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Abstract

The flow structure about two bluff cylinders placed one
after another in hypersonic viscous flow has been studied.
The grid equations approximated the Navier-Stokes
equations were solved numerically by application of the
implicit monotonized scheme of second-order accuracy, the
modified Newton's method, and the Christoffel-Schwarz
grid-transformation technique. The similarity conditions of
developing fully subsonic zone with recirculating between
the cylinders have been discussed. The changes of
temperature, pressure and velocity fields in the wakes
behind the cylinders, as well as skin friction and heat flux
along cylinder surfaces have been analyzed.

Nomenclature

Cf = local skin friction coefficient
Cx = drag coefficient
cr cv = specific heats at constant pressure and volume
e = total energy per unit volume, p(cj'+(u2 + v*)/2)
E, G = flux-vectors in curvilinear coordinate system
H = total enthalpy per unit volume, c^T + (u2 + v*)/2
h = node size
} = Jacobian of the coordinates transformation
k = Boltzmann's constant
m = molecular mass
Pr - Prandtl number
p = pressure, pkT/m
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Q = vector of dependent variables, Eq. (1)
q = heat flux vector
Re = Reynolds number, pjij/p.
r = radius of the cylinder
T = temperature
u, v = x- sady- velocity components
x,y = Cartesian coordinates
Y - specific heat ratio, cjcv

A = distance between the cylinders
T) = curvilinear coordinate
J.j = eigenvalue
fi = viscosity coefficient
£ = curvilinear coordinate
p - density of fluid
T - viscous stress tensor
Tt - regularization parameter, Eq. (11)

Subscripts
c = Cartesian coordinate system
w = wall value
<*> = freestream value

Introduction

The structure of incompressible viscous flow between
the cylinders in tandem was studied in detail by many
researches (i.e., see a review of Blevins1). It was found that
drag on downstream cylinder was very sensitive to the
distance between the centers of cylinders, A, and it even
changed sign at Air < 2. The case of compressible viscous
flow between the cylinders has not been discussed yet. The
Reynolds number can play a fundamental role in studying
aerothermodynamic characteristics of the bluff bodies. In
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our previous paper2, we analyzed the two-dimensional
hypersonic viscous flow about a plate placed in the wake of
the cylinder. The strong influence of the Reynolds number
and of the geometrical interference factor on skin friction
and heat flux along the body surfaces have been found.

In the present analysis, the structure of hypersonic
viscous flow about two bluff cylinders in tandem has been
studied. This flow pattern would be an appropriate model of
measurement devices, tools for controlling separation and
recirculation zones, fuel-combustion techniques, and, after
certain modification, it can be used to simulate hypersonic
viscous flow about projectiles. The analysis of two-
dimensional flow structure is based on numerical solutions
of the Navier-Stokes equations using an implicit
monotonized scheme of second-order accuracy (Total
Variation Diminishing scheme) and Newton's method for
solving the grid equations.2 The influence of the Reynolds
number and the geometrical factor. Air, on skin-friction,
heat flux, pressure and temperature distributions in the flow
and along the surfaces of the cylinders has been studied.

Navier-Stokes Equations and Boundary Conditions.

The unsteady two-dimensional Navier-Stokes
equations in a curvilinear coordinate system (£77), x = x
(£,T)), y = y (£77), where x, y are Cartesian coordinates
have a conservation form:3-4

dt dE, di\ (1)

Here Q is a dependent-variables vector, E and G are
flux-vectors in curvilinear coordinate system. Q, E and G
vectors are corresponding to Cartesian vectors Qc, Ec, and
Gc as follow:

(2)

where J = d(x,y)ld(^,rj) is a Jacobian of the
coordinates' transformation.

The Cartesian vector components Qc, Ec, and Gc for
the two-dimensional Navier-Stokes equations have the
following form:

P
pu
pv
e

E =

pu

puH-qx

pv

i -Tpv
pvH-q

yy

(3)

The viscous stress tensor T and the heat flux vector q
have been calculated by formulas given in Ref. 2. Also, it is
assumed that the viscosity is approximated by the law, n/fj..
= (T/TJ07, and the Prandtl number is constant, Pr = 0.7.

For further numerical analysis, new non-dimensional
parameters in Eqs. (1) - (3) were set up by normalizing the
Cartesian coordinates to the characteristic length scale r
(the radius of a cylinder), the Cartesian velocity components
- to the upstream velocity «„, the pressure - to the double
value of the dynamic pressure in upstream flow, and other
parameters - to their values in upstream flow.

