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The problem of redistribution of translational and rotational energy has been solved for diatomic gases within
the framework of the Chapman–Enskog method and the Parker model in the general case of the arbitrary energy
exchange ratio. The nonequilibrium gasdynamic equations, transport coef� cients, and relaxation time have been
found for rotational-translational processes in a diatomic gas. The calculations of relaxation time, viscosity, thermal
conductivity, and diffusion coef� cients are carried out in the temperature range from 200 to 10,000 K for nitrogen.
The calculated parameters and coef� cients are compared with the values obtained by the Mason–Monchick ap-
proximate method as well as data from experiments in ultrasonic, shock-wave, and vacuum devices. The correlation
of the theoretical and experimental data is satisfactory. The applicability of one- and two-temperature relaxation
models is discussed. The numerical solutions of the obtained system of the Navier–Stokes equations are analyzed
for the cases of spherical expanding nitrogen � ow and supersonic rare� ed gas � ow near a sphere.

Nomenclature
Ai , B i , = roots of the integral equations; Eqs. (2–5)
Ai ( p) , G i

b = impact parameter, m; Eq. (12)
D0 = self-diffusion coef� cient, m2/s; Eq. (28)
d = internuclear distance, m
d ¤ = distance between centers of mass and force, m
E = energy, J
I0, I2 = modi� ed Bessel functions
Kn = Knudsen number
KnR = Knudsen relaxation parameter
M = momentum of momentum, kg¢ m2/s
P( p)

i = Waldmann–Trubenbaher polynomials;
Eqs. (2–5)

Prs = components of viscous stress tensor, N/m2;
Eqs. (8) and (35)

p = static pressure, N/m2

pi = initial reduced angular momenta; Eq. (13)
Q = constant; Eq. (9)
qr = components of heat-� ux vector, W/m2;

Eqs. (7) and (34)
r = intermolecular distance, m; Eq. (9)
r p = parameter of the turning point, m
r0 = parameter that takes on a value in a narrow

range 1/ a around r p; Eq. (12)
S (t)

(k)i = Sonine polynomials; Eqs. (2–5)
T = temperature, K
V i

r = components of diffusion velocity vector, m/s;
Eqs. (6) and (33)

V0 = isotropic interaction potential
v = velocity of relative motion, m/s
y = intermolecular force parameter, a d ¤ /2
Z R = average number of collisions
a = inverse radius of action of the intermolecular forces,

m ¡ 1; Eq. (9)
e = anisotropy parameter, 2I2(y) / I0(y); Eq. (9)
e R = rotational energy per molecule, J/mol
e 0 = depth of the potential energy well, 96.6 K
g = dynamic viscosity, kg/(m s)
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H = characteristic time of � ow, s
h = angle between the intermolecular and interatomic

axes, rad; Eq. (9)
k = thermal conductivity, W/(m K)
l = mass of an atom of the molecule, kg
q = gas density, kg/m3

s R = rotational-translational relaxation time, s
} i = initial phases; Eq. (10)
} (1)

i = solution of the Boltzmann equation; Eq. (1)
v = angle of elastic scattering, rad; Eq. (16)

I. Introduction

S EVERAL attempts had been made in the past in deriving the
nonequilibrium gas dynamic equations from the � rst principles

of the kinetic theory of gases. In the simple cases of near-equilibrium
and slow-relaxation processes of the energy exchange between inter-
nal and translational degrees of molecular freedom, the gas dynamic
equations and transport coef� cients were derived by Ferziger and
Kaper1 and Kogan2 for nonequilibrium polyatomic gas mixtures by
using theChapman–Enskog iteration method to solve theBoltzmann
equation. This technique was developed by Alekseev,3 Galkin et al.,4

Matsuk and Rykov,5 and Kogan and Makashev6 for the case of the
arbitrary energy exchange ratio. However, these studies had mostly
academic interest. Practical results were only obtained by Matsuk
and Rykov5 for the system of model equations.

In the present study the general case of the arbitrary energy ex-
change ratio is considered for the real diatomic gas molecules with
rotational degrees of freedom (see Sec. II). The transport coef� -
cients and reaction rates for rotationally excited gas are obtained
by using the technique of integral brackets.1,7,8 In calculating of
the correction term related to the distribution function of the zeroth
approximation, the linear-dependence transformation of the diffu-
sion thermodynamic force vectors to the linear independent vector
set has been done by the linear transformation method of Matsuk
and Rykov.5 In this case the matrix transformation elements are
the Waldmann–Trubenbaher polynomials. Integral brackets are cal-
culated in terms of classical mechanics.7,8 The molecular collision
model is based on the Parker concept.9 The analytical form of the en-
ergy and momentum parameters is found in this case (see Sec. III).
The form is used for calculations.

