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NUMERICAL STUDY OF HYPERSONIC VISCOUS FLOW ABOUT PLATES LOCATED BEHIND A
CYLINDER
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A new implicit monotonized scheme of second-order
accuracy and Newton's method for solving the grid
equations approximated the Navier-Stokes equations were
developed to simulate the two-dimensional hypersonic
viscous flow about a plate located in the wakes of a
cylinder. The strong influence of the geometrical factor of
interference between a plate and a cylinder (characterized
by the normalized distance between the bodies) on skin
friction and heat flux along the plane and cylinder surfaces
have been found The changes of temperature, pressure and
velocity fields in the wake behind the cylinder have been
analyzed.

Nomenclature

Cf = local skin friction coefficient
cp = specific heat at constant pressure
cv = specific heat at constant volume
E = flux-vector in curvilinear coordinate system,

Eqs.(l),(2)
e = total energy per unit volume, pfcj'+tf + vO/2)
G = flux-vector in curvilinear coordinate system,

Eqs.(l),(2)
H = total enthalpy per unit volume, cpT + (u3 + v7)/!
h = node size
J = Jacobian of the coordinates transformation
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k = Boltzmann's constant
L = length of the plate
m = molecular mass
Pr = Prandtl number
p = pressure
Q = vector of dependent variables, Eq. (1)
q = heat flux vector
Re = Reynolds number, p js j-/p. „
r = radius of the cylinder
T = temperature
u = x-velocity component
V = velocity vector
v = ̂ /-velocity component
x = Cartesian x-coordinate
y = Cartesians-coordinate
Y = specific heat ratio, cjc,
A — distance between the plate leading edge and the

cylinder rear point
T) = curvilinear coordinate
A = conductivity coefficient
A, = eigenvalue
ft = viscosity coefficient
f = curvilinear coordinate
p = density of fluid
rt = regularization parameter, Eq. (15)
TV - viscous stress tensor
(f> = function, Eq. (9)
e = small parameter, Eq. (9)

Subscripts
c = Cartesian coordinate system
w = wall value
<*> = freestream value
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Introduction

The structures of hypersonic viscous flow near a sharp
flat plate and a cylinder were studied in detail by many
researches (i.e., see Refs. 1-6). Hayes and Probstein1,
Oguchi2, Allegre and BiscH , and others showed that the
local skin friction coefficient, the surface pressure, and
temperature are maximal near the leading edge of the plate.
hi a strong interaction hypersonic-flow regime, the influence
of the skin friction drag on the total drag can be estimated as
80-90%.7 Bisch7 offered a unique experimental technique of
the friction reduction by adding a wire-shaped "fore-leading
edge" in front of the plate. The experiments of Coudeville et
al5 were helpful for the analysis of the wakes behind
cylinders in hypersonic rarefied gas flow.

hi the present analysis, the major regularities in
hypersonic viscous flow about a plate located in the wakes
of a circular cylinder have been studied. The analysis of
two-dimensional flow structure is based on numerical
solutions of the Navier-Stokes equations using a new
implicit monotonized scheme of second-order accuracy
(TVD-scheme) and Newton's method for solving the grid
equations. The influence of the geometrical factors of
interference between a plate and a cylinder (i.e., the distance
between the leading edge of a plate and a rear point of a
cylinder, A) on skin-friction, heat flux, and pressure and
temperature distributions in the flow field and along the
surfaces of the bodies has been studied.

9y) (2)

c dy

where J = d(x,y)ld(^f]) is a Jacobian of the
coordinates' transformation.

The Cartesian vector components Qc, Ec, and Gc for
the two-dimensional Navier-Stokes equations have the
following form:

Q =^c pv
e

pu

PWV-TJJ,
puH-qx

pv
PW-T^

pvH-q

(3)

Navier-Stokes Equations and Boundary Conditions.

The unsteady two-dimensional Navier-Stokes
equations in a curvilinear coordinate system (£77), x = x
(£, tj), y = y (g,77), where x, y are Cartesian coordinates
have a conservation form:8

dt df, dr\ (1)

The viscous stress tensor T has the components:

1 2. ,. ,, „ au-—divV + 2—
1 3̂.3 ax

du dv
(4)

Here Q is a dependent-variables vector, E and G are
flux-vectors in curvilinear coordinate system. Q, E and G
vectors are corresponding to Cartesian vectors Qc, Ec, and
G, as follow:

The heat flux vector q is calculated by formula:

(5)
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The Navier-Stokes equation system (1) for
compressible perfect gas model is completed by the state
equation:

p = pkT/m (6)

Also, it is assumed that the coefficient of viscosity is
calculated by the power low of the variation of this
coefficient with temperature, ////*„ = (T/£ )°'7, and the
Prandtl number is constant, Pr = 0.7.

For further numerical analysis, new non-dimensional
parameters in Eqs. (1) - (6) were set up by normalizing the
Cartesian coordinates to the characteristic length scale r (the
radius of a cylinder), the Cartesian velocity components - to
the upstream velocity «„, the pressure - to the double value
of the dynamic pressure in upstream flow, and other
parameters - to their values in upstream flow.

