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Abstract 

The range of applicability and accuracy of numerical 
solutions of the different approximations of the Navier-Siokes 
equations (local stagnation streamline approximation, 
"parabolized" equations, and the thm-viscous-shock-layer 
approach) have been analyzed to study the perfect-gas and 
nonequilibrium viscous flows near blunt bodies. The usage of 
these approximations allowed to reduce the time of 
calculations by factor of 5-10 in comparison with the time 
needed to solve the full system of the Navier-Stokes equations. 
The study demonstrates a significant influence of the 
regularization procedure on the approximate solutions 
obtained. Numerical solutions are compared with 
experimental data and the results of the direct simulation 
Monte-Carlo techque.  

Nomenclature 

A 
a 
Cf = hction coefficient 
E = streamwise flux vector 
e = specific rotational energy 
h = enthalpy 
M ,  = Mach number 
n = normal coordinate 
P = pressure 
Pr = Prandtl number 
Y = heat flux 
R = gas constant 
He0 = pypl,u(TJ, Reynolds number 

= RTdu,', constant, Eq. (6) 
= radius of blunt body nose 
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= coordinate along the body generatrix 
= S c h d t  number 
= Stanton number 
= temperature 
= TJ0, temperature factor 
= velocity component along coordinate s 
= normal velocity component 
= angle of attack 
= angle of flap inclination 
= specific heat ratio 
= Re,(P/PJ%, pressure correlation parameter 
= viscosity 
= density 
= viscosity parameter, Eq. (8) 
= azimuthal angle 

subscripts 
S = parameter b e h d  the shock wave 

= wall parameter 
= stagnation parameter 
= first terms in Eqs. (1) - (8) 
= second terms in Eqs. (3) - (8) 
= upstream parameter 

Introduction 

In the past years a lot of excellent numerical methods'" have 
been developed to study flowfeld parameters around 
hypersonic vehcles in the rarefied atmosphere of the planets 
as well as to calculate heat fluxes and aerodynamic forces. A 
broad range of streamlining regimes versus the degree of 
media rarefiation has been discussed by Cheng6, Wuest', and 
Probstein and Kemp'. 

This study analyzes the flowfield around a sphere and a 
plate with cylindrical blunting under different angles of attack. 
The study is based on the numerical solutions of the full 
system of the Navier-Stokes equat i~ns~. '~  and different 
approximation approaches such as the local approximation for 
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of a thin viscous shock layer (TVSL)'"'7. Special attention is 
paid to the regime of flow for which dissipation effects of 
viscosity, heat conductivity, dfision, and rotational- 
translational relaxation become a si@icant factor in the 
flowfield 

Studies of the above mentioned problems by Cheng6, 
Probstein and Kemp', Molodtsov and Riabov'', Gusev et al.", 
Kogan," and Moss et al." indicate that the analysis of the,flow 
using the Navier-Stokes equations may be applicable far 
beyond the theoretical  assumption^.'^ However, in order to 
obtain a correct solution to the problem of streamlining the 
body under the flow conditions at moderate Reynolds 
numbers, it is necessary to accept boundary conditions of slip, 
temperature jump, and rotational energy jump as well as the 
slip of diffusion velocity at the wall?JoJ9J' An inaccurate type 
of boundary conditions may bring significant errors whch can 
be noticed, for example, in the results of Vogenitz and 
Takata.22 The authors of Ref. 22, comparing the results of 
numerical calculations using the DSMC method with the data 
for velocity obtained with the help of the simplified equations 
for the mechanics of the continuous medium,23 came to the 
conclusion that the Navier-Stokes equations are unapplicable 
for the description of rarefied gas flow. 

Stud~es of Molodtsov and Riabov?" Molodtsov,Z' Jain and 
Ad1murthy,2~ and Moss et a1.*' demonstrate that consideration 
of slip and temperature jump conditions for the rarefied gas 
leads to complete agreement with the results of the study of 
Vogenitz and Takata?' and also agrees with numerous 
experimental data measured by Russellzs under the flow 
conditions at Knudsen numbers Kn < 0.5. At present, many 
authors (see Refs. 1-5,9-11) approach the problem of viscous 
perfect gas flow around a blunt body using numerical research 
methods based on the Navier-Stokes equations. 