In Sec. IV the collision model is applied for evaluation of the
rotational-translational relaxation time s R . The sixfold integrals are
evaluated by the Monte Carlo technique (see Sec. V) in the temper-
ature range from 200 to 10,000 K for nitrogen. The conditions of
one- and two-temperature approximations for the relaxation time are
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considered for nitrogen. The two-temperature approximation was
also analyzed by Lebed and Riabov10,11 for para-hydrogen (p-H2 ).
Willauer and Varghese12 studied rotational relaxation in p-H2 using
a direct simulation Monte Carlo method with state-to-state colli-
sion cross sections. The rotational relaxation times for molecular
hydrogen were calculated by Sharma13 using a coupled rotation-
vibration-dissociation model. In the present study the rotational re-
laxation processes for molecular nitrogen and applications of the
theory are discussed for testing in ultrasonic devices, shock-wave
tubes (see Sec. VI) and underexpanded jets in vacuum chambers
(Sec. VII).

The thermodynamic force transformation technique and the
Mason–Monchick approximation are used in this study (Sec. VIII)
to � nd analytical expressions for heat � ux and diffusion velocity of
rotational levels. The Chapman–Enskog iteration method of solv-
ing the Boltzmann equation in this case was described by Lebed and
Riabov10 in detail. A set of the nonequilibrium gas dynamic equa-
tions is found in Sec. IX for the general case of the arbitrary energy
exchange ratio. Rotational relaxation time and transfer coef� cients
have been calculated by the technique of Lebed and Riabov.11 The
viscosity and thermal conductivity are compared with experimental
data and the Mason–Monchick approximations.14

The combined effect of the rotational-translational relaxation and
the viscosity and thermal conductivity processes has been numeri-
cally studied in Sec. X in cases of spherically expanding � ows and
nonequilibrium gas � ow near a sphere. In the last case a good cor-
relation between numerical and experimental data has been found.

II. Chapman–Enskog Method
and Rotational Relaxation

To solve the Boltzmann equation in the case of rotational-
translational relaxation, we will follow the technique described by
Galkin et al.,4 Matsuk and Rykov,5 Kogan and Makashev,6 and
Lebed and Riabov.10 The introduction of the Knudsen number Kn
and parameter KnR , which characterizes the ratio of the speci� c
nonelastic collision probability to the speci� c elastic one, is neces-
sary to apply the Chapman–Enskog iteration technique.

At the hydrodynamic stage the solution of the Boltzmann equation
is presented as an asymptotic series based on the small parameter
Kn. The � rst approximation term was obtained by Galkin et al.4

The analysis of Galkin et al.,4 Kogan and Makashev,6 Lebed and
Riabov,10 and Riabov15 indicated that the elastic collision term and
the nonelastic collision one have the order of unity and (KnR ),
respectively.

The set of diffusion thermodynamic forces is linearly depen-
dent. Following the technique of Matsuk and Rykov5 and using
the Waldmann–Trubenbaher polynomials, a new set of linearly in-
dependent vectors for solving the problem has been introduced at
this stage. The general solution of the problem is found as the sum
of the particular solution and the general solution of the uniform
equation. This solution is the following10:
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The coef� cients Ai , B i , Ai( p) , and G i are the roots of the integral
equations given in the study of Lebed and Riabov.10 The solutions of
the integral equations could be found as series of the Sonine (S(t)
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In calculations we used the two � rst nonzero terms in the series
(2–5). The linear system of second-order equations has been solved
by the maximum principle1,4,5 and variation technique.1,3 ¡ 5 Using
Eqs. (1) and (2), the expressions for the components of diffusion
velocity vector V i

r , heat-� ux vector qr , and viscous stress tensor Prs

are the following:
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The scaler term of solution (1) can be used for evaluation of the
correction terms in the rotational rates.10 The transport coef� cients
can be found by comparing terms and coef� cients of Eqs. (6–8).

III. Interaction Potential Model
for Diatomic Molecules

Within the framework of the Parker model,9 the interaction po-
tential of the molecules is represented as the sum of the exponential
attraction between the centers of mass and the exponential repul-
sion between the centers of force, placed on the internuclear axis
at a distance d ¤ < d from each other, where d is the internuclear
distance. The value of the parameter d ¤ can be estimated from
experiments10,11 and is in the range from 0.557 to 0.62.

