
___________________________________________

* Copyright © 2011 by the Consortium for Computing Sciences in Colleges.  Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges.  To copy otherwise, or to republish, requires a
fee and/or specific permission.

86

METHODOLOGIES AND TOOLS FOR THE SOFTWARE

QUALITY ASSURANCE COURSE*

Vladimir V. Riabov
Department of Mathematics and Computer Science

Rivier College
Nashua, NH, 03060

603 897-8613
vriabov@rivier.edu

ABSTRACT
Tutorials, labs, projects, and homework assignments were designed to help
students explore modern techniques of software quality assurance; debugging
C/C++ and Java codes; and developing high-quality computer projects.
Different methods (predicate-logic and topological approaches of graph
theory; metric theory of algorithms, and object-oriented methodology of rapid
prototyping) have been explored by using various tools in analyses of complex
computing code. Applications cover software test strategies, code reusability
issues, and ways to significantly reduce code errors and maintainability effort.
The related course materials provide students with knowledge, instructions and
hands-on experience, and motivate them in their research studies.

1 MOTIVATION
Students pursuing careers in software development should be familiar with various

methods of software quality assurance (SQA). A year ago we launched a new SQA course
that addresses the issue of quality throughout the software development process,
including system analysis and design, rapid prototyping, implementation, testing, and
delivery. Special attention is given to setting quality standards [1], developing quality
measurement techniques, writing test plans, and testing the user interfaces. It becomes a
challenge for an instructor to provide students with the state-of-the-art hands-on
technology-exploration experience in this field.



CCSC: Northeastern Conference

87

Topics covered include the integration of quality activities into the software project
life cycle, CASE tools overview, structured testing methodology, complexity and
object-oriented metrics, configuration management, capability maturity models, software
engineering practices and standards, code re-engineering strategies, and miscellaneous
topics.

Students were encouraged to examine various software-development projects.
Exploring different testing strategies, they analyzed computer code by using various
software-organization metrics including cyclomatic complexity [2], Halstead's [3] and
object-oriented metrics [4], and re-designed the code with lower risk level and errors.

This paper contains an overview of the SQA software tools, tutorials, lab manuals,
homework assignments, project reports, and research papers of students who took the
Software Quality Assurance course. The advantages of using these tools for instruction
in online and hybrid courses are also discussed.

2 TOOLS FOR SOFTWARE QUALITY ANALYSIS
2.1 Industrial SQA Tool Used in Software Engineering

One of the most popular SQA tools, the McCabe™ IQ software package, was
selected for exploring various study cases and projects in the course on software quality
assurance. This industrial tool became available for students under the free-license
agreement with the McCabe™ University Program. The tool allows them to explore
McCabe's structured testing methodology [2] that became a widely used method in code
analyses, unit and integration test planning, and test-coverage estimations. Following
specially designed computer-lab assignments and using the McCabe™ IQ tool, students
study how to apply the theory of graphs for the complexity code analysis, develop test
strategies, and predict possible errors [3, 6] in the code developed by themselves and
companies. Unfortunately, the McCabe™ IQ package could be used only on campus;
therefore, other Open Source free-license SQA packages were evaluated for use by
students at home, specifically when  taking courses online or in the hybrid format.

2.2 Open Source Free-License SQA Tools
There are several Open Source free-license SQA tools available for students. The

Java Source Metric™ package [7] has been used to analyze Java source code with quality
metrics like the Inheritance Depth, Lines of Code, and McCabe Complexity Metric suite.
The CCCC™ tool [8] generates a report on various metrics (including the Lines of Code
and McCabe's complexity) of C/C++ code. The freeware program SourceMonitor™ [9]
has been used for code analysis to identify the relative complexity of code modules.
SourceMonitor™ measures metrics for source code written in C++, C, C#, VB.NET,
Java, Delphi, Visual Basic (VB6), and HTML. It operates within a standard Windows
GUI and exports metrics to XML or CSV (comma-separated-value) files for further
processing with other tools. The COCOMO-II™ tool [10] was used by students to
estimate the cost, effort, and schedule associated with their software development
projects. 