This study is conducted with the help of a standard f ~ t e -  
difference scheme which approximates the complete system 
of Navier-Stokes equations, and is the further modification of 
the scheme in the study of Molodtsov" and Molodtsov and 
R~abov.~J' 

The study of the problem in the application of Navier- 
Stokes equations for the description of the rarefied gas flow 
around the sphere was conducted by comparing the results of 
the numerical calculations with the data using the DSMC 
technique, and also with numerous experimental data of 
pressure in the fkont critical point, the rotational temperature 

of the molecular nitrogen, the density distribution at the 
stagnation point of sphere, and heat fluxes at the cooled 
surface. 

The dimensionless dfierential equations describing the 
viscous compressible flows were presented in Ref. 10. The 
divergent form of the Navier-Stokes equations connected with 
the arbitrary curvilinear coordinate system has been used. To 
describe the molecular gas flow with rotational-translational 
relaxation, the system of the equations in Refs. 9,lO should be 
added by a relaxation equation, a state equation, and by 
expressions for total energy, heat flux, and the rotational 
energy diffusion flux.z6 

On the outer boundary of the computational region the gas 
flow was assumed to be undisturbed. We assumed fulfillment 
of the conditions of "ffee flow" (see Refs. 3 ,9,2 1, and 26) at 
the distances far from the body. On the central streamline, the 
symmetry condition of the flow was used. On the surface of 
the body we specified the conditions of the slip, the 
temperature jump as well as the rotational temperature jump, 
and the diffusion velocity slip. These expressions and 
accommodation coefficients are given in Refs. 1 0, 1 1 , 1 9 ,2  1, 
and 26. 

The numerical investigation was made by means of the 
conservative finite-rnerence scheme developed by 
Molodtsov" and Molodtsov and RiaboS:" The Merence 
approximation of viscous stress tensor components, heat flux 
vector, and velocity components normal to the curvilinear 
surface has been made by symmetrical formulae. The 
convective terms of the equations are approximated by 
nonsymmetrical formulae of the second order which seem to 
have been examined for the diffusion-convective equation in 
Refs. 9 and 28. 

A Stationary solution of the problem is executed by iteration 
schemes N e  the alternating directlon implicit technique's2 and 
Seidel's meth0d.~*~9''"' 

Numerical Results 
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Perfect Gas 
A comparison of the numerical results performed with the 

usage of the Navier-Stokes e q u a t i o n ~ ~ J ~ * ~ ‘ * ~ ~ J ~  and of the 
DSMC t e c h n ~ q u e ~ ~ . ~ ~  was made by Molodtsov and Riab~v.~JO 
The data presented there agree satisfactorily with the DSMC 
calculations and testify to the validity of the calculated results 
for a weakly rarefied gas flow near a sphere obtained using the 
Navier-Stokes equations at small Reynolds numbers Re,. 

As an example, the results of numerical solution of the 
system of the Navier-Stokes equations are shown in Figs. 1,2 
for streamlining supersonic viscous flow of perfect diatomic 
gas (solid lines) near a sphere at upstream parameters: Re, = 

14.4, M,=6.5, o=O.75,Pr=O.72, y =  1.4, and tw =0.3. 
The boundary conditions on the body surface were the 
conditions of adhesion. 

The distribution of the flow parameters near the sphere is 
presented in Fig. 3 in the case of streamlining thermal isolated 
sphere by monatomic viscous perfect gas flow at the following 
parameters: Re, = 26, M, = 10, y = 513, o = 0.5, Pr = 0.75, 
y, = 0. 

