quantity pra(T) was used for interpreting the data of
cxperiments in shock tubes. The effect of the imitial
distribution according 1o rotational levels was not
considered in this comparison.
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Fig. 1 The parameter pr,(T) as a function of

= 0.62; * .
0.557; » - experimental

temperature: © - solution of Eq. (8) at 4’
solution of Eq. 8) at 4" =
data.lt&lﬂ

The influence of the parameters @ and d on Zp(T) and
Ze (1) was analyzed by Lebed” and Riabov.™° Ag it is
shown in Fig. 1 (dashed line and asterisk correspond to d’
= 0.557), a decrease in d' causes an increase in pro(7T).
It was noted by Lebed” and Riabov,' that for constant a
both Z,.(F) and Zp (T) remains approximately constant
everywherc except al low tcmperatures where the

additional acceleration of the molecules caused by the
remote-acting forces should be taken into account.

The available experimental data,’*'* both on ultrasound
and on shock waves, differ from one another by 200-
300%, which is approximately equal to the difference

between pry,(T) and pra (7).
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Fig. 2 The parameter Pt (T as a functlon of
temperature' o, solution of Eq. 9) atd' = 0.62; = -
cxperimental data.!**®

The calculated wvalucs of rotational-translational
rclaxatlou llmc were used by Molodtsov and Riabov'® in
the ana]yms of the molecular nitrogen ‘flow near a sphere.
A qlgmflcant difference between rotational encrgy and
translational 1cmperalure distributions was discussed.

Rotational relaxation of a freely expanding gas

Marrone,® and Borzenko et al.® studied the
translational-rotational relaxation in expansion of a
molecular gas into a vacuum. A significant decrease of
the pas density downstream leads to a decreasc in the
number of molecwlar collisions. As a result, the departure
of the rotational energy of the gas £, from the eguilibrinm
value g,° is observed.

Lebed” and Riabov?
rotational energy departure. At the decrease of kinetic
temperature  7,, the Messy adiabatic parameter,™
describing energy transfer between highly excited
rotational levels unable to relax, becomes larger than

studied another cause for the

unity. Adiabatic collision conditions™* should be taken

into account. As T, decreases, the relaxation time 7, will



increase due to the significant decrease of the rotational
transfer probabilities.

Using technique of Lebed” and Riabov,”? the
rolational-translational relaxation times were calculated for
nitrogen at conditions of aerodynamic experiment in
underexpanded jets.”

The analysis presented by Iebed” and Riabov®
demonstrated the considerable departure of rotational
energy from the equilibrium value at temperature 7 <
100 K, and pointed to take into account the quantum
methods under the conditions of experiments in an
expanding flow of nitrogen.

The rotational-translational nonequilibrum processes
were studied by Molodtsov and Riabov,' Riabov,®¥
Skovorodko,®
the full system of the Navicr-Stokes cquations and the

and Rebrov and Chekmarev® in terms of

relaxation equation (r - approximation).

Transfer Coefficients in Near-Equilibrium Diatomic (Gases

The general expressions for the transfer coefficients
were analyzed by lebed” and Riabov,™ Lordi and
Mates,"

these expressions arc:

and Taxman.** Using formulas from Eg. (3),
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In Eq. (10) » and #, are the coefficients of shear
viscosily corresponding 1o rolationally inclastic and elastic
collisions; A and A, arc corresponding values of the

thermal conductivity; p is the gas density; D, is the sclf-
diffusion cocfficicnt of the elastically colliding molccules.

The simplest approximations for the thermal
conductivity cocfficient A were analyzed by Ferziger and
Kaper,' Mason and Monchick,® Lebed” and Riabov,™*
and Hirshfelder et al.”

Mason and Monchick,® analyzing the relations (10), set
AE = 0 in the first approximation. This approximation
based on the diffusive transfer, but it disregarded the
relaxation of the rotational energy. The relaxation was
taken into account partially in the next, sccond,
approximation, in which the term for Z contains not only
(3/2)pD, but also the first term of the sum under the
integral sign. As a result, the expression for the thermal
conductivity coefficient A, is as the following:

3 k
Ay =( P *f.-,.(z)) —n;

a3 31222 n )
T2l 60 5 n )pry(D

D
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In the second approximation sin’y was approximatcd

(an

@
on

by its value averaged over the unit sphere which was
equal to 2/3; thus, g = 7,."°

The calculation technique and expressions for AE (Eq.
6) and y were discossed above and in the study of Lebed’
and Riabov.>""
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Fig. 3 The viscosity coefficient in nitrogen: © - n,
dashed line - #,, ® « experimental data.”

The solid and dashed lines in Fig. 3 show # and #,,



correspondingly, as given by Eq. (10), while the filled
squarcs indicate the experimental data of Vargaftik.* The
differcnce between i and n,is evaluated as 5% in the low-
temperature regime. At temperature 7 > 1000 K these
values correlate well with cach other.

1
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Fig. 4 The thermal conductivity coefficient in
nitrogen: © - A, dashed line - A,, » - experimental
data.”