To complete the finite-differences system of the
Navier-Stokes equations, following boundary conditions
have been used. The no-slip conditions (u = v = 0),
constant wall temperature (T = jTJ, and extrapolations of
pressure from inner area nodes (with the condition dp/d rj =
0) were posed on the body surface. On the outer surface of
the computational area around the body, boundary
conditions were written in the form of Riemann invariants
and determined by the direction of perturbation expansion4.

The Approximation of Equations

The construction of a finite-difference scheme to solve
the Navier-Stokes equations (1) given in conservation laws
form is based upon an integro-interpolation method.4 The
utilization of an integro-interpolation method applied to the
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solution of the Navier-Stokes equations gives finite-
differences conservation law analogies:

-U
(4)

The function minmod(a,6) has the form:

a, ab>0, \a\<\b\

b, ab>0, \a\>\b\

0, ab<0

(7)

Here index n corresponds to time layer number;y, k -
to node numbers along £ and ij, correspondingly; h(, hn -
to the node sizes. The developed conservative finite-
difference scheme is implicit, and this property of the
scheme allows to avoid any restrictions on the iteration
time-step caused by the instability of the ordinary difference
schemes in the solution of the stiff differential equations.

At semi-integer nodes, the convective components of
the flux vectors E and G were approximated using a
monotonized scheme of the Godunov's type.5 The
eigenvalues and eigenvectors at semi-integer nodes were
calculated by the Roe's method6, for the approximate
solution of the problem of arbitrary discontinuity decay:

1

(5)
' (QR -

Here ^(Ayj) is a diagonal matrix with elements (p(A)\
parameters Af are the eigenvalues of the operator A =
5E/6Q; and RLR = R(Q,R) is a matrix with the columns
being the right-hand side eigenvectors of the operator A.
The function $(Ji) has the form, which satisfies the
"entropy" condition (or the criterion) in the choosing of a
numerical solution with the correct physical properties.2

To increase the order of finite-difference
approximations up to the second one, the Monotone-
Upstream-Scheme-for-Conservation-Laws principle of the
minimum derivatives7 was used to interpolate dependent
variables on the node side as follows:

QL = Qj +minmod(Q j -Q
i

QR = Qj -lmi 2 -Q..,)
(6)

The Roe's method6 to solve approximately the
Riemann's problem of arbitrary discontinuity decay was
utilized to compute eigenvalues and eigenvectors of the A-
operator. Parameters ^(AjjO, R^, R^"1 were calculated by
the values of dependent variables, such as:

(8)

CLR = -

Here the parameter c indicates the local speed of
sound.

The diffusion components of the flux vectors E and G
at the node side were approximated by the second order
central difference scheme:

au
(9)

Here the parameter U is a vector of non-conservative
dependent variables.

The difference scheme pattern used for the
approximation of the complete Navier-Stokes equations
consists of 13 nodes. It was found, that the developed
implicit nonlinear finite-difference scheme is absolutely
stable in the case of the Linear problem.

In present study, the numerical algorithm developed for
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the internal flow modeling has been adopted to study
external hypersonic viscous flows. The construction of the
computational mesh was made by numerical solution of the
Christoffel-Schwarz transformation problem.8-9 The
technique of the mesh adoptation in the boundary layers at
high Reynolds numbers10 has been used in this study.

Solution of Nonlinear Differences Equations

The nonlinear system of grid equations (F(X) = 0,
where X is a vector of unknown discrete functions) was
solved using the modified Newton's method:2-3-10

(10)

Here D = df/dX is the Jacobi matrix: k is the iteration
number, hi computations, the regularization parameter TV

was calculated bv formula11:

(11)

where AX'1' is a vector of corrections. The iteration
process is convergent with the second order of the
convergence rate and tk - 1.

The iteration Jacobi matrix was found by employing the
procedure of finite increments of the residual vector of the
required grid functions. The approximation of the Navier-
Stokes equations determinates the type of the Jacobi D-
operator, namely, the rarefied structure of triangular
matrices and the initial 7*7-dense matrix coincide.

The system of linear algebraic equations obtained in a
nonlinearity iteration was solved by expanding the matrix
into a product of two triangular matrices L and U, where L
is the lower triangular matrix and U is the upper triangular
matrix, and 6F/6X = L*U. This operation was preceded by
the analysis of the sparsity structure of matrices L and U. In
order to reduce the total number of the arithmetic operations
and economize on RAM, the variables were numbered
using the generalized method of nested dissection12-13. This
technique was successfully used many times in
computational experiments and proved its effectiveness and
reliability."

Numerical Calculations and Tests

The calculations were mainly performed on the
101x151 grid of the H-type. The size of the nodes was
automatically reduced near the body surface and in the
vicinity of the symmetry plane. The example of the finite-
difference grid in physical space is presented in Fig. 1.

