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NUMERICAL STUDY OF HYPERSONIC TURBULENT FLOW ABOUT SEGMENTED PROJECTILES
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The flow structure about a segmented projectile in
hypersonic turbulent flow has been studied. The Reynolds-
averaged Navier-Stokes equations were solved numerically
by application of the implicit monotonized scheme of
second-order accuracy, the modified Newton's method, and
the Christoffel-Schwarz grid-transformation technique. A
strong interference effect has been found. The effect can be
characterized by non-monotonous distributions of skin
friction, heat flux and pressure along the second segment of
the projectile.

Nomenclature

Cf = local skin friction coefficient
Cp = pressure coefficient
cp, c = specific heats at constant pressure and volume
D = diameter of the projectile
E, G = flux-vectors in curvilinear coordinate system,

Eqs.(l),(2)
e = total energy per unit volume, p(c^T+(u~ ~ v~)/2)
H = total enthalpy per unit volume, cpT + (if -f v~)/2
/? = node size
J = Jacobian of the coordinates transformation
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k = Boltzmann's constant
m — molecular mass
Pr = Prandtl number
p = pressure
Q = vector of dependent variables, Eq. (1)
q = heat flux vector
Re = Reynolds number, pjtj-/u«,
r = radius of the projectile
s = distance along the body surface or along an axis
T = temperature
u = x-velocity component
V = velocity vector
v —y-velocity component
x = Cartesian x-coordinate
y = Cartesians-coordinate

1 Y = specific heat ratio, cjc^
A = distance between the segments
TJ = curvilinear coordinate
A = conductivity coefficient
A, = eigenvalue
u = viscosity coefficient
E, = curvilinear coordinate
p = density of fluid
fk = regularization parameter, Eq. (17)
T^ = viscous stress tensor
(f> = function, Eq. (11)
£ - small parameter, Eq. (11)

Subscripts
c - Cartesian coordinate system
w = wall value
«• = freestream value

427
American Institute of Aeronautics and Astronautics



Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

Introduction

The hypersonic projectile studies have been actively
revived with recent interest in electromagnetic launchers.
Hypervelocity projectile aerophysics, including
aerodynamics and flight mechanics, has been reviewed by
Reinecke and Legner1. Aerothermodynamics of hypersonic
non-segmented projectiles has been studied experimentally
and numerically by Cayzac et al.2 Launch perturbation
effects in electromagnetic guns were evaluated by Seiler et
al.3 Orphal and Franzdn have found that the terminal
damage of a hypervelocity projectile can be enhanced if the
projectile mass distribution is segmented along its axis.

In the present analysis, hypersonic turbulent flow about
two-segment projectile have been studied. The analysis of
two-dimensional flow structure is based on numerical
solutions of the Reynolds-averaged Navier-Stokes equations
using an implicit monotonized scheme of second-order
accuracy (Total Variation Diminishing scheme) and
Newton's method for solving the grid equations.5 The
technique has been successfully applied by Yegorov,
Yegorova, and Riabov* and Yegorov et all in studies of
hypersonic viscous flow about bluff cylinders and plates
located one after another.

The influence of the Reynolds number and the
geometrical factor of interference between the segments,
Ah; on skin-friction, heat flux, velocity, turbulence
parameter, pressure and temperature in the flow field and
along the surfaces of the projectile has been studied.

Navier-Stokes Equations and Boundary Conditions.

The unsteady two-dimensional Navier- Stokes
equations in a curvilinear coordinate system (£,?/), -v = x

U",/7), v = v (f,/?), where x. y are Cartesian coordinates
have a conservation form:8-"

..,,
(2)

where .1 = d(x,y)/d( £ 77) is a Jacobian of the
coordinates' transformation.

The Cartesian vector components Qc, Ec, Gc, and Bc

for the two-dimensional Navier-Stokes equations have the
following form:

ppi/
pv

p(e+g2)
Pg
pco

* R —

0
0
0
0

~"]p<i)"
-/?.,pco2

E =

pit
2

V^-pug'

pwg-/*x

pMCO -/""j.

pv

+ _2 ^ 2 _
3 "

pvH-

pvg-I*y

jpvg-

(3)
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Here Q is a dependent-\'ariables vector, E and G are
flux-vectors in curvilinear coordinate system. Q. E, G. and
B vectors are corresponding to Cartesian vectors Qc, Ec. Gc,
and B,. as follow:

The viscous stress tensor T has the components:
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The heat flux vector q is calculated by formula:

Turbulent viscosity /*T and heat conductivity
coefficients X^ are determined as follow:

Pr,

0i + -^
Pri

= \/k; co=e/A"

The mass-averaged Navier-Stokes equation system (1)
for the compressible perfect gas model is completed by the
state equation as well as by two equations describing the
differentional turbulent g- u> model offered by Coakley and
Huang10:

; C=0.09

a =0.02/=l-exp -a
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where p=0 for two-dimensional problem, and (3=1 for
axisymmetrical one. Other parameters are as follow":

C n=C 1 2=l; C22 = 0.833; C23 = 2.4

Also, it is assumed that the coefficient of viscosity is
calculated using a power law variation with temperature,
/////„ = (T/TJ07, and the Prandtl number is constant, Pr =
0.7, and/VT = 0.9.