Expansion of the short-acting part of the potential in a Fourier
series led to the generally accepted form of anexpansion in powers of
the cosines of the angles between the interatomic and intermolecular
axes. The retention of only the � rst two terms of this expansion is
justi� ed by the fact that anisotropy parameter e = 2I2(y) / I0(y) is
small.

The interaction potential is represented in the form9

Vr = Qe ¡ a r (1 + e cos 2h i + e cos 2h j ) (9)

where h i and h j are the angles between the intermolecular and in-
teratomic axes of the molecules i and j .

The system of classical equations of motion with a potential
[Eq. (9)] developed by Parker9 is solved within the framework of
the theory of perturbations with respect to the parameter e . In the
zeroth approximation the rotational state of the molecules does not
change as a result of the collision.11 In the narrow range of action
of the intermolecular potential at r » 1/ a , the centrifugal energy
l v2b2 / 2r 2, which varies only slightly with r , in accordance with
the effective-wave-number approximation developed by Nikitin and
Osipov,16 is replaced with the constant value l v2b2 /2r 2

0 .
In the � rst order of the theory of perturbations10,11,15 with respect

to the parameter e , analytic expressions for the resulting angular
velocities of the molecules are

} i = ¡
16 p li sin2 w i

a 2d2sh2 : i

(10)

: i =
2 p li

a g
q

1 ¡ q2 + 2e 0
| g2kT

(11)



406 RIABOV

w i = } i ¡ arcsinq , q = b / r0 (12)

li =
p

2pi d ¡ qg / r0 , g =
p

l / kT v (13)

The additional acceleration in the region of interaction as a result
of the remote-acting forces is taken into account in Eqs. (10–13)
according to the study of Nikitin and Osipov16 by replacing l 2 / 2
with l v2 /2 + e 0, where e 0 = 96.6 K is the depth of the potential
well8,17 (also see Refs. 11 and 15).

The expressions for the energy D E = D E 0 / l v2 / 2 = D Ei + D E j

and the momentum D M = D M 0 / l vr0 = D Mi + D M j transferred
at the time of collision from the translational to the rotational degrees
of freedom take the form
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Nikitin and Osipov16 found that the angle of elastic scattering
v for a short-acting potential can be approximated by the angle of
elastic scattering of solid spheres. At the condition that the calculated
values of D E are much smaller than kT , the angle of scattering
is calculated on the assumption that the transfer of energy from
the translational to the rotational degrees of freedom takes place
instantaneously at the point r p . As a result, we have

v = b ¡ u , u = arcsin

³
sin b ¡ D Mp

1 ¡ D E

´
(16)

Here b = arcsin (q) is the angle between the velocity vector v of
the relative motion of the noninteractive molecules and the vector
drawn from the center of scattering to the point r p .

The isotropic interaction potential for the nitrogen molecules
V0(r) is approximated by data from the study of Belyaev et al.17

in the range r > 3.1096 ÊA. The short-acting branch of V0(r ) is
approximated by the exponential function Q exp( ¡ a r) at each
point of turning r p . The value of the parameter a is calculated as
a (r p ) = ¡ d V0(r) /dr atr p . The parameter r0 is equated to the inte-
gral ( X (2,2) ¤ )1/ 2 , calculated by Belyaev et al.17 for the exact potential
V0(r) at r » 1/ a . The functions a (T ), e (T ), r p (T ), and r0(T ), cor-
responding to d ¤ = 0.62 were calculated by Lebed and Riabov.10,11

IV. Rotational Relaxation Time
Two independent de� nitions of relaxation time are widely used.

In the � rst case the general expression for the temperature depen-
dence of the rotation time s R1(T ) is obtained by using the Chapman–

Enskog iteration method of solving the Boltzmann equation for a
gas of particles, which possess internal degrees of freedom.1 In the
second case the relaxation time s R2(T ) is found directly from the
relaxation equation by calculating the rate of increase of the inter-
nal energy of the molecules, which originally were not internally
excited.16

To describe the rotational relaxation of a gas of homonuclear
diatomic molecules, the speci� c models of the intermolecular in-
teraction have been used for calculating the redistribution of the
rotational and translational energies upon collision. The main dis-
advantage of such models8 like the rough-sphere, loaded-sphere,
spherocylinder, and ellipsoid models is that the real intermolecular
interaction potential is replaced with the potential of rigid frames of
different shapes. As a result, the average number of collisions calcu-
lated by means of these models, which is required to put the system
into equilibrium with respect to the rotational degrees of freedom,
Z R1(T ) = s R1 / s , where s is the translational relaxation time, is in-
dependent of the temperature (see also comments in Ref. 18). This
fact contradicts the experimental data.8,19

