
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

DIGITAL VIDEO CLUSTER SIMULATION

Martin N. Milkovits

SeaChange International
32 Mill St.

Greenville, NH 03048, U.S.A.

ABSTRACT

The advent of Video On Demand (VOD) technology has
seen the development of specialized high performance,
high reliability computer systems. These systems must be
able maintain the constant bandwidth required by video
while guaranteeing fault resiliency.

The SeaChange digital video cluster incorporates
several different bus and fabric technologies to deliver high
performance and data reliability to the customer. The
existence of many data paths and congestion scenarios
makes it difficult to predict the performance, or to find the
bottlenecks, of the system. The nature of a digital video
server as a throttled constant workload makes it a good
candidate for simulation modeling.

1 INTRODUCTION

I have endeavored to create a simulation model of the
SeaChange 7-Node Digital Video cluster with the hopes of
gaining a better understanding of the system and providing
a baseline by which to predict future hardware and
software performance enhancements in simulation before
implementation.

The core architecture of the VOD cluster from
SeaChange International is a patented RAID^2 architecture
of data distribution. In RAID^2, the data is striped using a
RAID5 algorithm across multiple systems (nodes) in a
cluster. The nodes are connected using InfiniBand 1X
point-to-point connections. Inside each node is a
backplane populated with 2 SCSI RAID controllers (data
ingress) and 6 Gigabit Ethernet cards (data egress). These
devices are connected using parallel PCI to StarFabric
(serial, switched PCI) technology. By the RAID^2
algorithm, data from every ingress point is evenly
distributed to every egress point in the system.

The three different connection types in this system
(PCI, StarFabric and InfiniBand) make it difficult to
predict the bottlenecks in the data flow. Each of these
connection fabrics have a different transfer rate, a different

amount of buffering capacity and a different amount of
overhead per transaction (see Table 1).

Table 1: Connection Technologies

Fabric Type

Per Link
/Bus
Actual
Bandwidth
(Gbps)

Hardware
Device Buffers Ports

PCI Parallel –
bridged 3.934 n/a

n/a
 n/a

StarFabric
Full
Duplex
Serial

1.77
StarGen

2010
Bridge

Per SF
Port and

PCI

2 –
StarFabric
1 –
64/66 PCI

StarGen

1010
Switch

Per SF
Port

6 –
StarFabric

InfiniBand
Full
Duplex
Serial

2.0

Mellanox
21108

Bridge /
Switch

Per IB
port and

PCI

8 – 1X
InfiniBand
1 –
64/66 PCI

The data requests in the video cluster are arriving at a
constant rate, as dictated by the video workload, and the
data size requested is always 128KB. The large data size is
used to maximize disk drive performance.

2 SIMULATION MODEL CHOICES

The goal of this simulation model is to accurately represent
the fabric performance of the digital video server.
Therefore, the focus of the simulation is on the
interconnecting fabrics. The data source and consumption
are beyond the scope of this simulation. But, it is
important that the behavior of the data from the RAID
controller and to the GIGE devices coincides with the
actual system. As many texts and papers have shown, it is
very important to have an accurate input model (Law and
Kelton, Chapter 6).

Milkovits

2.1 Input Model The data is transferred via DMA engines directly from

the RAID controllers to the destination Gigabit Ethernet
devices. Therefore, the only involvement of the system
processor is to issue control messages. Because they only
account for **% of the fabric workload, they have been
abstracted out of this simulation model.

 The disk drive array has been abstracted to the single
ingress point of the RAID controller. Considering non-
degraded disk drive reads, multiple drives attached to a
RAID controller will have a similar latency distribution as
a single disk drive. It is assumed that enough drives may
be installed to maintain the ingress performance of the
system at the specified distribution rate. The input
distribution is modeled as a Triangular distribution with
minimum: 1.14ms, average: 8.44ms, maximum 16.94ms.
The minimum, average and maximum values are
calculated using the minimum, average and maximum
seek, transfer and rotational latency from the Fujitsu MAT
300GB 10K SCSI disk drive (Fujitsu Online).

4 SIMULATION MODEL COMPONENTS

The primary components of this simulation are the
modules, connections and messages.

4.1 Modules

 The triangle distribution is appropriate for this
application. Although the video data is organized in
sequential blocks, the multiple streams of a VOD system
make the actual disk drive workload quite random.

The simulation contains independent definitions of
modules for the RAID controller (raid), Gigabit Ethernet
device (gige), PCI bus (pci), StarFabric Bridge (sg2010),
StarFabric Switch (sg1010) and InfiniBand Switch (ib).
These modules are all contained in a complex module of
the cluster node. 2.2 Output Model

Table 2 – Module Components
 The Gigabit Ethernet egress device is also simplified
in this model. For the purpose of this simulation, it is
assumed that the memory on the Gigabit Ethernet
controller is faster than the PCI bus and therefore will not
be causing significant backpressure on the system. A
future development of the simulation will include a
distribution of availability of the Gigabit Ethernet device.

