

V1.0 WNT Client/Server SDK

CS699 Project Report

Author: Tony Vaccaro
Date: 01-APR-2000
Rev: 1.0

TABLE OF CONTENTS

Title Page

1.0 INTRODUCTION 4

1.1 Objective 4
1.2 Brief Project Description 4
1.3 SDK Software Components 5
1.4 Related Documentation 5

2.0 SDK COMPONENT FUNCTIONALITY 5

2.1 WNT Information Agent 5
 2.1.2 Basic Agent Service Command Set 6
2.2 Agent Test (Client) Program 6
2.3 SDK Installation and Setup Script 6

3.0 SYSTEM AND PLATFORM SUPPORT 6

4.0 SDK PRODUCT LIMITATIONS AND CONSTRAINTS 7

4.1 No Support for DHCP 7
4.2 No Graphical User Interface 7
4.3 No Provision for Transmission of Complex Data Types 7

5.0 SYSTEM ARCHITECTURE 7

5.1 Basic Client/Server Communication Architecture 7
5.2 Server System Architecture 9
 5.2.1 Starting the Agent Service 9
 5.2.2 Connecting with the Client 9
 5.2.3 Client Validation 9
 5.2.4 Process Request Thread Management 10
 5.2.5 Command and Status Syntax 10
 5.2.6 Data Structure Transfer 11
 5.2.7 Command Decoding and Execution 11
 5.2.8 Supported Commands 12
5.3 Client System Architecture 14
 5.3.1 Client Startup 14
 5.3.2 Connecting with the Server 14
 5.3.3 Access Authorization 13
 5.3.4 Building Commands 14
 5.3.5 Receiving Data Structures 15

6.0 DATA-FLOW DESIGNS 17

 2

TABLE OF CONTENTS

Title Page

7.0 DATA DICTIONARIES 17

8.0 SOURCE CONTROL, DEBUG, AND SYSTEM TESTING 17

8.1 Source Control 17
8.2 Integrated Debugging 17
8.3 System Testing 17
8.4 Software Metrics 17

Figures

Figure 1 Client/Server Communication Architecture 8
Figure 2 SDK Supported Command and Return Syntax 11
Figure 3 SERVER ARCHITECTURE 13
Figure 4 CLIENT ARCHITECTURE 16
Figure 5 Monitor Metric Details – Server Program 18
Figure 5 Monitor Metric Details – Client Program 18

Appendices

Appendix A Server Data-Flow Diagrams 19
Appendix B Client Data-Flow Diagrams 24
Appendix C Data Dictionary 27
Appendix D System Test Matrix 34

 3

1.0 INTRODUCTION

1.1 Objective

The primary objective of this document is to describe the functional capabilities and basic
structural design of the server (Agent), client (AgentTest) and installation programs that
comprise the WNT Client/Server software development kit (SDK).

1.2 Brief Project Description

This WNT Information Agent Software Development Kit (SDK) is intended to be used by
developers as a design center for implementation of client/server based applications. The SDK
provides the primitives required to create a basic application. The developer must supply the
additional application specific logic necessary to complete the total solution. This kit will be
particularly suitable for use in the development of solutions where simple remote management of
a system or resource is required. For instance, an application could be developed to issue
commands and obtain system specific information from remote hosts for desktop management
applications. Commands and information could include any that are supported by the Win32 API.
Using custom designed driver software that interfaces with the server it would also be possible to
produce an application that manipulates kernel mode resources.

1.3 Overall Goal and Reason for Development

The overall goal of the project was to design and implement specialized client and server
software components that could provide a solid foundation for development of a complete multi-
user, high-performance client/server solution. It is assumed that if the development process
starts with these basic pre-designed and implemented client and server components, the overall
product development cycle should be considerably simplified and reduced. Using this SDK will
permit developers to focus and concentrate on application specific details and program logic.

 4

1.4 SDK Software Components

Physically the SDK will be comprised of the following three basic software components:

• WNT Information Agent – The Agent is the server component of the kit. Installed as a

service program on a Windows NT host system, it will load and run at boot time. The Agent
is capable of issuing functions on the local host and of communicating with remote client
programs. The project and binary are called WntInfoAgent.

• WNT Agent Test – The Agent Test program is the client component of the kit. It was
implemented as a Win32 console based application. It may be installed and run from any
WNT based host. The Agent test program is capable of issuing commands to and receiving
responses from remote WntInfoAgents. The project and binary are called SPAgentTest.

• WNT Client/Server SDK Setup – The setup program is responsible for installing and
setting up all required components of the SDK. It is also capable of uninstalling all
components. The setup was created using the InstallShield development environment and
has the capability to guide a user through the entire installation process.

1.5 Related Documentation

The documents listed below should be referenced for additional detail regarding the V1.0 WNT
Client/Server SDK product.

• A Software Development Kit for Windows NT Client/Server Computing - Project

Proposal for Professional Seminar Course CS699A, by Tony Vaccaro, v1.0, 1/24/00

2.0 SDK COMPONENT FUNCTIONALITY

The individual components of the Client/Server SDK were designed to provide the following
functional capabilities.

2.1 WNT Information Agent

• The WNT Information Agent has been implemented as a Windows NT service application that

is started automatically at system boot time and is controlled through use of the WNT Service
Control Manager (SCM).

• The Agent interfaces with a host server using Win32 function calls and with remote clients
using the Windows Sockets (WinSock) API. The Agent implements a set of custom
commands that are used by clients requesting service.