To complete the finite-differences system of the
Navier-Stokes equations, following boundary conditions
have been used. The no-slip conditions (« = v = 0),
constant surface temperature (T = Tw), and extrapolations
of a pressure from inner area nodes (with the condition
Bp/d T) = 0) were posed on the body surface. On the outer
surface of the computational area around the body,
boundary conditions were written in the form of Riemann
invariants and determined by the direction of perturbation
expansion (see Ref. 8 for details).

to the node sizes. The developed conservative finite-
difference scheme is implicit, and this property of the
scheme allows to avoid any restrictions on the iteration
time-step caused by the instability of the ordinary difference
schemes in the solution of the stiff differential equations.

At semi-integer nodes, the convective components of
the flux vectors E and G were approximated using a
monotonized scheme of the Godunov's type.9 The
eigenvalues and eigenvectors at semi-integer nodes were
calculated by the Roe's method10, for the approximate
solution of the problem of arbitrary discontinuity decay:

(8)

is a diagonal matrix with elements (f>(A);
parameters A, are the eigenvalues of the operator A =
dE/dQ; and RLR = R(Q,R ) is a matrix with the columns
being the right-hand side eigenvectors of the operator A.
The function (f>(A) has the form:

\X\, |A |>e

(9)

The Approximation of Equations.

The construction of a finite-difference scheme to solve
the Navier-Stokes equations (1) given in conservation laws
form is based upon an integro-interpolation method.8 The
utilization of an integro-interpolation method applied to the
solution of the Navier-Stokes equations gives finite-
differences conservation laws analogies:

This form satisfies the "entropy" condition (or the
criterion) in the choosing of a numerical solution with the
correct physical properties.

To increase the order of finite-difference
approximations up to the second one, the MUSCL-principle
of the minimum derivatives" was used to interpolate
dependent variables on the node side as follows:

(7)
1 .QL = Qj + -minmod(Qj - Q^,,Q^ -Q.),
i (10)

QR = Qj - 7minmod(Q.^ - Q., Qj+2 - Qj+1)

Here index n corresponds to time layer number; j, k -
to node numbers along t; and T], correspondingly; h(, h^ - The function minmod(a,6) has the form:
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a, ab>0, \a\<\b\

b, ab>0, \a\z\b\ (11)

0, ab<0

The Roe's method10 to solve approximately the
Riemann's problem of arbitrary discontinuity decay was
utilized to compute eigenvalues and eigenvectors of the A-
operator. Parameters <E>(At,R), RLR, RLR"' were calculated by
the values of dependent variables, such as:

V¥» = - (12)

Here the parameter c indicates the local speed of sound.
The diffusion components of the flux vectors E and G

at the node side were approximated by the second order
central difference scheme:

9V _U,VU

"«

dU ^vi fc+i + U-t^j ~U.+

n

(13)

Here the parameter U is a vector of non-conservative
dependent variables.

The difference scheme pattern used for the
approximation of the complete Navier-Stokes equations
consists of 13 nodes. It was found, that the developed
implicit nonlinear finite-difference scheme is absolutely
stable in the case of the linear problem.

In present study, the numerical algorithm developed for
the internal flow modeling has been adopted to study
external hypersonic viscous flows. The construction of the
computational mesh was made by numerical solution of the

Christoffel-Schwarz transformation problem.12 The
technique of the mesh adoptation in the boundary layers at
high Reynolds numbers13 has been used in this study.

Solution of Nonlinear Differences Equations.

The nonlinear system of grid equations (F(X) = 0,
where X is a vector of unknown discrete functions) was
solved using the modified Newton's method:

lyfc+l D-!F(XW) (14)

Here D = dF/dX is the Jacobi matrix; k is the iteration
number, hi computations, the regularization parameter Tk

was calculated by formula:

:-lK2 (15)

where AXM is a vector of corrections. The iteration
process is convergent with the second order of the
convergence rate and Tk - 1.

The iteration Jacobi matrix was found by employing
the procedure of finite increments of the residual vector of
the required grid functions. The approximation of the
Navier-Stokes equations determinates the type of the Jacobi
D-operator, namely, the rarefied structure of triangular
matrices and the initial 7x7-dense matrix coincide.

The system of linear algebraic equations obtained in a
nonlinearity iteration was solved by expanding the matrix
into a product of two triangular matrices L and U, where L
is the lower triangular matrix and U is the upper triangular
matrix, and dF/dX = L*U. This operation was preceded by
the analysis of the sparsity structure of matrices L and U. hi
order to reduce the total number of the arithmetic operations
and economize on RAM, the variables were numbered
using the generalized method of nested dissection14'15. This
technique was successfully used many times in
computational experiments and proved its effectiveness and
reliability.8
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Numerical Results

The calculations were mainly performed on the
101x101 grid of the O-type. The size of the nodes was
automatically reduced near the body surface and in the
vicinity of the symmetry plane. The example of the finite-
difference grid in physical space is presented in Fig. 1.