JCSC 26, 6 (June 2011)

88

3 LAB AND HOMEWORK ASSIGNMENTS
The main goal of labs and homework assignments is to introduce software quality

metrics and help students build their individual skills of code analysis, testing, and
redesign to improve code quality and enable possible reuse in other projects.

3.1 Introducing the Structural Testing Methodology
The first set of lab and homework assignments deals with implementation of the

structured testing methodology offered by McCabe [2]. The approach is based on
graph-theoretical complexity-measuring techniques in code studies and control of
program complexity. Using the experimental results of Miller [5], McCabe suggests that
code modules approach zero defects when the module cyclomatic complexity is less than
10. During lectures, the instructor provided an overview of the graph-based complexity
metrics and the results of his systematic metric analyses of software for two industrial
networking projects [6]. Following the lab assignments, students explored the McCabe
™ IQ tool and used it to perform metric analyses of several codes by applying cyclomatic
complexity (v), essential complexity (ev), module design complexity, system design
complexity, and system integration complexity metrics [2] in order to understand the
level of complexity of a code module's decision logic, the code's unstructured constructs,
a module's design structure, and the amount of interaction between modules in a program,
as well as to estimate the number of unit and integration tests necessary to guard against
errors.

3.2 Estimating the Number of Code Errors and Efforts to Fix the Errors
The second group of the lab and homework assignments was designed to introduce

students to the comparative analyses of algorithm implementations in different languages
(FORTRAN, C, C++, Java and some others). Following Halstead's procedures [3],
students identified all operators and operands, their frequencies, and estimated the
program length, vocabulary size, volume,  difficulty and program levels, the effort and
time amounts to implement and understand the program, and the number of delivered
bugs (possible errors), B. They compared their findings with values calculated by using
SQA tools (McCabe™ IQ, Java Source Metric™, CCCC™, SourceMonitor™, and
COCOMO-II™), and found that the results are sensitive to the programming language
type (procedural or object-oriented). 

In particular, students found that efforts to implement and understand the program
were higher for procedural languages (FORTRAN and C) than for the object-oriented
language (Java), even for simple algorithms, like Euclid's algorithm for calculating the
Greatest Common Divisor. They also found that large C/C++ source files [6] contain
more actual errors than the number of delivered bugs (B) suggested [3].

3.3 Interpreting Object-Oriented Metrics
The third group of the lab and homework assignments  was developed to help

students identify clusters of object-oriented metrics that would better describe the major



CCSC: Northeastern Conference

89

characteristics of object-oriented systems (properties of classes, polymorphism,
encapsulation, inheritance, coupling, and cohesion) implemented in computer code
written in C++ and Java. Their findings are summarized in Table 1 below.

Metric Class Polymor-
phism

Encapsu-
lation

Inheri-
tance

Coup-
ling

Cohe-
sion

Weighted Methods Per Class Yes Yes
Response For Class Yes Yes
Percentage of Public Data Yes
Accesses to Public Data Yes
Lack of Cohesion of Methods Yes Yes Yes
Number of Children Yes
Number of Parents Yes
Depth in Inheritance Tree Yes
Coupling Between Objects Yes Yes
Attribute Hiding Factor Yes Yes
Method Hiding Factor Yes Yes
Polymorphism Factor Yes Yes

Table 1. Clusters of Object-Oriented Metrics

Students also identified some specific object-oriented metrics (Weighted Methods
per Class, Response from a Class, Lack of Cohesion between Methods, and Coupling
between Objects) that are the important factors for making a decision about the code
module/class re-usability.

3.4 Comparing Two Releases of the Code
The last, fourth set of the lab and homework assignments  was offered to students

to identify major factors that forced programmers to change the code [6] in the project
redesign efforts. After analysis of the project software (about 300,000 lines of C-code)
using the network-protocol approach 271 modules of the old Code Release 1.2 [6] were
recommended for redesign. The re-engineering efforts resulted in the deletion of 16 old
modules and in the addition of 7 new modules for the new Code Release 1.3. Analyzing
the deleted modules, students found that 7 deleted modules were unreliable (v > 10) and
6 deleted modules were unmaintainable (ev > 4). Also, 19% of the deleted code was both
unreliable and unmaintainable. Moreover, all seven new modules are reliable and
maintainable.