• The Agent is capable of servicing multiple concurrent client connections and requests.
• The Agent implements a security mechanism that both identifies (the client is actually who it

says it is) and authenticates (password verification) clients requesting connection.
• The Agent implements a common messaging protocol that is used when transmitting and

receiving data with clients. The protocol allows for the transfer of simple ASCII character
data as well as complex data structures.

• The Agent’s messaging protocol allows for the return of status messages regarding the
success or failure of the requested service.

• The Agent implements an event logging facility that facilitates troubleshooting and
maintenance activities.

• The Agent is designed to be extensible, allowing the addition of new commands and service
routines.

 5

2.1.2 Basic Agent Service Command Set

The Agent implements the following basic command set:

- Request for the current version of the Agent: returning major and minor build
- Request for host information: returning host name, machine type, and OS version
- Request for file version information: returning the version info for a client specified file
- Request to shutdown the Agent service: a client commanded graceful service shutdown
- Request to test multithreaded operation: for test and verification purposes
- Request to return complex data structure: for test and verification purposes

2.2 Agent Test (Client) Program

• The Agent Test program is implemented as a command line (non-GUI) based program.
• The Agent Test program is capable of issuing all commands supported by the basic Agent

service (see 2.1.2).
• The Agent Test program communicates with the Agent service program using the TCP/IP

transport protocol.
• The Agent Test program uses the messaging protocol supported by the Agent service when

transferring data and commands.
• The Agent Test program is able to display the constructed command syntax sent to the

Agent service as well as the resulting response data.
• The Agent Test program is capable of establishing connection with the Agent service through

use of the supported security mechanism.

2.3 SDK Installation and Setup Script

• The SDK Setup script is capable of installing the Agent service. This includes copying all

Agent service required files to a user selectable target directory and modifying required WNT
registry parameters.

• The SDK Setup script is capable of installing the Agent Test program. This includes copying
all Agent Test program required files to the user selectable target directory and modifying
required WNT registry parameters.

• The SDK Setup is capable of completely uninstalling the SDK. This includes removing all files
and deleting any associated WNT registry entries.

3.0 SYSTEM AND PLATFORM SUPPORT

Architecture Intel or Alpha server with 32 MB of memory min.
Operating System (Client) Windows NT 4.0 Server, Window NT 4.0 Workstation, or

Windows 95/98
Operating System (Server) Windows NT 4.0 Server, Service Pack 4 or greater
Networking Local Area Network and TCP/IP protocol stack on

Client and Server hosts with static IP addresses
Disk Space All software component files ~630KB
File System NTFS or FAT partitions
Monitor VGA
Input Devices Keyboard and mouse

 6

4.0 SDK PRODUCT LIMITATIONS AND CONSTRAINTS

4.1 No Support for DHCP

Due to DNS (Domain Name Service) limitations peculiar to the Windows NT 4.0 DNS service and
the security system implemented in the SDK, both the client and server must be installed on
systems with static IP addresses. Dynamic Host Configuration Protocol (DHCP) will not be
supported.

4.2 No Graphical User Interface

Due to the application specific nature of a user interface the SDK only provides a rudimentary
client design. The supplied SDK client logic may be coupled with any GUI to perform the
backend processing required for a given application.

4.3 No Provision for Transmission of Complex Data Types

The basic client/server implementation in the SDK does not provide a mechanism for the
transmission of complex data types (i.e. wav, mpg, or jpg files). This functionality is left as an
exercise for the application developer.

5.0 SYSTEM ARCHITECTURE

5.1 Basic Client/Server Communication Architecture

The basic client/server security and communication architecture is illustrated in Figure 1. Inter-
process communication is via sockets as implemented in Windows NT by the WinSock32 API.

 7

 TCP/I

 WNT INFO SERVER

Socket Listen on Port: 4988

Accept Socket Connection

Validate Client's name (DNS
resolved) with stored names

 Check Passkey

 Decode Command

 If Invalid Client status: unauthoriz

 If Valid Client general message and acces

 If Invalid Passkey validation f

 If Valid Passkey status: validatio

rem

 If Invalid Command status: invalid

 If Valid Command send response

Client/Ser
A

Figure 1
ver Communication
rchitecture

P Transport

ed client

s seed

ailed

n successful

AGENT TEST CLIENT

Get Remote Server Host Name

Wait for General Message

General Message Received

 Get Client Command

 Display Response

 ote server IP and Port:4988 Connect to Remote Server

 encrypted passkey Send Response (seed+password)

command code Send Command

 command

8

5.2 Server System Architecture

The SDK server is comprised of 10 modules organized according to specific function. This section
describes the basic operation of the server and inter-relation between the component modules.
Refer to the Server Architecture Diagram shown in Figure 3 for this section.

5.2.1 Starting the Agent Service

The Agent starts at system boot time when routines located in the Agent.c module invoke
functions located in the WinServ.c module that issue the required series of Windows NT system
service calls necessary to install the program as a service. The Agent module then calls functions
located in the Config.c module which get platform specific information and locate the directory
paths for the configuration and client files used to store client authorization information. Finally,
the Agent module calls functions located in the Thread.c module to initialize critical data sections
used by other modules, and to create the client communication thread. Once the client
communication thread is launched, program execution is passed to the clientConnect() function
located in the Client.c module.