Rotational-Translational Nonecluilibrium Viscous Flow 
The investigation of the polyatomic rarefied gas flow around 

bodies requires accounting for the nonequilibrium energy 
transfer between translational and rotational degrees of 
f r e e d ~ m . ~ . ’ ~ . ~ ~  Departure from rotational-translational 
equilibrium on the flow structure near a sphere of radius a = 

0.3 m can be expected for flight at altitudes 90- 120 km (see 
Ref 7).  In the experimental simulation of these flow regimes 
in wind tunnels, the nonequilibrium nature of the energy 
transfer must always be taken into a~coun t .~~ - ’~  The 
nonequihbrium excitation of the rotational degrees of freedom 
of the molecules can lead to an increase in the translational 
temperature and the thickness of the dishubed mne compared 
with the equilibrium case for y = 1.4 (see Ref. 26). 

As an example, displayed in Fig.4a are the distributions of 
the translational (TI )  and equilibrium (T,) temperatures, and 
the nonequilibrium rotational energy (e,) at Re, = 14.4, M, = 

6.5, 0=0.75,Pr=0.67,Sc=O.75, y=513,tw=0.3. The 
distribution of pressure ( p l )  and velocity (v,) in the vicinity of 
the stagnation streamhe is shown in Fig. 4b (solid lines). The 
rotational degrees of freedom in the upstream flow were 
assumed to be in equilibrium. The nonequilibrium character 
of the rotational-translational energy exchange mainly 
appeared in the considerable difference between the 

distribution of rotational and translational temperatures, whch 
is proved by experiment of Ahouse and BagdonoP4 and 
Tir~malesa’~. The parameters of pressure and velocity (see 
Fig. 4b) as well as density (Fig. 2 )  are not sensitive very much 
to the type of energy exchange between translational and 
rotational degrees of freedom. Also, it was mentioned by 
Riabov,26 that the d u e n c e  of the rotational-translational 
nonequilibrium in the upstream flow is only concentrated in 
the front region of the viscous shock layer. 

For the considered flow regimes, the parametes of the 
Stanton number St (squares), as a function of Reynolds 
number Re, for the stagnation point at ground-testing values 
of the temperature factor t, = 0.3 15 are presented in Fig. 5. 
The comparison of the numerical results, considering (black 
squares) and not considering (light squares) slip and 
temperature jump indicates signdicant errors of non-slip heat- 
flux data at Re, < 15. In previous ~tudies’~.’~ it has been found 
that these numerical results are in good agreement with 
experimental data” received in the vacuum wind tunnel by 
the method of thermal sensitive coatings.30 

It was noticed by many, researchers (see bibliography in 
Ref. 3 1 )  using pressure probes for measuring the parameters 
of supersonic rarefied gas flow, that a si&icant increase in 
the measured pressure pw over the value p ,  ‘becomes evident 
when the value of the Reynolds number Re, gets smaller. In 
order to exclude the influence of Mach number M, when its 
value is small, and also to exclude parameter y, parameter 8 
= Re,(p/pJ‘ (see Ref. 31) was used with the purpose of 
correlating pressure data at the stagnation point in the 
transitional regime. All the experimental data3’ for the 
considered shape of the probe nose correlate within the 
accuracy of 3%. Another interesting fact is that the ratio of the 
pressures pJp0 ‘can be less then 1 in a certain range of the 
values of parameters 8 , and then as 8 decreases, the ratio 
begins to increase. 

It was found by Chue3’, that this phenomenon occurs both 
on cooled as well as on thermally isolated probe surfaces, and 
in the last case the quantity of the difference is higher. It was 
also noted that a monatomic gas has a tendency for a lower 
level than a diatomic gas. In Fig. 6 the numerical results for 
gases with different speclfic heat ratio y and different probe 
surface temperatures are presented. The calculation was done 
using parameters changing in the range of 6 <: Re, < 180; 3.8 
< M, < 12; 0.19,< t < 1. The comparisong of the 
experimental3’ and computational data favorably indicates a 
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satisfactory correlation between them. 