The convergence and accuracy of the numerical
solutions were tested by calculating hypersonic viscous flow
about a cylinder (at Reynolds number Rev = 104 and Mach
number in upstream flow M, = 5) on the grids of different
size. The analysis of the results3 showed that the numerical
solution of the problem is convergent. Calculations were
carried out at the Work Station RS6000/58H.

To improve the convergence rate of the iteration
process, the new technique of formation of the Jacobi
matrix was used. The method is based upon the usage of a
truncated 3x3-dense matrix. The computing time of each
variant was reduced by the factor of three and was
estimated as approximately 3h. 20 min.

Influence of Reynolds Number
The flowfield around two identical bluff cylinders (with

the generatrixylr = - 0.5cos(;a/2r) and located at -3 < x/r
<-l and 1 2 x/r < 3, correspondingly) was calculated for a
Mach number Mm = 5 and for a Reynolds number Re^r =
300,103,10" and 10s. It was assumed that y = 1. 4, and the
surface is isothermal at TJTm = 2. The distance between the
cylinders remains constant, A/r = 2, in these study cases.

The contours of constant values of local Mach number
M and temperature T/T, are shown in Figs. 2 and 3,
correspondingly, for four cases of the Reynolds numbers.
The flow structure changes significantly with increasing the
major similarity parameter of the Reynolds number. At Re^r

> 104, the zone between the cylinders becomes totally
subsonic. As a result, the hot-gas area near the down-stream
cylinder spreads far up-stream, up to the rear zone of the
first cylinder. Behind the second cylinder, the wake area
becomes narrow and it is filled with hot gas.

The distributions of flow parameters along the plane of
symmetry in the wakes behind the cylinders and along their
surfaces are shown in Fig. 4. The Reynolds number
influences significantly the pressure, velocity, and Mach
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number parameters. At Re,r > 104, the zone between the
cylinders is characterized by complex recirculation
processes. The pressure distribution along the surface of the
down-stream cylinder changes significantly its pattern. The
subsonic recirculation zone is developing behind this
cylinder with increasing the Reynolds number.

The normalized distributions of skin-friction coefficient
and heat flux along the surfaces of cylinders are shown in
Figs. 5 and 6 correspondingly. The developing recirculation
zone between the cylinders influences considerably these
aerothermodynamic parameters on the rear surface of the
first body and on the total surface of the down-stream
cylinder. It is an interesting fact that the extreme values of
the skin-friction coefficient and heat flux do not coincide
with each other at any parameter of the Reynolds number.
It indicates that the "Reynolds analogy" takes place only
under the conditions of laminar non-separated flow near the
up-stream surface of the first cylinder.

The calculating results of the drag coefficient and its
two main components (based on skin-friction and pressure
distribution analysis) are shown in Fig. 7. At small
Reynolds numbers, Re^r < 103, skin-friction component
becomes predominant. This parameter of the first cylinder
is larger by factor of 4.5 than the corresponding parameter
of the down-stream body. At Rev > 10", the pressure-
distribution component contributes prevalently into the drag
coefficient of both cylinders, and the coefficient of the
second cylinder changes non-monotonically with increasing
the Reynolds number.

Influence of the Geometrical Factor. A/r
The flow pattern is significantly sensitive to the major

geometrical similarity parameter, A/r, where A is a
distance between a rear point of the first cylinder and a front
(stagnation) point of the second body in tandem. The
influence of this parameter on the flow structure has been
studied for a Mach number M, = 5 and for a Reynolds
number Re,, = 10".

The local Mach number and temperature contours are
shown in Figs. 8 and 9, correspondingly, for four cases of a
distance between bodies (A/r = 0.5,1,2, and 3). At A/r <,
1, the ordinary wake structure behind the first cylinder is
destroyed completely by the up-steaming flow from the
second body, hi all cases, the core of the wake becomes
subsonic with recirculating.

The distributions of Mach number and pressure along
the plane of symmetry in the wakes behind the bodies and
along their surfaces are shown in Fig. 10. The velocity
parameter in the recirculation zone between the cylinders
reaches its maximum value at 1 <, A/r < 2 (see Fig. lOa). At
A/r > 3, this parameter changes non-monotonically in the
internal acceleration and deceleration zones of the wake.
The maximum pressure parameter on the down-stream
cylinder increases monotonically by 10% after increasing
the distance between the bodies (see Fig. 1 Ob).

The normalized distributions of skin-friction coefficient
and heat flux along the cylinders surfaces are shown in Figs.
11 and 12 correspondingly. The skin-friction coefficient of
the first cylinder becomes sensitive to the gasdynamic
processes in the recirculation zone between the bodies. This
coefficient changes non-monotonically in the rear area of
the cylinder with increasing a distance between the
cylinders. At A/r ^ 2, the skin-friction coefficient and heat
flux have become unchangeable in this area.