5.2.2 Connecting with the Client

All client communication is via sockets using the WinSock32 API. When program execution is
passed to the client communication thread in the Client.c module the clientConnect() function
creates a socket and listens for client connections on port: 4988. When a connection request
arrives, the function accepts the connection, which creates a new socket and returns a handle to
the new socket. The original socket is returned to the listen state and the new socket is used for
subsequent communication with connected client. The function next validates the client using
authorization information located in the client and configuration files which are created by the
user during the server installation and setup process. Refer to section 5.2.3 below for a detailed
description of the client validation process.

5.2.3 Client Validation

The server’s validation scheme is based on an identification and authorization model. The
identification process determines that the connected client is who it says it is while the
authorization process determines that the client can produce the correct password to gain access.

Validation begins when the server first connects and the socket is accepted. As part of the
acceptance routine the server attempts to identify the client and makes a request of the Domain
Name Service (DNS) to resolve (IP-to-Host name resolution) the IP address of the connecting
client. The routine then attempts to match the returned DNS host name with a list of authorized
clients supplied by the user in the client.ini file. If there is a match then the client will be
authorized if the correct password is produced and validation will proceed. If not, the client
connection is rejected.

 9

To prevent reading the password by “snooping” the internetwork connection, the server next
generates a random number and sends it to the connected client. This seed value is then used
by the client to encrypt the password before it is sent back to the server for verification. The
encrypted password (seed+password) is known as the PassKey. When the server receives the
client’s PassKey it generates its own version using the seed it sent across and an encrypted copy
of the password that it reads from its local configuration file. If the client version of the PassKey
matches the one generated by the server then the validation is complete and the client is granted
access rights. If not, the client connection is rejected.

5.2.4 Process Request Thread Management

Process request threads perform all aspects of client command service including returning
response data if required. Following client validation the function prepares a structure of thread
parameters, creates the process request thread, and passes the parameter structure to the new
thread. The parameter structure includes the connected client’s name and other socket specific
information that will be used by the process request thread. It is important to mention that
because this program is designed for multi-threaded operation it is possible for worker threads to
be executed out-of-order, on heavily loaded multiprocessor-based systems. Since it was
necessary to define the argument structure as a global data type, it would be possible for this
structure to be overwritten with data for newer requests. So, threads executing concurrently and
out-of-order could read data meant for other threads. To resolve this potential problem the
routine, which creates the argument data structure passed to the worker threads, is implemented
using a 16 deep circular queue and an array of pointers to the queue is defined. This method
ensures that each process request thread passed its own unique copy of arguments.

5.2.5 Command and Status Syntax

The protocol used for communication between the server and client application uses ASCII data
exclusively. The use of ASCII allows the client and server applications to embed and parse
delimitating (“|”) and terminating (“<EOM>\n”) character sequences through use of simple string
and character functions. Figure 2 lists the specific command and return syntax used for
communication between the client and server.

Figure 2
SDK Supported Command and Return Syntax

COMMAND
COMMAND

SYNTAX

RETURN EXAMPLE
Get Product Information “007|ProcessId” Preamble|Completion

Status| (string)<EoM>\n"
“0|Agent_Status_Command_Success
|Product Info (string) <EoM>\n"”

Get Agent Information “100|ProcessId” Preamble|Completion
Status| (string)<EoM>\n"

“0|Agent_Status_Command_Success
|Agent Info (string)<EoM>\n"”

Get Agent's Host
Information

“101|ProcessId” Preamble| Completion
Status(string)|
Agent Host Info<EoM>\n"

“0| Agent_Status_Command_Success
|Agent Host Info (string)<EoM>\n"”

Launch Beeper Thread “102|ProcessId” Preamble| Completion
Status (string) <EoM>\n"

“0| Agent_Status_Command_Success
<EoM>\n"”

Get a File Version “103|ProcessId|
Dir\FileName”

Preamble| Completion
Status (string)|File Version
(string)<EoM>\n"

“0| Agent_Status_Command_Success
|File Version(string)<EoM>\n"”

Test Complex Structure
Transfer

“104|ProcessId” Preamble|Completion
Status|hexified data
structure (ASCII)<EoM>\n"

“0|Agent_Status_Command_Success|
hexified data
structure(ASCII)<EoM>\n”

ShutDown Agent “900|ProcessId" No Data Return No Data Return

 10

5.2.6 Data Structure Transfer

To pass data structures between the server and Agent the binary contents of the structure are
encoded as hexadecimal characters (ASCII) prior to transmission. When the data is received
from the server it is re-converted back to binary data and packed into a corresponding structure
on the client side. The Hexify function in the Clientcmd.c module implements an engine that first
casts a pointer to the structure to be transmitted as an unsigned char (byte) and then uses the
ANSI sprintf() function to convert each byte into two hexadecimal characters (two bytes). The
code fragment shown below is the actual data Hexify engine.

char* Hexify(char* bData, int iLength)
{
 int i;
 char* cHexBuf;

 cHexBuf = (char*) malloc((iLength*2) + 1); // Grab a new buffer
 memset(cHexBuf, '\0', (iLength*2) + 1); // Clear it

// Convert each “char” of binary data to two hex chars
 for (i = 0; i < iLength; i++)
 {
 sprintf (cHexBuf + (i*2), "%02x", (UCHAR) bData[i]);
 }

 return cHexBuf;
}

5.2.7 Command Decoding and Execution

When the process request thread is launched it immediately reads the command string from the
client socket using the handle passed from the thread parameter structure. The command string
is first partially parsed to extract the command code, which is used to select the correct service
routine from a switch statement. The specific service routine completes parsing the command
string and extracts the client’s process id, and any other arguments that may be required for the
command. It then calls any auxiliary service functions in the Clientcmd.c module to complete
processing of the command if necessary.