Local Approximate Solutions of the Navier-Stokes 
equations 

The solution of the complete system of Navier-Stokes 
equations, relaxation equations, and chemical kinetic 
equations, which describe nonequilibrium viscous flows near 
hypersonic vehicles, demands spending a lot of t h e  for 
computations.'S2 Simpllfication of the initial system of 
equations drastically decreases the amount of time. 

At present, some approaches, which suggest a local similar 
character of flow near the stagnation streamline, me known. 
They are based on modlfication of the Navier-Stokes 
equations to the system of nonlinear ordinary differential 
equations (see Refs. 8, 11, 23, 24, and 37-39). This study, 
using the assumptions of Probstein and Kemp: discusses one 
of many possible variants of structuring a local similar 
solution. A proof of applicability of such approach is 
presented by comparing the solutions with the numerical 
calculations of the complete system of the Navier-Stokes 
equations. The calculations of th~s study, done for the perfect 
gas and viscous relaxing diatomic gas flow, taking into 
consideration rotational-translational nonequilibrium. The 
same technique can be developed to receive local similar 
solutions for the study of hypersonic flows with physical and 
chemical processes. 

The system of the full Navier-Stokes equations in an 
orthogonal curvilinear coordinate system s, n, p (s is the 
coordinate measured along the generatrix of the body in the 
meridional plane, n is the normal to the surface of the body, 
and p is the azimuthal angle) is derived in Refs. 3,9, 10, and 
21 in divergence form for axisymmetric flow of a perfect gas. 
To describe the flow of diatomic gas with allowance for 
rotational-translational relaxation, the system must be 
augmented by a relaxation equation, the equation of state, 
expressions for total energy of unit mass of the gas, the heat 
flux, and the diffusion flux of the rotational energy (see Ref. 
26). The following system of modification of the similarity 
expressions should be introduced: 

p=p, (n) ; v=vl (n) cos ( s )  

T2 (n) 
T=T ( n )  +-- sin2 ( s )  

2 1 

e2 (n) 
ei=e, (n) + sin' ( s )  

2 

(3)  

( 4  1 

(5) 

(7) 

The analysis of Euler equations, describing nonviscous gas 
flow, indicates, that having selected the functional dependency 
for velocity components from the Bernoulli integral, 

ature should be presented as in expressions (1)-(8), as 
it was made in Refs. 8, 11, and 38. The latter was not 
considered in Refs. 24, 37-39 that brought to unjustified 
simplification of equations for the function pl(n), which did 
not contain "viscous" terms in an obvious form. 

Substituting the Eqs. (1)-(8) in the initial system of the full 
Navier-Stokes equati~ns'~ written along line s = 0, we will get 
the system of equations (see Ref. 1 1)  for the functions pJ,  v,, 
T,, e,. In order to receive equations for the functions u,, T3, 
and e,, let us consider expressions of the Navier-Stokes 
equations as functions of the variable s and differentiate them 
required number of times for even or odd functions. Then 
substituting the Eqs. (I)-@) in the arrived equations, we will 
get the subsystem of equations for the functions u,, TI, e3 (see 
Ref. 11). 
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To solve the obtained system of differential equations, a 
onedimensional variant of the implicit was used. 
For the initial distributions of the flow functions, there were 
selected values of the functions corresponding to undisturbed 
upstream flow or profiles, received earlier with approximately 
the same main flow parameters. This computational method is 
free from the necessity of disclosure of peculiarities which 
occur in the flow field. 

Figs. 1 and 2 presents the results of numerical solution of 
the system of local approximate equations for streahdining 
supersonic viscous flow of perfect gas (dashed lines) near 
sphere at upstream parameters: Re, = 14.4, M = 6.5, o = 

0.75, Pr=O.72, y= 1.4, t, = 0.3. The boundary conditions on 
the body surface were the conditions of adhesion. There are 
also the results of the full Navier-Stocks equations (solid 
lines). Comparison of the results points to the acceptable 
accuracy of the results, obtained while assuming local 
similarity character of the flow near the axis of symmetry of 
smooth blunt body. Some differences (up to 10-15%) are 
noticed in the shock wave in front of the body. In order to 
describe the flow in thls zone, probably it is necessary to 
consider approximation of higher level. The si@icant 
differences are in the distribution of uI (see Fig. la). 