After redesign, code changes resulted in the reduction of the code cyclomatic
complexity by 115 units. 70 old modules (41% of the code) were improved, and only 12
modules (about 7% of the code) deteriorated. This analysis demonstrates a robustness of
the structured testing methodology and successful efforts in improving the quality of the
Code Releases. Studying the relationship between software defect corrections [6] and
cyclomatic complexity, students found a positive correlation between the numbers of
possible errors, unreliable functions (with v > 10), and  error  submissions [6] from the



JCSC 26, 6 (June 2011)

90

Code Releases (see Fig. 1) in the implementation efforts for six network protocols (BGP,
FR, IP, ISIS, OSPF, and RIP).

Figure 1: Correlation between the Number of Error Submits, Number of Unreliable
Functions (v > 10), and the Number of Possible Errors for Six Network Protocols.

4 STUDENTS' PROJECTS AND RESEARCH STUDIES ON SQA
As the main assignment for the SQA course, students were asked to develop their

individual or team projects on the quality analysis of moderate-size computer programs
written in an object-oriented language (C++ or Java) and compare different releases of
the code. The project assignment included the study of the code complexity and quality
based on the analysis of cyclomatic complexity metrics, Halstead's metrics, and
object-oriented design metrics by using available SQA tools (McCabe™ IQ, Java Source
Metric™, CCCC™, SourceMonitor™, and COCOMO-II™). The project reports included
the code structure chart, "Battlemap"; McCabe's Complexity Metrics summary; examples
of flowgraphs with low, moderate, and high complexity; scatter diagrams with
identification of unstructured-unreliable, reliable-structured, unreliable-structured, and
reliable-unstructured modules; examples of flowgraphs with the independent paths for
the unit tests; Halstead's Metrics report with estimation of the total number of the
delivered errors (B); Object-Oriented Metrics report with basic interpretation of the
metrics; and recommendations to improve the code.

Michael Jeffords in his project, "Using SQA Metrics to Guide Refactoring of
Medium to Large Scale Projects", developed a plan to reduce the overall complexity of
the code while adding important functionality to the system that provided visualization
of geophysical data. His code refactoring efforts took approximately 20 hours, but have
reduced the number of tests by about 200 unit tests. Summarizing these efforts, he offered
two effective methods of refactoring. In the first method, he used weighting factors to
"boil" McCabe's and Halstead's metrics down using a formula M = v/10 + ev/4 + V/3000.
This approach gives equal weights to v-cyclomatic and ev-essential complexity metrics.
Combined they have double the weight of Halstead's V-metric of the program volume [3].
In the second method, three thresholds for cyclomatic complexities were used to chart
improvement over time. His goal was to achieve 100% of methods below the cyclomatic
complexity of 20 and less than 97% of methods below the cyclomatic complexity of 10.
He achieved 100% for v < 20; 99.67% for v < 15, and 98.01% for v < 10. Michael
described three stages of refactoring: 1) He started by refactoring classes to remove



CCSC: Northeastern Conference

91

public variables and adding accessors; 2) Next, he chose any of the methods that ended
up on the "hot" list that he could understand the basic methodology, and then tried to
tighten up the algorithms; 3) Finally, he worked on the hardest methods once he felt that
his plan had taken shape and he could see a direction for fixing the architecture of the
worst classes.

In the other project, Timothy Houle and Douglas Selent analyzed the complexity of
the Light-Up Puzzle program [11], its maintainability, testability and metrics related to
the quality of the software program's design. The application's vulnerabilities were
identified by using the McCabe™ IQ tool. This approach helped them to identify
vulnerable code areas, reduce error rates, shorten testing cycles, improve maintainability,
and maximize reusability. In order to verify the effectiveness of the McCabe™ IQ tool,
they re-factored the program in the areas reported to be highly complex and error-prone.
After this, they compared the McCabe's Metrics reports on the initial analysis to the
reports on the re-factored analysis and charted results to clearly indicate the
improvements made to decrease complexity. In addition to the McCabe metrics, the
students also added various UML diagrams [1], which helped them understand the
concept of the program structure and identify areas where object-oriented design
principles could be applied to increase code reusability and maintainability.