The main changes in distributions of the parameters C}

and qw occur in the front area of the down-stream body (see
Figs, lib and 12b). The skin-friction coefficient increases
monotonically with increasing the distance factor. The
parameter of heat flux reaches its maximum value at A lr =
2, and after that it decreases with increasing parameter A lr
> 3. This fact indicates, that the Reynolds analogy is not
applicable for the flow parameters in the front area of the
second cylinder under the considered flow conditions.

The calculating results of the drag coefficient and its
two main components (based on skin-friction and pressure
distribution analysis) are shown in Fig. 13. At constant
Reynolds number, Re,r = 104, pressure-distribution
component becomes predominant for both cylinders. Only
for the first cylinder, it remains approximately constant with
increasing a distance between cylinders. The skin-friction
fraction of the drag coefficient, C^ increases monotonically,
which is in a good agreement with data of the skin-friction
distributions given in Fig. 11. The pattern of drag-
coefficient changes is absolutely different from the data in
the case of incompressible viscous flow near cylinders in
tandem, which was described by Blevins1. The discussed
results indicate complex gasdynamic processes in the
compressible viscous flow about the bluff cylinders.
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Summary

The hypersonic viscous flow parameters near two bluff
cylinders in-tandem have been evaluated numerically for a
wide range of the Reynolds numbers This parameter
influences significantly the distributions of pressure, skin
friction and heat flux along the cylinders surfaces as well as
the flow parameters in the wakes behind the bodies. At Rev

> 104, the flow zone between the bluff cylinders has totally
become subsonic with recirculating. This effect is
responsible for significant change of skin-friction and heat-
flux characteristics along the body surfaces. The drag
coefficient of the down-stream cylinder changes non-
monotonously at high Reynolds numbers (Re,r > 10").

The existence of maximum velocity parameter in the
recirculation zone between the bluff cylinders has been
found aiRe^ 104 and 1 < A/r < 2. The maximum pressure
parameter and the skin-friction coefficient on the second
cylinder surface increase monotonically by 10% with
increasing the distance between the bodies from A Ir = 0.5
to 3. At the same time, heat flux changes non-
monotonically, reaching its maximum value at A/r = 2. The
Reynolds analogy between distributions of skin-friction and
heat-flux characteristics does not take place in these cases.
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Fig. 1 Finite-difference grid in physical space.
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Fig. 2. Mach number contours at Af. = 5. Fig. 3. Temperature contours at Mx - 5.
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Fig. 4 The flow parameters along the surfaces of
cylinders and along the plane of symmetry in the wakes
behind the cylinders at A/ro = 5: a) Mach number, M; b)
normalized pressure, p/p^ij; c) normalized velosity,
u/ux. Curve \-Re = 300; curve 2 - Re = 1000; curve 3 -
Re =10"; curve 4-Re= 10s.
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Fig. 5 The distribution of skin-friction coefficient, Q,
along the surfaces of cylinders at Mx = 5: curve 1 - Re
= 300; curve 2 - Re = 1000;curve 3 - Re = 104; curve 4 -
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a) first cylinder
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Fig. 6 The distribution of heat flux, qm along the
surfaces of cylinders at AfM = 5: curve 1 - Re = 300;
curve 2 - Re = 1000;curve 3-Re= 104; curve 4 - Re -
105.
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Fig. 7 The drag coefficient Cx vs the Reynolds
number Re.r at M. = 5: indexes 1 and 2 correspond
to the first and second cylinders.
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Fig. 8 Mach number contours at Re = 104
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Fig. 10 The flow parameters along the surfaces of
cylinders and along the plane of symmetry in the
wakes behind the cylinders at Re= 104: a) Macb
number, M; b) normalized pressure, p/pafij. Curve
1 - A/r = 0.5; curve 2 - A/r = 1; curve 3 - A/r = 2;
curve 4 - A/r = 3.

d) A/r = 3
Fig. 9 Temperature contours at jRe = 10
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Fig. 11 The distribution of skin-friction coefficient,
Cf, along the surfaces of cylinders at Re = 104.
Curve 1 - A/r = 0.5; curve 2- A/r = 1; curve 3 - A/r
= 2; curve 4 - A/r = 3.
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Fig. 13 The drag coefficient Cx vs the distance
between the ogival cylinders at Reynolds number Re,r
= 104 and M_ = 5: indexes 1 and 2 correspond to the
first and second cylinders.

Fig. 12 The distribution of heat flux, qw, along the
surfaces of cylinders at Re = 104. Curve 1 - A/T =
0.5; curve 2 - A/r - 1; curve 3 - A/r - 2; curve 4 -
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