KINETIC AND QUANTUM PHENOMENA IN EXPANDING GAS FLOWS

V. V. Riabov

Rivier University, 420 South Main Street, Nashua, NH 03060, USA, vriabov@rivier.edu

This paper presents the results of numerical studies of rotational-translational nonequilibrium, kinetic, and diffusive processes in spherical expanding gas flows. Computations are made using the direct simulation Monte-Carlo (DSMC) method [1, 2] and the solver [3] of the Navier-Stokes equations in terms of classical and quantum concepts [3-7], at the Knudsen numbers Kn_* from 0.0015 to 0.03 and pressure ratios $P = p_0/p_a$ from 100 to 10,000.

Fig. 1 *Left*: Rotational T_R (filled markers) and translational T_t (empty markers) temperatures in spherical flow at various pressure ratios: P = 17.6 (circles), 78.9 (triangles), and 175.7 (squares). *Right*: T_R and T_t at various relaxation parameters: $B_* = 17$ and 95.2.

Experimental studies of underexpanded N_2 jets [8, 9] discovered a delay of rotational temperature $T_{\rm R}$ compared to the translational one $T_{\rm t}$. A drop in the gas density downstream leads to a decrease in the number of collisions and the $T_{\rm R}$ departure from the equilibrium value [6]. The Navier-Stokes equations and relaxation equation, based on the τ -approximation [7], are solved by the numerical method [3]. Solutions depend on Reynolds number Re_* , $P = p_0/p_a$, temperature T_a , and relaxation parameter B_* that is calculated as a ratio of $p\tau_R$ and viscosity. Here index "a" refers to background conditions and index * refers to sonic conditions. The distributions of T_R and T_t at $Re_* = 161.83$, $B_* = 28.4$, $T_a = 295$ K, and various P values are shown in Fig. 1 (*left*). Computations confirm the delay of $T_{\rm R}$ compared to $T_{\rm t}$. Inviscid flow parameters T_R and T_t were estimated in [6]. The decrease of the main relaxation parameter B_* leads to a faster "frozen" value of T_R in the supersonic-flow zone (see Fig. 1, right). The spherical flow could be separated by the coordinate $R_{\rm S}$, at which the stream parameters are extreme, into two regions with different properties [10]. In the first "internal" region the flow is supersonic. The flow parameters depend on the Reynolds numbers Re_* and Re_{S} (or related Knudsen numbers Kn_{*} and Kn_{S}) [6]. In the second "external" region, there is a transition of supersonic flow through the spherical shock wave into a subsonic stream. The Reynolds number Re_a (or related Knudsen number Kn_a) based on the length scale parameter at infinity, $R_a = r_* P^{1/2}$ [11], is the major similarity parameter in this region. The similarity factor $K_2 = Re_a = Re_*/P^{1/2}$ [11] can be used to study the flow structure here. The major changes of $T_{\rm R}$ and $T_{\rm t}$ occur in the shock wave at values of the normalized distance parameter $r/R_{\rm a}$ about 1. The shock width decreases with increasing K_2 .

Fig. 2: *Left*: The rotational relaxation parameters $p\tau_R(T_t)$ in N_2 expanding into a vacuum. *Right*: The rotational T_R temperature in freejet expanding flow of N_2 .

At the decrease of T_t , adiabatic collision conditions [12] should be taken into account, and the relaxation time $p\tau_R$ increases due to the sharp decrease of the rotational transfer probabilities. Following [4], $p\tau_R$ values were calculated for N_2 at stagnation temperature $T_0 =$ 295 K [see Fig. 2, *left*] under the conditions of aerodynamic experiments in underexpanded jets [6-9]. At $T_t > 273$ K, numerical results correlate well with experimental data [14, 15]. In the expansion of nitrogen, starting at $T_0 = 300$ K, the maximum population of molecules occurs at rotational levels j* from 6 to 4 [4]. The results of calculating $p\tau_R$ for j* = 6, 5, and 4 are shown in Fig. 2 (*left*). The calculations based on the classical concept [13] (see solid line in Fig. 2, *left*) do not show a tendency of increasing $p\tau_R$ with the decrease of T_t at $T_t < 100$ K.

For qualitative estimations, the energy relaxation time is replaced by the relaxation time of the level j*. Figure 2 (*right*) shows the distributions of rotational temperature T_R along the axis of N_2 jet at $B_{*j} = (\rho ur/\rho \tau_R)_{*j} = 2730$, $p_0 r_j = 240$ torr mm and $T_0 = 295$ K. The result of using the classical mechanics concept [13] (solid line) does not correlate the experimental data (filled squares [8], triangles [9]) for T_R , which are lower and upper bounds on the distribution of rotational energy along the N_2 jet axis. Numerical results, based on the quantum concept for values of $\rho \tau_R$ at j* = 6 and 5, correlate with the experimental data [9].