 11

5.2.8 Supported Commands

The SDK supports the following basic set of commands:

• Command Code 100 – Get Current Agent Version

When the server receives the 100 level command code it retrieves information concerning the
current Agent’s version and build from stored global data. It then sends the version string back
to the client and appends an end-of-message (“<EOM>\n”) termination sequence to complete
the message.

• Command Code 101 – Get Host Server Information

When the server receives the 101 level command code it retrieves information concerning the
Agent’s host server from stored global data. It then sends the string back to the client and
appends an end-of-message (“<EOM>\n”) termination sequence to complete the message.

• Command Code 102 – Test Server Multiple Thread Capability

This is a test command code used to evaluate the server’s capability to dispatch and manage
multiple client worker threads. When the server receives the 102 level command code it calls the
BeepThread() function located in the Clientcmd.c module. This function creates a thread, which
“beeps” every 4 seconds and displays a Windows MessageBox on the server host system
requesting the user to push the OK button to dismiss the thread. It is possble for the Agent
dispatch up to 16 concurrent threads using this command. When the user pushes the OK button
the thread is destroyed and the communication socket is closed.

• Command Code 104 – Return Test Structure

This is a test command code used to evaluate the server and Agent’s capability to transmit and
receive complex data structures. When the server receives the 104 level command it initializes a
test structure with data, converts the data to hex characters, and transmits the contents to the
client for display.

• Command Code 900 – Shutdown Agent

When the Agent receives the 900 command code it makes the required system service calls to
gracefully shutdown the Agent service.

 12

service parameters

Client
Communication
Thread

PassKe

Thread
Exit Thread

ClientCmd
Hexify Data

Socket
Handles

Socket
Handle

Args passed: client name
 socket handle
 PassKey (seed) and Msg

filen

 Co

System
Directories
Win32 API

dir paths dir paths

Global Data Store

SERVER

WNT System Services
Win32 API

Service Control Manager
Starts/Stops Agent Thread
System
Info

y

ame

 Client

nfig File

 Client File
Config

Get System
Info
Winnt

Log Event
Config
Parse Data

files
Agent

START AGENT
SERVICE
Agen

MAIN

t
Config
Get System and
Config File Dirs
Thread
Create Client
Comm Thread
Thread
Initialize Critical

Sections and
WaitForSingleObj
Event
Messagss
Client
Communication Thread

Connect to Client
s

Socke
Create Listen
Socket

t

Socket
write/read/close/
accept socket
Client
Validate
Client
Thread
Create Process
Request Thread
Swa

Win
Log

Spec
Winnt

Log Error
s

Thread
Lock Rand
Crit Section
tSocke
Read/Write
Socket
Winnt

Log Error
tClien
Create
PassKey
pped PassKey
Misc
Endian
Little Swap
n
 Errors
t

Revcheck
Get File
Versions
Socket
Read/Write/
Close Socket
Socket
Get Thread
ID
ified File
Client
Load Agent Test
Structure
ClientCmd
Create Beep
Thread
Client
Process Request Thread
Execute Client Command
Figure 3
 ARCHITECTURE
13

 5.3 Client System Architecture

All client functions are implemented in a single module. This section describes the basic
architecture of the client. Refer to the Client Architecture Diagram shown in Figure 4 for this
section.

5.3.1 Client Startup

When the client program starts it requests input for the remote server’s name and password. It
then makes a Win32 call for the process Id and starts the socket interface before displaying a
menu of the supported commands.

5.3.2 Connecting with the Server

To connect with the remote server (ClntConnect())the client calls DNS (Domain Name Service)
to resolve the remote host’s name (Name-to-IP) provided by the user on the command line. The
resulting IP address is used to create a connection socket, which the client binds to the local IP
and Port:4988. Once connected the client blocks and waits for a General reply message from the
remote server.

5.3.3 Access Authorization

When the client receives the General message from the server it extracts the seed value, which it
uses along with the supplied password to encrypt a PassKey (CreatePasskey()). The PassKey is
then transmitted to the server and the client blocks waiting for the authorization reply. If the
reply is successful the client is granted access to the server.

5.3.4 Building Commands

The client uses the command code input by the user to form (BuildCommand()) the proper
syntax of the command message to be sent to the server (refer to Figure 2). Once built the client
sends the command string to the client and blocks for the return message. The client decodes
the return by first extracting the status string and then extracts the rest of the message
depending upon the type of command it sent. For instance, if it sent a 104 command (Return
Test Structure) it executes the routine to decode and pack the test data structure. If it sent a
simple command (Return Agent Version) it simply prints the string returned in the message.

 14

5.3.5 Receiving Data Structures

When receiving a complex data structure the client must convert the hexified data sent from the
server to binary and pack the bits into the data structure. This is the opposite process from the
one described in section 2.6.2 above. The code fragment below illustrates how this process is
performed.