MODULE COMPONENT DESCRIPTION
PCI

 cMessage qCheck
Internal message to
manage PCI arbitration

 cQueue Queue
Arbitration queue of IO
messages.

 cArray work
Location of IO being
transmitted

 cArray reqArray

Array of request
messages waiting for bus
arbitration.

 int pciBus[4]
PCI bus resource (1 entry
per device)

SG2010 / SG1010 / IB8X

cMessage rqst[x]

Link/Buffer request
message – one per
destination

cArray linkArray

Array of request
messages waiting for
StarFabric Link resource.

 cQueue queue[x] Queue of IOs to transmit

cQueue buffQueue[x]
Queue of retry messages
– one per port

 int linkres[x] StarFabric link resources
 Int buffer[x] SG2010 buffer resources
RAID

cMessage startIO
Message to create data
packets.

cMessage rqst

Link/Buffer request
message.

 cQueue queue Queue of IOs to transmit
GIGE

3 SIMULATION MODEL IMPLEMENTATION

The simulation was implemented using OMNeT++
software. OMNeT++ is a discrete event simulator that
represents the system components being modeled through
modules and represents the data being passed as messages.
The messages can be assigned attributes such as length,
which impact the transfer rate over a connection that has an
assigned data rate.
 As mentioned previously, the IO size is always
128KB. The data transfers in the system, however, are
broken up differently on the different fabrics. The
StarFabric has a maximum transaction size of 128Bytes –
this also means that the InfiniBand will only transfer a
packet of size 128Bytes (all that is received from the
StarFabric). In this simulation, the 128KB data requests
are represented as a series of 128 messages of length
1024Bytes. The larger message size allowed for faster
simulation computation – rather than 1024 x128Byte
messages. It is assumed that the buffers in the StarFabric
and InfiniBand chips are smaller than 128KB, therefore
1024Byte messages are more accurate than 128KB
messages. The connection rates for InfiniBand and
StarFabric are both calculated using 128Byte packet
overheads.

4.2 Connections

The connections form the paths by which the messages
may travel between the modules. The module connections

 2

Milkovits

are defined as InfiniBand and StarFabric with their
associated data rate (refer to table 1.0) or as module
communication connections for simulation control traffic.
The data rates may be easily modified from this point to
reflect the overhead in the fabric technology. The
connection to the PCI bus module does not have a data rate
because the transaction delay is handled inside the module.

Figure 1: 7-Node Cluster Topology

Figure 2: Internal Node Topology

4.3 Messages

The final component of the simulation is the messages,
which are defined in table 3. The messages represent the

data flow as well as the arbitration and contention in the
simulation.

Table 3 – Message Types

Message
Name

Use Description

startIO Control Signals data request to RAID
modules

Request Control Requests access of link / bus and
destination buffers for transfer.
Contains status of request and
synchronizes data transfers.

qCheck Control Prompts the PCI module to check the
pending queues for messages. If a
pending message is found in the
queue, the PCI module will move the
message in transit to the queue and
pop the first message off the queue
for transfer.

RDMAWriteMsg Data Flow Represents a 1024Byte data packet
moving through the system

Two of the messages (RDMAWriteMsg(RWM) and
request) deserve a closer look at their components. Note
that both messages have similar components. The reason
for this that the module granting buffer and link resources
needs to know where the RWM is going. So, the request
message needs to contain most of the information about the
RWM.

Table 4 – Message Components

MESSAGE COMPONENT DESCRIPTION
request
 int source source module type
 int index source module index
 int dest destination gige of RWM
 int node destination node of RWM
 int chip destination chip of RWM

 int qNum
local queue number that
this message is tied to

 int srcNode
source node (parent of
sending module)

 bool link device has link access
 bool buffer device has buffer access
RDMAWriteMsg
 int source source module type
 int destination Destination GigE number
 int node Destination Node number
 int srcNode Source Node number

int chip
specifies IB chip to
transmit on

Int length

Specifies data packet size
(1024Bytes)

Int transfer

Denotes how much of the
packet is left to transfer
over the PCI bus (see
section 4.1.1 and 4.1.3)

 int source source module type

 3

Milkovits

5 SIMULATION EXECUTION

All data messages are created at the RAID modules and
destroyed at the GIGE modules. The interval of the startIO
messages is calculated from the target bandwidth of the
node. Target bandwidth is pulled from the initialization file
at the beginning of each run. When a startIO message
fires, the RAID controller module will create 128
1024Byte messages starting at a time delayed by the
distribution model discussed above. The destination node
and Gigabit Ethernet device is determined by a uniform
distribution to balance the workload across the cluster.