For further numerical analysis, new non-dimensional
parameters in Eqs. (1) - (6) were set up by normalizing the
Cartesian coordinates to the characteristic length scale r
(the radius of a cylinder), the Cartesian velocity components
- to the upstream velocity «„, the pressure - to the double
value of the dynamic pressure in the upstream flow, and
other parameters - to their values in the upstream flow.

To complete the finite-difference system of the Navier-
Stokes equations, the following boundary conditions have
been used. The no-slip conditions (u - v = 0, g = 0, and
do)/dci = 0), constant surface temperature (T = TJ, and
extrapolations of a pressure from inner area nodes (with the
condition ap/'d TJ = 0) were posed on the body surface. On
the outer surface of the computational area around the body,
boundary conditions were written in the form of Riemann
invariants and determined by the direction of the
perturbation expansion9.

The Approximation of Equations

The construction of a finite-difference scheme to solve
the Navier-Stokes equations (1) given in conservation laws
form is based upon an integro-interpolation method.9 The
utilization of an integro-interpolation method applied to the
solution of the Navier-Stokes equations gives finite-
differences conservation laws analogies:

(9)

= 2

Here index n corresponds to time layer number; j, k -
to node numbers along £, and T), correspondingly; hph^-
to the node sizes. The developed conservative finite-
difference scheme is implicit, and this property of the
scheme allows one to avoid any restrictions on the iteration
time-step caused by the instability of the ordinary difference
schemes in the solution of the stiff differential equations.

At semi-integer nodes, the convective components of
the flux vectors E and G were approximated using a
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monotonized scheme of Godunov type.12 The eigenvalues
and eigenvectors at semi-integer nodes were calculated by
the Roe method13, for the approximate solution of the
problem of arbitrary discontinuity decay:

(10)1 CQR -

Here 3>(ALR) is a diagonal matrix with elements
parameters At are the eigenvalues of the operator A =
3E/5Q; and RLR = R(Q,R) is a matrix with the columns
being the right-hand side eigenvectors of the operator A.
The function (f>(A) has the form:

(11)

2e

The Roe method13 was utilized to compute eigenvalues
and eigenvectors of the A-operator in order to solve
approximately the Riemann problem of arbitrary
discontinuity decay. Parameters 3>(ALR), R^, R^R"' were
calculated by the values of dependent variables, such as:

»LR = -

(14)

Here the parameter c indicates the local speed of
sound.

The diffusion components of the flux vectors E and G
at the node side were approximated by the second order
central difference scheme:

This form satisfies the "entropy" condition (or the
criterion) in the choosing of a numerical solution with the
correct physical properties.

To increase the order of the finite-difference
approximations up to the second order, the Monotone-
Upstream-Scheme-for-Conservation-Laws principle of the
minimum derivatives14 was used to interpolate dependent
variables on the node side as follows:

QJ + 7 mninocKQ,

The function minmod(a,/>) has the form:

(12)

a, ab>Q. i a i < i A '

b, ab>0, \ a \ > \ b \ (13)

0. ab<Q

3U
(15)

Here the parameter U is a vector of non-conservative
dependent variables.

The difference scheme pattern used for the
approximation of the Reynolds-averaged Navier-Stokes
equations consists of 13 nodes. It was found, that the
developed implicit nonlinear finite-difference scheme is
absolutely stable in the case of the linear problem.

In present study, the numerical algorithm developed for
the internal flow modeling" has been adopted to study
external hypersonic viscous flows. The construction of the
computational mesh was made by numerical solution of the
Christoffel-Schwarz transformation problem.15'16 The
technique of the mesh adoptation in the boundary layers at
high Reynolds numbers11-17 has been used in this study.
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Solution of Nonlinear Differences Equations

The nonlinear system of grid equations (F(X) = 0,
where X is a vector of unknown discrete functions) was
solved using the modified Newton's method:5-8-'7

(16)

Here D = dF/oX is the Jacobi matrix; k is the iteration
number. In computations, the regularization parameter Tk

was calculated bv formula18:

(17)

where AXM is a vector of corrections. The iteration
process is convergent with the second order of the
convergence rate and Tk - 1.

The iteration Jacobi matrix was found by employing the
procedure of finite increments of the residual vector of the
required grid functions. The approximation of the Navier-
Stokes equations determinates the type of the Jacobi D-
operator, namely, the rarefied structure of triangular
matrices and the initial 7x?-dense matrix coincide.

The system of linear algebraic equations obtained in a
nonlinearity iteration was solved by expanding the matrix
into a product of two triangular matrices L and U, where L
is the lower triangular matrix and U is the upper triangular
matrix, and df/dX - L*U. This operation was preceded by
the analysis of the sparsity structure of matrices L and U. In
order to reduce the total number of the arithmetic operations
and economize on RAM, the variables were numbered
using the generalized method of nested dissection19'20. This
technique was successfully used many times in
computational experiments and proved its effectiveness and
reliability.9-11

Numerical Calculations and Tests

The calculations were mainly performed on the
201x151 grid of the H-type. The size of the nodes was
automatically reduced near the body surface" and in the
vicinity of the symmetry axis.