// cast a char pointer to the TestInfo structure
pTestInfo = (char *) &sAgentTestInfo;

// Loop till End - De-Hexify the data
while (*pHexData != '\0')
{

// Get 2 characters
memcpy(cTemp, pHexData, 2);

// Save the byte in TestInfo structure

 *pTestInfo = (UCHAR) strtol(cTemp, NULL, 16);

 // Bump the pointers
 pHexData += 2;
 pTestInfo ++;
}

 15

AgentTest

 MAIN

Comm string

Socket Handle
and Message

Comm Code

Win32 System
Service

Process Info

Input Arguments;
Remote Server
and Password

Socket Handle

CLIENT

Remote IP

AgenTes
Display

Commands

t

Remote IP

Socket Hand

Display Output

Commands

AgenTest
Get Command

Code
Socket Handle

le

User Input

S

AgenTest

Build Command
AgenTest

Get Process ID
Soc

eed Passwo

Encryp

PassKey
AgenTes

Send Message

t
rd

ted Password

AgenTes
Receive
Message

t
AgenTes

Create PassKey

t

ket
AgenTest
Encrypt

Password
AgenTest

Client Connect
AgenTes

Close Socket

t

 Handle
AgenTes
Bind IP and Port

to Socket

t
AgenTest

Create Socket
AgenTest
Get Host by

Name
AgenTest
Connect to

Remote Server
Figure 4
ARCHITECTURE
16

6.0 DATA-FLOW DESIGNS

Data-Flow diagrams illustrate the basic flow of data between processes in the system. The Data-
Flow diagrams for the server component are illustrated in Appendix A. The Data-Flow diagrams
for the client component are illustrated in Appendix B.

7.0 DATA DICTIONARIES

Data Dictionaries catalog data items used in the system and functions that manipulate that data.
The Data Dictionary for the server component is shown in Appendix C. The Data Dictionary for
the client component is shown in Appendix D.

8.0 SOURCE CONTROL, DEBUG, AND SYSTEM TESTING

8.1 Source Control

Program source control was maintained through use of Microsoft’s Visual SourceSafe V6.0, which
was integrated into the Microsoft Visual C++ 6.0 development environment. SourceSafe was
used to backup code source and track code modifications during program development.

8.2 Integrated Debugging

Integrated debugging was performed through use of Numega’s BoundsChecker V6.0.
BoundsChecker was used during program development to track thread execution, find memory
leaks, and identify dangling pointers.

8.3 System Testing

System testing was accomplished primarily through the use of a set of specialized client
commands and a debug version of the server. The debug server could be run as a Win32 Console
application allowing program execution to be traced using printf() output statements. It was also
possible to execute the debug server from the Visual C++ debugger, which allowed detailed
examination of variable and structure contents from the program runtime environment. A
system test matrix is presented in Appendix D, which identifies all test cases used during the test
phase.

8.4 Software Metrics

Software quantity and quality metrics were measured using a tool called SourceMonitor.
SourceMonitor is a Win32 program developed by James F. Wanner, a programmer and writer for
Dr. Dobb’s Journal (James F. Wanner, “SourceMonitor: Expose Your Code”, Dr. Dobb’s Journal,
Vol. 25, Issue 3, March 2000, Pg. 92). Using this tool, which integrates well with the Visual C++
development environment, metrics were measured for both the server and client programs.
According to the article the following values should be considered acceptable for C code:

• Percent comments: 10 to 50 percent
• Percent branches: 10 to 30 percent
• Average block depth: below 1.8

As shown in Figures 5 and 6 all metrics for both programs fall well within the acceptable range of
values.

 17

Figure 5
Monitor Metric Details – Server Program

Figure 6
Monitor Metric Details – Client Program Component

 18

APPENDIX A
Server Data-Flow Diagrams

Conditional

 Data-Flow Legend

Data-Flow

Data-Flow
Thread Launch
Connector
 Process
 Internal Storage
 Process Termination
19

Start Agent
Service

SCM Thread
Dispatched

Event
Message

Service
Params

Event Viewer
Logs Event

Locate Client
Config files

Client Data
Structure

Config
files

Global
Data

Node,
machine, &
versions

Start Sockets and Create
P Socket Communicatio

Thread
TC n

Create Socket and Listen
on Port: 4988

Socket
Communication
Thread

A

Init Critical Sections:
Socket, DB, and RandNum

Get System
Information

Parse Client
Security Data

Log Start
Event

Directory Path

ClientData Client
name &
seed

 20

Accept Socket

Validate Client

Create Process
Request Thread

Read Socket
Buffer

Parse and Decode
Client’s Command

Socket handle

Incoming Client
Request on Port 4988
(TCP Network)

Client name and server
socket descriptor

Client Data
Structure

Socket handle, client name,
Seed value (for password encryption) Invalid Client

Process Request Thread;
Socket Handle, Client name,
and Seed value passed

Socket Data

Command

Close Socket if
0 Length Read

Socket
Handle

FEDC B

A

Return server socket to
listen state; ready to
accept new client
requests
Destroy this
thread

Socket
Handle

H
Command Execution Routines
G

21

B

Get Current
Agent Version

Server
Info
String

Global
Data

Get Server
Information

Write Server
Info to Socket

Socket
Status and
Handle

Close Socket if
Socket Error

H Close Socket
and Destroy
this Thread

Write Version
to Socket

Close Socket if
Socket Error

Socket
Status and
Handle

HClose Socket
and Destroy
this Thread

Global
Data

C

Version
String Server

Info
String

Version
String

Create Beeper
Thread

Beep Every 4
Seconds if

Beep
Flag=True

Launch
MessageBox,
Set Beep Flag

True and Query
User; Cancel

Thread?