Fig. 4 presents the results of the calculations using 
approximation method (dashed lines), and the solutions of the 
fl Navier-Stokes equations and the relaxation equation (solid 
lines) of streamlining the sphere by rotational exciting 
nitrogen. It is assumed that in the upstream flow, the rotational 
degrees of freedom are in equilibrium with the translational 
ones, and Re, = 14.4, M, = 6.5, o = 0.75, Pr = 0.67, Sc = 

0.75, y = 5/3, t ,  = 0.3. Presented comparison demonstrates 
that the local approximation technique, based on 
trdormation (1)-(8), is applicable for the description of the 
viscous relaxation gas flow. The consideration of the 
nonequilibrium character of rotational-translational energy 
exchange under th~s regime of streamlining leads to si@icant 
differences of TI and e, from their equilibrium values Tt4 (see, 
also, Refs. 10 and 26). 

The results of this study were compared with the data of 
Levinskey and Yoshihara2’ for the case of streamlining 
thermal isolated sphere by viscous perfect gas flow at the 
followingparameters:Re0=26,M,= 10, y =  5/3, w=O.5, Pr 
= 0.75, qw= 0 (see Fig. 3). Symbols are the same as in Fig. 1. 
Though there is a good correlation of the results with the data 
in Ref. 23 (dark and light points), the number of differences 

is si@icant. One of the reasons for such differences may be 
an assumption about the thinness of the compressed viscous 
shock layer at hypersonic velocity of the upstream flow which 
was considered in Ref. 23. 

Applications of “Parabolized“ Navier-Stokes Equations 

One of the ways of economic usage of the computer 
resources is to create a new marching method of solving 
simplhed (“parabohzed”) Navier-Stokes equations (see Refs. 
1, 2, 12, and 40). These equations are usually obtained from 
a complete system of the equations by means of exclusion of 
derivatives from viscous terms in the marchmg direction (see 
Refs. 4 1 -43), while preserving the elliptical type of equations 
in crossflow directions. This procedure permits qualitative 
study of flows with crossflow separation if streamwise 
separation is omitted (see Refs. 44 and 45). 

In this study, the research of viscous perfect gas flow near 
blunt bcd~es was done with the means of iterational procedure 
of the Seidel’s techn~que,~*’~ simplified for “parabolized“ 
Navier-Stokes equations. The study is based on the concept of 
the regularity (in t m  of Rkf. 46) of the formulation of initial- 
boundary value problem. 

As a test, a problem was solved for streamlining of the 
sphere by supersonic perfect gas flow at Reynolds number Re, 
= 14.4. The variations of the selection of the approach are 
illustrated by the solving of the problem of streamlining of the 
finite thickness plate, at different angles of attack. 

In this study the momentum equation was written in the 
projection of the axis of Cartesian coordinate system. Whde 
obtaining simpltfied equations, it was assumed that the 
streamwise components of viscous stress tensor were small 
compared to normal and azimuthal components. 

In Re&. 43-45 it was noted that Caucb problem is irregular 
for the system of Navier-Stokes equations, simplified in this 
way, with the initial data at fixed value of the streamwise 
coordinate x = const, in subsonic flow region, where Mach 
number M, was calculated using streamwise velocity 
component, and M, < 1. Following the Vigneron‘s techniq~e,‘~ 
we introduce the vector E‘ as the resultant streamwise flux, 
and the vector EP as the portion of the original streamwise flux 
responsible for introducing ellipticity into the equations 
through the subsonic boundary layer. The superscript asterisk 
denotes the omission of streamwise viscous derivatives. We 
consider two cases of approximation for dEP/ds: A) it is equal 
zero, and B) it was downstream extrapolated. The details are 

567 



dified considering the distribution of disturbances 
downstream. This led to the decrease of the order of 
approximation of convective components in streamwise 
direchon up to the first order. The solutions of the full Navier- 
Stokes equations were used both for the test calculations as 
well as for the obtaining of the initial conditions for the Cauchi 
problem. 