The parameter Z R2(T ) = s R2 / s , calculated by Parker9 and ob-
tained more precisely by Brau and Jonkman19 corresponding to the
plane collision of the initially unperturbed rotators, increases mono-
tonically with the increase in temperature because of the potential

well. This effect in the range of temperatures tens of times as high
as the potential well depth was explained by Nyeland.20 The values
of Z R1(T ) and Z R2(T ) for nitrogen were calculated by Lebed and
Riabov10,11 at T ¸ 300 K.

The process of establishing equilibrium with respect to the rota-
tional degrees of freedom in terms of the s approximation can be
described by the relaxation equation21

de R
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=

¡
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where e R is the speci� c rotational energy and e ±
R is its equilibrium

value. It was noted11,15,21 that Eq. (17) holds for small deviations
from equilibrium (e ±

R ¡ e R ) / e ±
R ¿ 1. Parameter s R2(T ) could be de-

termined from Eq. (17) as the ratio of e ±
R to the rate of growth of the

energy of the initially unexcited rotators.21 In the case considered
here, this rate can be determined by averaging of the parameters in
Eqs. (14) and (15), in which we must set p1 = p2 = 0:
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The effect of the initial distribution with respect to the rotational
states was estimated by Lebed and Riabov.10,11 They assumed that
at time t = 0 this distribution corresponds to the Boltzmann dis-
tribution with the temperature TR 6= 0. Under these conditions the
rotational relaxation time s R becomes a function not only T but
TR as well. The values of p s R (T , TR) and Z R (T , TR) were cal-
culated by Lebed and Riabov11 for nitrogen and para-hydrogen at
0 · TR · 1200 K.

As in the case of the rotational relaxation of nitrogen investigated
by Lebed and Riabov,11 a strong dependence of the relaxation time
s R on TR in para-hydrogen was found.11,12 The use of the two-
parameter function s R (T , TR) improves the approximate calculation
obtained with Eq. (17). The results10,11 indicated that the initial
distribution according to rotational levels must be taken into account
within the framework of the s approximation.

The applicability of the Eq. (17) for rare� ed hypersonic � ows
had been reviewed by Lumpkin et al.22 Following the technique of
Rahn and Palmer23 and Koszykowski et al.,24 they developed a new
algorithm that involves solving the master equation for stationary
adiabatic rotational relaxation and the empirically � t relations for
the upward and downward transition rates.

In the present study the rotational-translational energy exchange
process is considered at KnR » 1, and s < s R1(T ) ¿ H . Under the
considered conditions the rotational energy parameters e ±

R and e R

differ from each other by a small quantity proportional to the
Knudsen number Kn. The general expression1,10,11,15 for p s R1(T )
is found by solving the Boltzmann equation, using the Chapman–

Enskog method:
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The temperature is determined on the basis of the total molecular
energy. Formula (20) differs by factor of 5/3 from the corresponding
quantity obtained in Ref. 21 by determining the temperature on the
basis of the kinetic energy of the molecules.

V. Numerical Method
The sixfold integrals are calculated at 200 points over the range

of temperatures 200 K · T · 10,000 K, using the Monte Carlo
technique,11 with 4000 tests at each point. The data for intermediate
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points are determined by means of the interpolation technique10,25

using cubic splines of defect 1 with smoothing. The resulting es-
timated accuracy of the calculations is 1.5%. The higher orders of
the theory of perturbations with respect to the parameter e make
a substantial contribution at T < 400 K, and the accuracy of the
calculations is lower under these conditions.

VI. Numerical Results
The results of calculations p s R2(T ) and p s R1(T ) according to

formulas (18–20) are shown in Figs. 1 and 2, correspondingly (solid
lines and empty squares). The experimental data (� lled squares)
acquired by Brau and Jonkman19 and Lordi and Mates26 are also
shown.

The calculations show that, at 200 · T · 10,000 K, p s R1(T ) is
2 or 2.5 times as large as p s R2(T ). This difference is apparently a
result of the adiabatic nature of the energy exchange between the
highly excited rotational states of the molecules.11 The effect of the
initial distribution according to rotational levels was not considered
in this comparison.