The solid line in Fig. 4 shows A, as given by Eq. (10).
The dashed line corresponds to the Mason and
Monchick’s second approximation, A,. The filled squares
indicate the cxperimental data of Vargaftik.> The Mason
and Monchick’s first approximation® as well as the Aiken
approximation’ werc analyzed by Lebed” and Riabov™'®in
detail. The correlation between the exact solution, the
Mason and Monchick® sccond approximation,’ and
cxperimental data’ is acceptable.

The small discrepancy between the theoretical values
of # and A and the experimental data (see Figs. 3, and 4)
can be eliminated by a proper choice of the potential at T
< 1000 K.

Transfer Coefficients in Nonequilibrium Diatomic Gases

Monchick’s second-order

approximation technique® was used for calculating the

‘The Mason and

transfer coefficients in the nonequilibrium case of the
arbitrary value of Kn,. As it was demonstrated above, this
approximation is very good in the near-equilibrium case.
The procedure of obtaining the coefficients is described

by Lebed” and Riabov®™ in detail. Using the fact that the
relaxation terms in transfer coefficient formulas are small
and they could be ommed we find from Eq. (3) the
following expressions:
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In the equilibrium case the parameters <E>
and <E*> in Eqgs. (12), and (13) should be changed on
their equilibrium values. In the relaxation case the small
values well-proportioned to 1/p7y,(T) should be omitted.

It was noticed,” that the expressions for V)’ and g, from
Eqs. (13) have only the gradients of values <E> and T,
which characterize the system as a whole. In addition, the
cocfficicnts at these gradients arc the functions of
paramelers of the /-th level and the system as well. This
property of the system of Eqgs. (13) is very convenjent for
applications.'***” The similar expressions were found by
Lebed and Riabov,*™ and Riabov™* for multicomponent

£as mixtures.



In equilibrinm case the expressions in Eqs. (12), and
{13) are the same as in the study of Ferziger and Kaper.!
Using Eqs. (12), and (13), we can find the gas
dynamic equations in the common case as the following:®
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In the formulas of Fg. (14), we used the t-
approximation method.” The relaxation time of the i-th
rotational level was approximated by the value of the
relaxation time of the rotational energy 7. The parameter
7 should be selected after special analysis in each case,
as it was done, for example, by Lebed  and Riabov.*%

The closed system of the equations (14) contains the
coefficients #,, Ay, Dy, pra,(7), and pry, which are given
in Figs. 1-4 for nitrogen at temperature from 200 K to
10,000 K. Yhe parameter pD,/n, is approximately constant
and equals to 1.20.

The system (14) could be applied at any value of
parameter Knyg.

Rotational relaxation in viscous egas flows

The combined cffect of the rotational-translational

relaxation and the viscosity and thermal conductivity

processes was studied by Molodtsov and Riabov,"
Riabov,??" Skovorodko,” and Rebrov and Chekmarev,”
The full system of the Navier-Stokes equations and the
relaxation equation (14), based on r-approximation
technique, has been solved by the implicit technique
described by Riabov? in detail. The structure of
spherically expended flows and underexpanded viscous
jets was analyzed by Riabov.”
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Fig. 5 The rotational 7; and translational T,

temperatures in spherically expanding flow of
nitrogen: * - T, and © - T, in viscous flow; X - T and
* . T in inviscid flow; dashed line - equilibriom flow

(Tpy=THaty = 1.4,

The changes of T, and T, in the spherically expending
flow of nitrogen are shown in Fig. 5. The result of
computations for the Reynolds number Re, = p.u.r./n(¥.)
= 161.83; K, = pu.r./p.p(F) = 28.4; p.jp.. = 41.67,
7. = Tg., and T,, = 1.27. is shown by filled squares
(Tz) and empty squares (T)). Asterisk indicates the
parameters at sonic conditions. The results for inviscid
nonequilibrium flow (marker X for Ty and asterisk * for
T,) were obtained by the method of Lebed” and Riabov.”
The dashed line in Fig. 5 corresponds to equilibrium
values (7, = Ty} at the specific heat ratio y = 1.4.

The numerical results confirmed the earlier discovered
delay™™  of

translational one. The speed of decrease of Ty slows down

rotational temperature compared to
with the gas expanding in the inner supersonic area of the
flow. Rotational-translational equilibrinum never exists in

front of the shock wave in such flow, and T, > T, both



in the viscous and inviscid gas flows.

As the result of gas compression in the shock wave,
fast increase of franslational and rotational temperatures
occurs. 1n the subsonic area of the flow behind the shock
wave, the temperatures reach the value of the stagnation
temperature T,

Concluding Remarks

The nonequilibrium gas dynamic equations were found
for rotational-translational processes in diatomic gas for
arbitrary value of parameter Kng. The calcnlations of
relaxation time, viscosity and thermal conductivity
cocfficients were carried out in the temperature range 200
= T = 10,000 K for nitrogen. The results are applied
for different conditions of ultrasonnd, shock-wave, and
underexpanded jet experiments. It is important to use
quantum effects in the latter case. The applicability of
ope- and two-temperature relaxation models was
discussed. The presented results indicated that the initial
distribution according to rotational levels must be taken
into account within the frame work of the 7-approximation
in parahydrogen." The theorctical and cxperimental data
are well corrclated.
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