The problem of streamlinmg of the sphere by supefsonic 
viscous perfect gas flow was solved in order to test the 
selected method of the regularization of irregular Cauchi 
problem for "parabolized" Navier-Stocks equations. The 
following are the upstream flow parameters: He, = 14.4, M, = 

6.5, t, = 0.34, y = 1.4, o = 0.85. Differential gnd 24 x 24 
was used in the calculations. 

The distributions of pressure p/p$:, heat flux q /p jp ,  and 
friction coefficient cf along the sphere generatrix sla are 
presented in Figs 7 and 8. The profiles of pressure, density 
p/p-, enthalpy h = cpTluw2, and streamwise velocity 
component u/u, along the normal d a  at s = S8.S0, based on 
the calculation of the full Navier-Stokes equations (solid lines) 
are also shown in Figs. 7 and 8. The results of the calculation 
using the simplified system of equations are presented by 
dashed lines (case A), and by dot-dashed lines (case B of 
downstream extrapolation). The same symbols and lines are 
used in the further figures. 

As the comparison demonstrates, the data obtained from 
Werent models favorably agree with each other. The usage of 
gradient pressure downstream extrapolation (case B) offers 
the results whch are the closest to the results of the 
calculations using the full Navier-Stokes equations in this 
case. It is noted that the time of the calculations of 
"parabohzd' equations approximately 5 times smaller than of 
the full system of the Navier-Stokes equations. 

The computational method for the system of "parabolized" 
Navier-Stokes equations was used in the study of the flow near 
the plate with cylindncal blunt at the angle of attack towards 
upstream flow. The zone of blunting was calculated using the 
full Navier-Stokes equations, and the flow field below the 
conjugate polnt was calculated using the simplified method. It 
was assumed that the stagnation point of the flow coincides 
with the stagnation pomt on the surface of the cylinder. 
Upstream flow parameters and the characteristics of the 
computational gnd are the same as mentioned above. 

The results of the calculation of the streamlining of the 

cylindrical part of the body are presented in the Figs. 9- 1 1 by 
solid lines, and the results for the flat forward surface by 
dashed lines (case A) and dot-dashed lines (case B) starting 
from the conjugate point marked by cross there. The results 
for leeward side at a = 18 O are presented by dotted lines. In 
Figs. 9- 1 1 are presented the distributions of pressure, hction 
coefficient, and heat flux along the generatrix of the plate with 
cyhdncal blunt at different angles of attack a = 0, 18', 36'. 
The distance s/a is measured along the generatrix from the 
stagnation point of the cylinder. 

In all cases considered, stabhation of pressure, and density 
can be observed at the distances from the critical point. The 
selection of the regularization method sigmficantly mfluences 
the values of pressure and fixtion coefficient near the 
conjugate point. In the case B of extrapolation, large abnormal 
values of pressure (see Fig. 9) are noticed, and also 
*shed data for the fiction coefficient values are observed 
in the studied region of flowfield (see Fig. 10). 

Nonmonotonous character in pressure and density 
distributions at large angles of attack a > 30" is discovered 
(see Fig. 9). The si@icant increase of subsonic flowfield 
zone begins as further increase of the angle of attack occurs. 
This causes the si@icant emergence of the ellipticity 
properties in streamwise flow direction. The system of full 
Navier-Stokes equations should be used under these 
conditions. The latter did not allow to receive the solution in 
the case of dEP/ds = 0 at a > 36 O . No specific features were 
discovered at the leeward side. The selection of the methods 
of the regularization has an insi@icant mfluence on the value 
of heat flux towards the surface of the body (see Fig. 11). 