Fig. 3 Argon mole fraction distributions (*left*) and species temperatures (*right*) in spherical expanding flow of Ar-He mixture at different Knudsen numbers Kn_* and pressure ratios P.

Kinetic and diffusion effects in spherical expanding Ar-He flows (mole fraction $f_{Ar,*} = 0.5$) were studied using the DSMC method [2] at Kn_* from 0.0015 ($Re_* = 1240$) to 0.015 ($Re_* = 124$) and P from 100 to 10,000. Both phenomena influence the shock thickness, parallel and transverse species' temperatures, diffusive velocities, and species separation. Distributions of f(Ar) and species temperatures are shown in Fig. 3. The species concent-

ration changes insignificantly at $r < R_a$. Accumulation of the light component occurs in the spherical shock (see Fig. 3, *left*) due to baro-diffusion effects [2]. For near-continuum flow conditions at K_2 =12.4, the DSMC data correlates with solutions of the Navier–Stokes equations [16] (see Fig. 3, *left*). In contrast to the one-temperature continuum approach [16], the DSMC method allows simulating multi-temperature kinetic media. It is found that T(He) increases more rapidly than T(Ar) in the supersonic zone at $r < R_a$ (see Fig3, *right*).

Fig. 4 *Left*: Parallel temperatures of species in spherical expanding flow of *Ar-He* mixture at different Knudsen numbers Kn_* and pressure ratios *P*. Right: Argon mole fraction, pressure and number density in expansion of argon into helium at $Kn_* = 0.014$ and $K_2 = 0.785$.

In supersonic flow, the effect of freezing the parallel temperature *TX* found in [1] is confirmed (see Fig. 4, *left*). The freezing comes first for heavier molecules (*Ar*) at smaller values of *Kn**. The transverse temperature *TY* for both species follows the temperature in the isentropic expansion [1, 2]. The spherical expansion of a binary gas mixture into a flooded space was analyzed in the case of the presence of a diffusive flux at the infinity $r >> R_a$. The numerical results were calculated for the case of the expansion of *Ar* with little *He* content ($f_{Ar,*} = 0.99$) into a space filled by *He* with a small admixture of *Ar* ($f_{Ar,a} = 0.02$). The distributions of argon concentration f_{Ar} , number density, and pressure at Kn* = 0.014, Re* = 78.5, and $K_2 = 0.785$ are shown in Fig. 4 (*right*). The case of the expansion of *He* into a space filled by *Ar* was analyzed in [2]. The results demonstrate that the background gas does not penetrate through the spherical shock wave into the inner supersonic region of the flow.

References:

[1] Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. London: Oxford University Press (1994)

- [2] Riabov, V.V.: J. Thermophys. Heat Transf. 17(4) (2003)
- [3] Riabov, V.V.: Uch. Zap. TsAGI 9(5) (1978)
- [4] Lebed, I.V., Riabov, V.V.: J. Appl. Mech. Techn. Phys. 20(1) (1979)
- [5] Lebed, I.V., Riabov, V.V: J. Appl. Mech. Techn. Phys. 24(4) (1983)
- [6] Riabov, V.V.: J. Aircr. **32**(3) (1995)
- [7] Riabov, V.V.: J. Thermophys. Heat Transf. 14(3) (2000)
- [8] Marrone, P.V.: Phys. Fluids 10(3), (1967)
- [9] Borzenko, B., Karelov, N., Rebrov, A.K., et al.: J. Appl. Mech. Techn. Phys. 17(5) (1976)
- [10] Gusev, V.N., Klimova, T.V., Riabov, V.V.: Fluid Dyn. 13(6) (1978)
- [11] Gusev, V.N., Mikhailov, V.V.: Uch. Zap. TsAGI 1(4) (1970)
- [12] Lebed, I.V., Umanskii, S.Ya.: Khimiya Visokikh Energii 10(6) (1976)
- [13] Parker, J.G.: Phys. Fluids 2(4) (1959)
- [14] Brau, C.A., Jonkman, R.H.: J. Chem. Phys. 52(2) (1970)
- [15] Lordi, J.A., Mates, R.E.: Phys. Fluids 13(2) (1970)
- [16] Gusev, V.N., Riabov, V.V.: Fluid Dyn. 13(2) (1978)