Set Beep
Thread Flag

False

Write Status to
Socket

Destroy This
Thread

Beep Thread
Flag

Close Socket
False Beep Flag

Destroy this
thread

Cancel

D

 22

Send Test
Structure to

Client

Tes t
Structure

Initialized
Structure

Close Socket
and Destroy
this Thread

Write Hexified
Structure Data

to Socket

Hexify Test
Structure

E F

Send Shutdown
command to

Service Control
Manager

NT Event
Viewer Logs

Event

Write Invalid
Command

Code Status to
Socket

Service Stop

Close Socket
and Destroy
this Thread

Event Message
String System Service Args

Process Invalid
Command

G

Decomposed
(ASCII)
Data Stream

 23

APPENDIX B
Client Data-Flow Diagrams

Get and Check
for Valid input

Arguments

Terminate
Process

Print Correct
Usage

Load
Connection

Object

Start Sockets

Display List of
Commands

Connect to
remote server
and wait for
general msg.

Extract Seed
Value

Encryp
Passw

Connection
Object

Port 4988
Process ID

Close Socket

Print server
return message

Server Name
and Password

Rreturn
Message/Status

Bad return
message status

General Message

Socket: TCP
Network

A

A

Bad input
arguments

Server Name
and Password

Seed Value
t Password
ord+Seed) B

24

Send Reply to General
Message and Wait for

Status Reply

Read Socket
and Get Status

User Command Build
Command

Send Command to
Server and block

until reply

C

Command Service
Routines

B

A

Bad Server Status
Command
D

Invalid Command

25

C

Read Socket and
Get Server Reply

Message

B

Message Message

Extract Server
Return Status

Print Status

Extract Hex
(ASCII) data and

Pack Test
Structure

Print Agent Test
Structure

Test
Structure

Structure Data

Structure Data

B

Read Socket and
Get Server Reply

Message

D

Message

 26

APPENDIX C
SERVER DATA-DICTIONARIES

CLIENT Module Abstract and Data Dictionary

The Client module contains the Agent’s main service routine, which listens for and services client
requests. The main service routine establishes a listening socket, bound to the local server’s IP
address and Secure Path port, and waits for a client connection. Following connection, the
routine validates the client against a list of known clients stored in the client.ini file. If the client
successfully passes validation the Agent parses the command request, creates a thread and
passes the command along with arguments to the ClientCmd module for service. When the
ClientCmd module completes servicing the command it returns and the main service routine
closes the client’s socket. The Client module completes the transaction by destroying the worker
thread.

Entity Name Type Description
AGENTESTINFO Structure (UINT) uAnInteger - just an integer;

(double) dbAFloater - just a float
(CHAR) strString_1[100] - String #1
(CHAR) strString_2[100] - String #2
(CHAR) strString_3[100] - String #3
(CHAR) strString_4[100] - String #4

CLIENTINFO Array infoArray[MAX_THREADS] – array of info structures
ClientConnect Function Sets up socket and client state variables, and waits for a

client process to request service. Requested services are
passed to ProcessRequest for disposition. This
thread never ends under normal circumstances
Inputs: Pointer to an 'array' of passed arguments
Outputs: None

ProcessRequest Function Parse a client’s message string and act on it.
Inputs Pointer to an argument list including the socket
handle, client’s name, and authorization level

:

Outputs: Returns 0 for normal completion, -1 if an EOF
from the client is encountered (i.e. the client closes the
socket).

ValidateClient Function Validate a connecting client and its access privileges.
Inputs (string) Name of the client host system, socket
handle, and (int) thread_seed.

:

Outputs: Returns the client's access level if client access is
authorized (thread_seed is also loaded). Returns -1 if it is
not.

Client.ini File User supplied list of authorized clients.

 27

CLIENTCMD Module Abstract and Data Dictionary

ClientCmd includes a set of functions that perform command specific processing for client
requests received by the Agent.

Entity Name Type Description

THREADPARAMS Structure (int) iThreadCount – max number of threads

PTHREADCOUNTINFO pThreadCountInfo - Pointer to
global threadcountinfo struct

ThreadCountInfo Structure (int) iThreadCount - counts active Beep threads
(BOOL) ar_bBeepStop[MAX_THREADS] – stores stop flags

Hexify Function Converts a buffer of binary data to ASCII Hex characters.
Inputs Pointer to binary buffer and length of buffer. :
Outputs: Pointer to ASCII Hex buffer

BeepThread Function Prepares thread parameters and creates a worker thread
which continually beeps until a system modal MessageBox
is acknowledged.
Inputs PTHREADCOUNTINFO, a pointer to a thread info
structure.

:

Outputs: Pointer to a status string to return to the client.
Beeper Function Runs as a worker thread and continually beeps to indicate

the existence of the thread.
Inputs: A pointer the ThreadParams structure
Outputs: None

AGENT Module Abstract and Data Dictionary

The purpose of the Agent module is to request the WNT Service Control Manager (SCM) to start
the Agent service, prepare configuration data, initialize critical sections, and launch the client
communication thread to wait for incoming service requests.

Entity Name Type Description
MAIN Function The main routine. First called at program startup.

Inputs: argc - The number of arguments in 'argv'.
 argv - a pointer to an 'array' of passed arguments.
Outputs: None

StartAgent Function This routine starts the Agent functions
Inputs None :
Outputs: None

REVCHECK Module Abstract and Data Dictionary

The purpose of the Revcheck module is to retrieve the file version from a specified file’s
GetFileVersionInfo structure.