The convergence and accuracy of the numerical
solutions were tested by carrying out a series of calculations
of hypersonic viscous flow about a cylinder (at Reynolds
number Re,r = 105 and Mach number in upstream flow M,
= 5) on the grids of different size. The analysis of the
results5"7-11 showed that the numerical solution of the
problem is convergent. Calculations were carried out at the
Work Station RS6000/58H.

To improve the convergence rate of the iteration
process, the new technique using the Jacobi matrix was
used. The method is based upon the usage of a truncated
3x3-dense matrix. The computing time (approximately 3h.
20 min) of each variant was reduced by the factor of three.

Results

The flowfield around a two-segment projectile was
calculated for a Mach number Ma = 6 and for a Reynolds
number Re,, = 105, 106, and 107. It was assumed that y =
1.4, and the body surface is isothermal at TJT, = 1. The
distance between the segments was A/D = 1.2 and 2.4.

The contours of constant values of local Mach number
M, temperature T/Tm and velocity at Remr - 106 and A ID =
1.2 are shown in Figs. 1, 2, and 3, correspondingly. The
flow structure changes significantly in the areas between the
segments and behind the projectile. The zone between the
segments becomes totally subsonic and turbulent. As a
result, the hot-gas area near the down-stream segment
spreads far up-stream, up to the rear zone of the first
segment. Behind the second segment, the wake area
becomes narrow and it is filled with hot gas.

The distribution of the turbulence ^-parameter is
shown in Fig. 4. The flow near the second segment is
turbulent and extremely complex. Density contours in the
flow between the segments are shown in Fig. 5. Their
pattem is significantly different from the zones with
different values of a turbulent ^-parameter.

The distributions of pressure and skin-friction
coefficients, and heat flux along the surface of the first
segment (the distance s is calculated from the nose) are
shown in Figs. 6,7, and 8 correspondingly. The developing
recirculation zone between the projectile segments
influences these aerothermodynamic parameters on the rear
surface of the first body considerably. At Rear = 107, the
flow becomes turbulent. It results in a significant increase
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of shear stress and heat flux. The size of the recirculation
zone depends on both the distance between the segments
and the Reynolds number. The influence of the first factor
on the aerodynamic characteristics of the first segment is
localized in the rear area.

The pressure distribution between segments is shown
in Fig. 9. At Remr> 106, pressure increases in the turbulent
flow near the front area of the second segment. This effect
increases with increasing the distance between the bodies.
The distributions of pressure and skin-friction coefficients,
and heat flux along the surface of the second segment are
shown in Figs. 10,11, and 12 correspondingly. The extreme
values of these parameters occur on the front surface of the
segment. The pressure coefficient and heat flux in this area
are larger than their values on the surface of the first
segment by a factor of eight. The Reynolds number
influences significantly the aerodynamic characteristics
(skin-friction and heat flux). The geometrical factor (a
distance between the bodies) influences pressure
distribution in the front area of the second segment.

The flow behind the bodies remains turbulent at Re,rz
106 (see Fig. 13). The pressure distribution pattern in this
case is different from the pattern of the laminar flow at Re«,r
= 105. The increasing of the distance between the bodies
results in increasing pressure in the rear local area behind
the second segment. The area width can be estimated as ID.

Summary

The hypersonic turbulent flow parameters near a two-
segment projectile have been evaluated using an effective
numerical algorithm The turbulence significantly influences
the distributions of the pressure, skin friction and heat flux
along the projectile surfaces as well as the flow parameters
in the wakes behind the segments. At Re^r > 106. it has
been found that the flow zone between the segments has
become a fully recirculating subsonic flow. This effect is
responsible for significant change of skin-friction and heat-
flux characteristics along the second-segment surface.
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Fig. 3 Velocity («) contours near a two-segment
projectile at Re, = 106, M«, = 6.

Fig. 4 Turbulence ̂ -parameter contours near a
two-segment projectile at Re, = 106, Af«, = 6.

Fig. 1 Mach number contours near a two-segment
projectile at Re, = 106, Af. = 6.

Fig. 2 Temperature contours near a two-segment
projectile at Re, = 10*, Af«, = 6.

Fig. 5 Density contours near a two-segment
projectile at Re, = 106, Afm = 6.
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Fig. 6 Pressure coefficient (Cf) distribution along the
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Fig. 8 Heat flux (̂ J distribution along the surface of
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Fig. 7 Skin-friction coefficient (Cj) distribution along Fig. 9 Pressure coefficient (Cf) distribution between the
the surface of the first segment segments of the projectile.
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Fig. 11 Skin-friction coefficient (Q distribution along Fig. 14 Pressure coefficient (Q distribution hi the wake
the surface of the second segment behind second segment.
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