The above results were used for study of the gas flow near 
a long plate with flap. The profiles of the flow parameters as 
the initial conditions along normal towards the plate were 
obtained using "parabolized" Navier-Stokes equations at s(x) 

= const. In this case Re, = 14.4, a = 18", angle of the flap 
declination is p = 15 O.  The considered flowfield area was 
limited by the body surface, upstream boundary at s/u = 8.95, 
and downstream boundary at slu = 12.26. Cartesian coordinate 
system adjacent to the plate surface was used. The upper 
boundary and the profile of the body were calculated using the 
formulas in Ref. 47. The location of the upper boundary was 
selected in a way that the disturbances from the body would 
not reach the boundary. The conditions of zero gradients of the 
sought hc t ions  were accepted at the downstream boundary. 

The computational results (see Fig. 12) of flow parameters 
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near the flap allowed the establishment of monotonous 
increase of pressure and density along the plate with the flap. 
But the distribution of the heat flux and fnction coefficient has 
strong nonmonotonous character. This qualitative effect has 
also been mentioned by Davis and R~bin.~ '  

The considered results indicate that using simplified 
("parabolized") Navier-Stokes equations for the calculations 
of flowfeld parameters near the blunt bodies is necessary to 
select the regularization procedure for obtaining solutions in 
subsonic areas. This is important for the description ,of the 
flow near the conjugate points and at large angles of attack. In 
studies of streamlining smooth bodies at small angle of attack 
and the sphere, the regularhation procedure of pressure 
gradient extrapolation in marchmg direction can be used. 

papers (see Refs. 14, 15, and 47). 

Concludine. Remarks 

The results of th~s study confii the hypothesis about the 
applicability of the Navier-Stokes equations as well as local 
approximation equations, "parabolized" Navier-Stokes 
equations, and approximation of a thm viscous shock layer for 
the description of rarefied gas flow near the simple shaped 
bodies. This conclusion is correct for perfect gas and for 
rotational-translational nonequilibrium and chemical 
nonequilibrium gas flow. 
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The model of a thin viscous shock layer (TVSL) is broadly 
used for the description of the structure of nonequilibrium 
viscous gas flow near blunt bodies or hypersonic vehicles (see 
Refs. 6, 13-1 5). In the present study, a comparison between 
the results from the TVSL (dashed lines) model and the 
solutions of the complete system of the Navier-Stokes 
equations with no slip (solid lines) boundary conditions is 
made and shown in Fig. 13. The parameters of upstream 
perfect gas flow were the following: Re, = 1.33, M,= 6.5, t, 
= 0.3 15, y= 1.4. The largest difference in the distributions of 
parameter; calculated from the TVSL model at low Reynolds 
numbers Re, was observed far away from the wall of the 
sphere where the condition, p = const, no longer holds along 
the central streamhe. The agreement between the two sets of 
data'on the dlstribution of parameters over the surface of the 
body itself is rather satisfactory (see also Ref. 14). All this 
indicates that it is possible to use the model of a thm viscous 
shock layer in investigating the hypersonic flow over blunt 
bodies in the transition region at low Reynolds numbers Re,. 

The calculated Stanton numbers St as a function of Re,, for 
the stagnation point at in-flight values of the temperature 
factor I,= 0.033 are presented in Fig. 5 (solid line: the TVSL 
solutions for perfect gas; dashed line: results for second order 
boundary layer appr~ximation;'~ the Navier-Stokes equation 
solutions with nonslip (light squares) and slip (dark squares) 
boundary conditions). The results correlate well with the 
expenmental data.27 The analyses of nonequilibrium flows in 
a TVSL at different flight conditions were made in previous 
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Fig. 1 a) Velocity components uI,  u,, and b) pressure 
functions p1,p2 at critical stagnation Line of the sphere: 
solid lines - solutions of the Navier-Stokes Eqs., dashed 
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Fig. 2 Density p, and temperature at bitical 
stagnation line of the sphere: solid lines - solutions of the 
Navier-Stokes Eqs., dashed lines - local approgimation, 
dot-dashed lines - the case of translational-rotational 
nonequilibrium. 
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