Entity Name Type Description
GetFileVer Function Retrieves the file version from the GetFileVersionInfo

structure.
Inputs LPSTR strFileName - name of file :
 LPSTR strFileVersion - gets loaded with the
version
Outputs: Returns TRUE if a version is found

 28

CONFIG Module Abstract and Data Dictionary

The purpose of the Config module is to prepare platform specific information. For instance the
module locates the directory paths and parses information from required initialization files.

Entity Name Type Description
GetConfig Function Reads in data from the configuration file containing the

encrypted password.
Inputs None :
Outputs: Returns 0 for normal completion, -1 for an error
condition.

GetClientData Function Reads authorized client data from client.ini file and stores
host system name, notification mode, and the security
authorization code.
Inputs None :
Outputs: Returns 0 for normal completion, a negative
value for an error condition.

GetSysInfo Function Gathers information about this application and its host
system and loads global data.
Inputs: None
Outputs: Returns 0 for normal completion, -1 for an error
condition.

sysDir Function Loads the SYS_DIR character array with the name of the
system directory.
Inputs: None
Outputs: None

steamDir Function Pull the subdirectory from the string which is actually
'argv0' from main(). If a directory name exists, changes
 to that directory. For Debug Only.
Inputs: cstring - a string containing the subdirectory as a
subset.
Outputs: None

 29

MISC Module Abstract and Data Dictionary

The purpose of the Misc module is to handle miscellaneous functions required by other modules.
These include endian little conversions, ASCII-to-binary, and binary-to-ASCII routines.

Entity Name Type Description
endianLittle Function This function returns '1' if little endian (IBM) machine,

otherwise returns '0' if big endian (IEEE) machine.
Inputs Value “1” :
Outputs: returns '1' if little endian (IBM) machine,
otherwise returns '0' if big endian (IEEE) machine

endianSwap Function Function to swap bytes for little endian machine to convert
to big endian machine
Inputs array - array of words to swap. :
 (int) - The word length in bytes.
 (int)- The number of words to swap.
Outputs: None

ascii_to_bin Function Converts a string of 2 digit acsii hex numbers to a binary
value in a buffer.
Inputs: ascii_ptr - pointer to char string to be converted
Outputs: bin_value - the binary value buffer

bin_to_ascii Function Converts a binary buffer to a ASCII hex string of chars.
Inputs: bin_ptr - binary buffer to be converted
 ascii_ptr - pointer to char sting
 count - number of bytes to convert
Outputs: None

SOCKET Module Abstract and Data Dictionary

The SOCKET module provides a set of WinSock services that are used by other modules in the
Agent to communicate directly with a connected client.

Entity Name Type Description
socketCreateByService Function Create a listen socket for Secure Path using the TCP

protocol with information from the \etc\services file.
Inputs: The services file name entry (securepath) and the
type of connection to create (tcp).
Outputs: The listen socket file descriptor (int).

socketAccept Function Accept a socket connection on a listen socket.
Inputs: The listen socket file descriptor (int).
Outputs: The active socket file descriptor (int).

socketClose Function Close an existing socket.
Inputs: the socket file descriptor (int).
Outputs: The close error.

socketRead Function Read from a socket.
Inputs The socket file descriptor (int), the data buffer to
fill (void), and the max length of the read operation (int).

:

Outputs: The number of bytes read from socket (int).
socketWrite Function Write to a socket.

Inputs The socket file descriptor (int), the data buffer to
send (void), and the max length of the read operation (int).

:

Outputs: The number of bytes written to socket (int).
HOSTENT Structure Used to store information about a host. Windows Sockets

allocates the HOSTENT structure.
SOCKETADDR_IN

Structure This structure is used by WinSock to specify a local or
remote endpoint address to which to connect a socket.

 30

THREAD Module Abstract and Data Dictionary

The Thread module provides a set of thread creation and management functions to other
program modules. These include thread creation, termination and initialization of critical
sections.

Entity Name Type Description
dmThreadCreate Function Creates threads.

Inputs start_routine - The procedure that the thread
calls.

:

 args - The parameters for the above procedure.
 idetach - =1 for detached thread, =0 for attached
thread.
 ibound - =1 for bound thread, =0 for unbound thread.
 ipriority - The scheduling priority.
Outputs: thread - The thread id.

dmThreadJoin Function Causes the calling thread to wait for termination of
specified thread.
Inputs thread - The thread to wait on. :
 value_ptr - Return value of the terminating thread.
Outputs: error status.

dmThreadExit Function Terminates the calling thread.
Inputs: value_ptr - value returned to calling thread.
Outputs: None

dmThreadSelf Function Obtains the identifier of the current thread.
Inputs: None
Outputs: The thread identifier.

dmThreadMutexInit Function Initialize a critical Section
Inputs: lock - The mutex lock.
Outputs: error status.

dmThreadMutexLock Function Enter (join) a critical Section
Inputs: lock - The mutex lock.
Outputs: error status.

dmThreadMutexUnlock Function Leave a critical Section
Inputs: lock - The mutex to unlock.
Outputs: error status.

 31

WINNT Module Abstract and Data Dictionary

The Winnt module provides a set of Windows event logging and messaging routines used by
other program modules. These include logging informational, warning, and error events.