5.1 Managing Link and Buffer Contention

Each component in the system is responsible for accessing
the necessary resources to transfer the RWM and ensure a
destination buffer. If the component also manages buffers,
it must make sure to release the buffers when the RWM is
transmitted to the next component.
 The rqst messages are used by the modules to try and
access a link and buffer from the destination modules. The
destination will return the rqst message as soon as the link
or buffer is available.

5.1.1 Sending a Message

Before a module transmits the RWM message, it must gain
access to the link or bus and the destination buffer. The
rqst messages are used to manage these transactions over
the control connections. e.g. The RAID module will send
the rqst message to the PCI bus module, if the bus is
available, the link message component is set to true and is
returned to the RAID module. Now the RAID module
attempts to grab a destination buffer on the StarFabric
bridge. The rqst message is sent to the SG2010 module.
When the buffer is available, the SG2010 module sets the
buffer message component to true and returns the
message. When both messages are sent and returned, the
RWM message may be sent. Any new RWM messages
that are received at the RAID module during this process
are simply added to the queue.
 Connections over StarFabric and InfiniBand will
request both the link and buffer from the same destination
module. This is necessary to assure that the link
bandwidth is not exceeded by multiple threads of messages
transmitting at once.

5.1.2 Receiving a Message

When an RWM message arrives at a StarFabric or
InifiniBand module, the module checks to see if there are
any pending rqst messages in the linkArray before
releasing the link. If any messages are found, they are
returned to the requesting module. Likewise, when an

RWM message is sent from a module, the module checks
if there is an outstanding rqst message before it releases the
buffer. If so, that message is returned and the resources
remain used, otherwise, the buffer resources are returned.

RWM Queue empty? yes

no

Enqueue RWM

Send rqst
message

rqst Send rqst to
Buffer module

Send RWMrqst Pop RWM
From queue

Figure 3: RAID module buffer/bus access

5.2 A Word on the PCI Bus

The PCI bus is the common component between every
fabric in the system and, hence, every module in this
simulation. The PCI bus has the challenges of granting
access to each device appropriately, of assuring that no one
device hogs the bus, and of transferring the data to its
destination.

5.2.1 Transferring Data According to PCI bus speed

The RWM transfer component is set to the length of the
message upon entry to the PCI bus module. While a
message is being transferred (in the work array of the PCI
module), the qCheck message is scheduled for an interval
of 240nS(16 clock cycles). This simulates the time to
transfer 128Bytes of data. When the qCheck message
fires, the transfer value on the RWM is decremented by
128. This continues, (as long as there are no other
messages arbitrating for the bus), until the transfer value is
0, at which time the RWM message is sent to the
destination module. If there are other messages arbitrating
for the bus, they are moved to the work array and an
additional 45nS is added to the qCheck time to account for
PCI overhead (Stanley and Anderson). See section 5.2.3
for more information about PCI bus arbitration.

5.2.2 Granting Bus Access

The PCI bus module’s pciBus table has an entry for each
device connected to the PCI bus. When that device
requests the bus, the array value for that device is set to 0.

 4

Milkovits

6 RESULTS When the transaction for that device completes, the array
value is incremented to 1. If a device requests the bus, but
the pciBus[devNum] entry is set to 0, the request message
is held until the previous transaction completes and the bus
is released. At this point, the entry remains at 0, and the
request message is returned to the device requesting the
bus.

The simulation is designed to be self-throttling. When the
startIO message fires, the RAID module will check the
current RWM queue depth. If the queue contains more
than 4096 messages, the IO is skipped. Because the IO is
skipped before the disk access delay is applied, it throttles
the system bandwidth without smoothing the peaks of the
queue at the resulting bandwidth.

rqst pciBus[devNum]
> 0?

yes

no

Return rqst

store rqst in
reqArray[devNum]

Decrement
pciBus[devNum]

 The simulation runs were for 1 second of simulated
time with a .2 second ramp-up time. Each run was seeded
with a different random number. The short simulation time
is due to a lack of real time. I plan to execute longer runs
and reevaluate the results.

6.1.1 Model Verification

In order to verify the correct performance of the simulation
model, each path of the simulation was run independently
and the resulting bandwidth was verified against the
maximum link bandwidth.

6.1.2 Cluster Test Results
Figure 4: Granting bus access

Table 5: minimum node bandwidth vs. actual system
bandwidth 5.2.3 Maintaining Bus Fairness

Run
Minimum Sim Node
Bandwidth

Actual System Node
Bandwidth

1 239
2 240
3 240
4 240
5 240

225

As mentioned in 5.2.1, the qCheck message is used to
maintain bus fairness. Note that every device can send a
RWM message to the PCI bus, but only one message may
be transferred at a time. Each additional RWM message is
pushed to the queue. If the RWM transfer is not 0 after the
qCheck message fires, the queue is checked for RWM
messages. If there is an RWM message in the queue, it is
copied to the work array and the RWM in the work array is
enqueued in the queue.