5 EFFECTIVENESS OF THE COURSE AND STUDENTS' RESPONSE
All 16 computer-science graduate students that took the SQA course in the spring

of 2010 expressed in their course evaluations full satisfaction with course organization,
content, and material delivery. The overall course-evaluation score was high (4.71 out of
maximum possible 5.0). In their anonymous comments, students shared mostly favorable
observations, e.g., "This is a practically-oriented course and it has a lot of demand in the
job market…"; "The instructor opened my eyes to the importance and usefulness of SQA
metrics…"; "I learnt a lot of how the SQA is handled in the software development
process…"; "Great experience…", and "I met my expectations more than I thought."
Later these students effectively used the SQA techniques to improve their software
programs in other courses, including the final capstone projects. All the students are
currently employed by local computer companies.

6 CONCLUSIONS
The author has described the challenges and experience of running software quality

assurance courses for undergraduate seniors and graduate students. The knowledge of
graph theory and its applications in software engineering is beneficial for students with
Computer Science majors. Detailed analysis of code complexity reveals areas of code
structures that should be revised. The code revision allows students to find those code
areas with potential errors and to improve code design and testing practices. In particular,
the resulting analysis can be used in identifying error-prone software, measuring optimum
testing efforts, predicting the effort required to maintain the code and break it into
separate modules, reallocating possibly redundant code, and providing a fundamental
basis for unit and integration testing. The complexity code analysis and structured testing



JCSC 26, 6 (June 2011)

92

methodology should become a necessary attribute of software design, implementation,
testing, sustaining, and re-engineering practice and training.

REFERENCES

[1] Galin, D., Software Quality Assurance: From Theory to Implementation, New
York: Pearson Education, 2004.

[2] Watson, A. H., McCabe, T. J., Structured Testing: A Testing Methodology Using
the Cyclomatic Complexity Metric, NIST Special Publication, No. 500-235. 
Gaithersburg, MD: National Institute of Standards and Technology, 1996. 

[3] Halstead, M. H., Elements of Software Science. New York: North Holland, 1977. 

[4] Rosenberg, L.H., Applying and Interpreting Object-Oriented Metrics. In
Proceedings of the Tenth Annual Software Technology Conference, April 18-23,
1998. Salt Lake City, UT, 1998.

[5] Miller, G., The Magical Number of Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information. In Psychological Review, 63 (2),
81-97, 1956.

[6] Riabov, V. V., Networking Software Studies with the Structured Testing
Methodology. In Computer Science and Information Systems. Athens, Greece:
ATINER, 2005, pp. 261-276.

[7] Java Source Metric, SourceForge.Net, 2009,
http://jsourcemetric.sourceforge.net/, retrieved January 25, 2011.

[8] Littlefair, T., CCCC: C and C++ Code Counter, SourceForge.Net, 1998,
http://cccc.sourceforge.net/, retrieved January 25, 2011.

[9] SourceMonitor Freeware Program, Campwood Software, Inc., 2010,
http://www.campwoodsw.com/sourcemonitor.html, retrieved January 25, 2011.

[10] COCOMO II, University of South California, 2010,
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html, retrieved
January 25, 2011.

[11] Light-Up Puzzle Program, Puzzle-Loop.Com, 2009,
http://www.puzzle-light-up.com/, retrieved January 25, 2011.



The Journal of Computing 
Sciences  in Colleges

Papers of the Sixteenth Annual CCSC
Northeastern Conference

April 15-16, 2011
Western New England College

Springfield, Massachusetts

John Meinke, Editor
UMUC —  Europe

George Benjamin, Associate Editor
Muhlenberg College

Susan T. Dean, Associate Editor
UMUC — Europe

Michael Gousie, Contributing Editor
Wheaton College

Volume 26, Number 6 June 2011