Entity Name Type Description
systemLogOpen Function Opens a handle to the WNT Event Viewer.

Inputs None :
Outputs: handle

systemLogClose Function Closes a handle to the WNT Event Viewer.
Inputs handle :
Outputs: None

systemLogWarn Function Log a Warning Type message.
Inputs: char * pointer to message string
Outputs: None

systemLogAlert Function Log an Error Type message.
Inputs: char * pointer to message string
Outputs: None

systemLogInfo Function Log an Informational Type message.
Inputs: char * pointer to message string
Outputs: None

WinDebugEvent Function This routine creates an event and then waits for the event
signal.
Inputs: None.
Outputs: None.

winMessage Function This routine creates a message from an error value. The
error value must come from GetLastError() or one of its
deviates.
Inputs: ierr - the error value from GetLastError().
Outputs: cmessage - the string container to hold the
message.

winSocketStart Function Initialize WINSOCK API
Inputs: None
Outputs: 1=success, 0=failure.

 32

WINSERV Module Abstract and Data Dictionary

The Winserv module provides a set of functions that facilitate WNT Service Management Control.

Entity Name Type Description
ResumeService Function Resumes a paused service.

Input arg: This thread handle
Outputs: NONE

PauseService Function Pauses the service.
Inputs This thread handle :
Outputs: None

StopService Function Stops the service.
Inputs: This thread handle
Outputs: NONE

SendStatusToSCM Function This function consolidates the activities of
updating the service status with SetServiceStatus.
Inputs: Win32 Service Args
Outputs: BOOL success/failure

ServiceCtrlHandler Function Dispatches events received from the service control
manager
Inputs: DWORD controlCode
Outputs: None

terminate Function Handle an error from ServiceMain by cleaning up and
telling SCM that the service did not start.
Inputs: DWORD error
Outputs: None.

ServiceMain Function Registers the service and tracks progress.
Inputs: Argc and Argv
Outputs: None

startWINService Function Starts the service
Inputs: None
Outputs: None.

 33

Appendix D
System Test Matrix

TEST CASE

DESCRIPTION

SUCCESS CRITERA*

PASS

FAIL
Kit Installation and
Setup

Invoke Setup wizard to install all
components of the kit.

Agent and Client programs are
installed in user selected folders,
correct registry parameters are
entered, Agent service starts, and
Client program executes. Startup
event is logged in the event viewer

X

Kit UnInstallation Invoke WNTInfoAgent uninstall
from Add/Remove Programs
applet.

Uninstall can be invoked from
Add/Remove Programs applet. All
files and folders are removed from
target system.

X

Agent and Client
Security

Connect with Agent using proper
client authorization and
password.
Attempt to connect with Agent
using improper client
authorization and password.

Client is granted access to the
server using the correct password
and/or client name authorization.
Client is denied access without the
correct password and/or client
name authorization.

X

100 Level
Command

Issue 100 Level Command to
Agent from Client.

Agent returns the correct current
version of the running agent to the
client and the client outputs the
version string.

X

101 Level
Command

Issue 101 Level Command to
Agent from Client.

Agent returns the correct server
information to the client and the
client outputs the information string

X

102 Level
Command

Issue 102 Level Command to
Agent from Client.

Agent launches Beeper worker
thread on host server and presents
MessageBox.
Agent cancels worker when user
clicks OK.

X

103 Level
Command

Issue 103 Level Command to
Agent from Client with valid file
path and name.

Agent returns the correct file
version for the specified file and the
Client properly displays the output.

X

104 Level
Command

Issue 103 Level Command to
Agent from Client.

Agent returns test structure
contents to Client and Client
properly displays output.

X

900 Level
Command

Issue the 900 Level Command to
the Agent from the Client.

Agent shuts-down. Shutdown event
is logged in the event viewer.

X

Multi-thread and
multi-user Tests

Use 16 clients to concurrently
connect with the Agent and
issue 102 Level Commands.

Agent establishes connection with
each client and launches a
corresponding beep thread for
each. Also, threads are destroyed
and connections closed when each
thread is cancelled.

X

*For all Test Cases the following general success criteria apply:

• No Application failures
• No System bug checks

 34

	V1.0 WNT Client/Server SDK
	Author: Tony Vaccaro
	Date: 01-APR-2000
	
	
	
	
	
	TABLE OF CONTENTS
	TABLE OF CONTENTS

	Figure 1Client/Server Communication Architecture8
	Figure 2SDK Supported Command and Return Syntax11
	Figure 3SERVER ARCHITECTURE13
	Figure 4CLIENT ARCHITECTURE16
	Figure 5Monitor Metric Details – Server Program18
	Figure 5Monitor Metric Details – Client Program18

	Appendix AServer Data-Flow Diagrams19
	Appendix BClient Data-Flow Diagrams24
	Appendix CData Dictionary27
	Appendix DSystem Test Matrix34
	
	
	
	
	
	COMMAND

	RETURN
	
	
	
	
	
	EXAMPLE
	Entity Name
	Type

	Description
	
	
	
	
	
	Entity Name
	Type
	Description
	Entity Name
	Type

	Description
	
	
	
	
	
	Entity Name
	Type
	Description
	Entity Name
	Type
	Description
	Entity Name
	Type
	Description
	Entity Name
	Type
	Description
	Entity Name
	Type
	Description
	Entity Name
	Type
	Description
	Entity Name
	Type
	Description