From the cluster test, I took the minimum node bandwidth
and entered into Table 5. The minimum bandwidth from
the cluster was used because the video system must sustain
a constant bandwidth. Also, each node in the cluster must
output the same bandwidth, therefore the minimum must
be used. This bandwidth is within 7% of the actual system
bandwidth.

qCheck
Message

RWM->transfer
== 0?

Decrement work
RWM->transfer

yes

no

queue empty?
yes

no

Swap work and
queue RWM

(add PCI overhead)

Restart qCheck
Message + 240ns

Send RWM

queue empty?

no

Move RWM from
queue to work

yes return
reqArray[devNum]reqArray[devNum]->

Exist?

yes Delete
qCheck

no

Increment
pciBus[devNum]

Figure 5: Bus Fairness Algorithm

 5

Milkovits

Shanley, Tom and Anderson, Don. 19xx. PCI System
Architecture. FreedomTown, USA, Mindshare Inc. .

Node Bandwidth Per Run

230

235

240

245

250

255

260

1 2 3 4 5

Run

Ba
nd

w
id

th
 (M

Bp
s)

Node0
Node1
Node2
Node3
Node4
Node5
Node6

StarGen Bridge & Switch. Data Sheets on SG2010 and
SG1010 devices [online]. Available via
< /products/>www.stargen.com [accessed March
28, 2005].

StarGen, StarFabric, Universal Switched Interconnect
Technology [online]. Available via
<http://www.starfabric.org/pdf/starfabric_overview.pd
f> [accessed March 31, 2005].

Varga, Andras. 2004, OMNeT++ Version 3.0 User Manual
[online]. Available via <http://www.omnetpp.org/>
[accessed March 28, 2005].

Figure 6: Node Bandwidth per Run

The variance between nodes was noticeable, and there
were some nodes, such as 0 and 4, that consistently ran
faster than the rest of the cluster. This may be due to the
cabling scheme of the InfiniBand interconnects.

AUTHOR BIOGRAPHY

MARTIN N. MILKOVITS received his B.A. in
philosophy of mathematics from Colby College in
Waterville, ME. He is currently a graduate student at
Rivier College in Nashua, NH and a test engineer at
SeaChange International.

7 CONCLUSION

This model shows that a simulation model can demonstrate
the performance of a digital video cluster. This baseline
model may now be modified to represent proposed
enhancements of the cluster topology or connecting
technology. Potential improvements that may be modeled
include adding a second DMA engine on the RAID
controllers, scheduling the I/Os to avoid conflict on the
PCI busses and moving to PCI-X.

ACKNOWLEDGMENTS

The author would like to sincerely thank SeaChange
International and Professor Vladimir Riabov for their
support and guidance.

REFERENCES

Fujitsu MAT hard drive specifications [online]. Available
 via < www.fcpa.com/products/hard-drives/mat-3300-
 10k-rpm/specifications.html> [accessed March 28,
 2005].
InfiniBand Transaction Information. Overhead and Fabric

specifications [online]. Available via
<http://www.mellanox.com/technology/shared/InfiniB
andFAQ_FQ_100.pdf> [accessed March 28, 2005].

InfiniBand Switch Information. Data Sheets on Mellanox
21108 Infiniband Switch device [online]. Available via
<

http://www.mellanox.com/news/press/pr_
110601.pdf
> [accessed March 28, 2005].
Law, Averill M. and Kelton, W. David. 2003. Simulation

Modeling and Analysis. McGraw-Hill New York.

 6

http://< www.fcpa.com/products/hard-drives/mat-3300-10k-rpm/specifications.html>
http://< www.fcpa.com/products/hard-drives/mat-3300-10k-rpm/specifications.html>
http://www.wintersim.org/authkit.htm
http://www.mellanox.com/news/press/pr_110601.pdf
http://www.mellanox.com/news/press/pr_110601.pdf
http://www.wintersim.org/authkit.htm
http://www.stargen.com/

	INTRODUCTION
	SIMULATION MODEL CHOICES
	Input Model
	Output Model

	SIMULATION MODEL IMPLEMENTATION
	SIMULATION MODEL COMPONENTS
	Modules
	Connections
	Messages

	SIMULATION EXECUTION
	Managing Link and Buffer Contention
	Sending a Message
	Receiving a Message

	A Word on the PCI Bus
	Transferring Data According to PCI bus speed
	Granting Bus Access
	Maintaining Bus Fairness

	RESULTS
	
	Model Verification
	Cluster Test Results

	CONCLUSION