The convergence and accuracy of the numerical
solutions were tested by carrying out a series of calculations
of hypersonic viscous flow about a cylinder (at Reynolds
number Re«,r = 10" and Mach number in upstream flow A/.
= 5) on the grids of different size. The analysis of the
results6 showed that the numerical solution of the problem
is convergent. Calculations were carried out at the Work
Station RS6000/58H.

To improve the convergence rate of the iteration
process, the new technique of formation of the Jacobi matrix
was used. The method is based upon the usage of a
truncated 3x3-dense matrix. The computing time of each
variant was reduced by the factor of three and was
estimated as approximately 20 min.

The flowfield around the circular cylinder of radius r
and a plate of length L = 2r was calculated for a Mach
numberM»= 5 and for a Reynolds number Re^r= 104 and
105. It was assumed that y = 1. 4, and the body surface is
isothermal at TJT, = 2. The four cases were studied: a) the
cylinder alone without a plate; b) the distance between the
leading edge of the plate and the rear point of the cylinder
isA/r = 0;c) A/ r=l ;d) A/r=2.

The contours of constant values of local Mach number
M at Rev = 104 and temperature T/T, at Rar = 10 are
shown in Figs. 2 and 3, correspondingly, for all four cases
considered. Under the testing conditions, the flowfield can
be characterized by existing shock waves near the cylinder
and in the wakes behind it, as well as by a wide separation
area in the rear zone of the cylinder. The major differences
of the flow patterns occur in this zone.

The distributions of flow parameters along the plane of
symmetry in the wakes behind the cylinder at Re,r = 10s are
shown in Fig. 4. The geometrical factor of plate location,
A/r , influences significantly the temperature and Mach
number parameters. The pressure profiles are
approximately the same in the cases considered.

The existence of the plate changes significantly the
parameters of the flow near the rear part of the cylinder at

Rev= 105 (see Fig. 5). The heat flux on the rear cylindrical
surface is extremely sensitive to the plate location. At A/r
= 2, the heat flux increases by the factor of 10 in
comparison with the case of flow around the cylinder
without a plate. But at A/r = 0, the value of the heat flux
becomes its magnitude at the original level. This pattern of
the parameter behavior is similar in the case of pressure
distribution. The skin friction is at the same level in cases of
separation between cylinder and plate. At A/r = 0, its
magnitude is negligible in the vicinity of the rear point of
the cylinder.

The major effect of the plate location can be observed
on the distributions of skin friction and heat flux along the
plate surface (see Figs. 6 and 7). The skin friction is
significantly less than predicted by the hypersonic-viscous-
flow theory.1"4 The heat flux distribution has extremum
(maximum) near the leading edge of the plate in the specific
case of the plate location at A/r = 2. In this case the width
of the recirculation zone behind the cylinder is comparable
with the distance between the cylinder and the leading edge
of the plate.

Summary

The flow parameters near a cylinder with no end
contribution and a plate located in the wakes of a cylinder
have been evaluated numerically for a wide range of
geometrical parameters A/r. This parameter influences skin
friction and heat flux distribution along the plate and
cylinder surfaces. Also, it has been found that the plate
location affects the temperature and velocity fields in the
wakes behind the cylinder. Further numerical studies will
be carried out to analyze the flow patterns in the strong
interaction hypersonic regime.
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Fig. 1 Finite-difference grid in physical space.
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a) Cylinder without a plate
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b) Cylinder and plate, A/r=0
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c) Cylinder and plate, A/r=l
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d) Cylinder and plate, A/r=2
t

Fig.2 Mach number contours at Re=10
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b) Cylinder and plate, A/r=0
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nd.plate, A/r=l
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d) Cylinder and plate, A/r=2
Fig.3 Temperature contours at
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Fig. 4 The flow parameters along the plane of
symmetry in the wakes behind a cylinder at Ma = 5, Re
= 105: a) Mach number, M; b) normalized pressure,
/7/p^.w^; c) normalized temperature, T/TX. Curve 1 -
cylinder without a plate; curve 2 - cylinder and plate,
A/r = 0; curve 3 - A/r = 1; curve 4 - A/r = 2.
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Fig. 5 The distribution of flow parameters along the
rear surface of a cylinder at MOT = 5, Re = 10s: a) skin-
friction coefficient, C{; b) heat flux, qw; c) normalized
pressure,/J/Poo"« • Curve 1 - cylinder without a plate;
curve 2 - cylinder and plate, A/r = 0; curve 3 - A/r = 1;
curve 4 - A/r = 2.
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Fig. 6 The distribution of flow parameters along the
plate surface at MM = 5, Re = 104: a) skin-friction
coefficient, Cf; b) heat flux, /jr^Curve 1 - cylinder and
plate, A/r = 0; curve 2 - A/r = 1; curve 3 - A/r = 2.

Fig. 7 The distribution of flow parameters along the
plate surface at MOT = 5, Re = 105: a) skin-friction
coefficient, Cf; b) heat flux, qr^Curve 1 - cylinder and
plate, A/r = 0; curve 2 - A/r = 1; curve 3 - A/r = 2.
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