The in� uence of the parameters a and d ¤ on Z R2(T ) and Z R1(T )
was analyzed by Lebed and Riabov.10,11 As is shown in Fig. 1
(dashed line and triangles correspond to d ¤ = 0.557), a decrease
in d ¤ causes an increase in p s R2(T ). Lebed and Riabov11 noted that
for constant a both Z R2(T ) and Z R1(T ) remain approximately con-
stant everywhere except at low temperatures, where the additional
acceleration of the molecules caused by the remote-acting forces
should be taken into account. The quantity p s R1(T ) has been used
for interpreting the experimental data on the scattering and absorp-
tion of ultrasound, where the effect of the ultrasound frequency on
p s R1(T ) was disregarded.19 The quantity p s R2(T ) has been used for
interpreting the data of experiments in shock tubes. The available
experimental data,19,26 both on ultrasound [Z R1(T )] and on shock
waves [Z R2(T )], differ from one another by 200–300%, which is ap-

Fig. 1 Parameter p¿R2(T) as a function of temperature: u , solution
of Eq. (18) at d ¤ = 0:62; n , solution of Eq. (18) at d ¤ = 0:557; and j ,
experimental data.19;26

Fig. 2 Parameter p¿R1(T) as a function of temperature: u , solution of
Eq. (20) at d ¤ = 0:62; and j , experimental data.19;26

proximately equal to the difference between p s R1(T ) and p s R2(T ),
as evident from Figs. 1 and 2.

VII. Speci� c Features of Rotational Relaxation
in Freely Expanding Gas Flows

Marrone27 and Borzenko et al.28 studied the translational-rota-
tional relaxation in expansion of a molecular gas into a vacuum.
A signi� cant decrease of the gas density downstream leads to a
decrease in the number of molecular collisions. As a result, the
departure of the rotational energy of the gas e R from the equilibrium
value e ±

R is observed.
Lebed and Riabov29 and Riabov30 studied another cause for the

rotational energy departure. At the decrease of kinetic tempera-
ture Tt , the Messy adiabatic parameter,31 describing energy transfer
between highly excited rotational levels unable to relax, becomes
larger than unity. Adiabatic collision conditions31,32 should be taken
into account in this case. As Tt decreases, the relaxation time s R will
increase because of the signi� cant decrease of the rotational transfer
probabilities.

Using the technique of Lebed and Riabov,29 the rotational-transla-
tional relaxation times were calculated for nitrogen at conditions
of aerodynamic experiments in underexpanded jets.30 The analysis
presented by Lebed and Riabov29,30 demonstrated the considerable
departure of rotational energy from the equilibrium value at tem-
perature T · 100 K and pointed to take into account the quantum
methods under the conditions of experiments in an expanding � ow
of nitrogen. The rotational-translational nonequilibrium processes
were studied by Molodtsov and Riabov,33 Riabov,15,30,34,35 Olynick
et al.,36 Skovorodko,37 and Rebrov and Chekmarev38 in terms of
the full system of the Navier–Stokes equations and the relaxation
equation (s approximation). New solutions have been found in the
present study (see Sec. X.A).

VIII. Transport Coef� cients in Near-Equilibrium
Diatomic Gases

The general expressions for the transport coef� cients were ana-
lyzed by Lebed and Riabov,10,11 Riabov,15 Lordi and Mates,26 and
Taxman.39 Using formulas from Eqs. (6–8), these expressions are
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In Eqs. (21–29) g and g 0 are the coef� cients of shear viscosity
corresponding to rotationally inelastic and elastic collisions, and k
and k 0 are corresponding values of the thermal conductivity.

The simplest approximations for the thermal conductivity coef-
� cient k were analyzed by Ferziger and Kaper,1 Hirshfelder et al.,8

Mason and Monchick,14 and Lebed and Riabov.10,11 Mason and
Monchick,14 analyzing the relations (21–29), set D E = 0 in the � rst
approximation. This approximation was based on the diffusive trans-
fer, but it disregarded the relaxation of the rotational energy. The
relaxation was taken into account partially in the next, second ap-
proximation, in which the term for Z contains not only ( 3

2 ) q D0

but also the � rst term of the sum under the integral sign. As a re-
sult, the expression for the thermal conductivity coef� cient k 2 is the
following:
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In the second approximation the parameter sin2 v was approxi-
mated by its value averaged over the unit sphere, which was equal
to 2/ 3; thus, g = g 0 (Ref. 11). The calculation technique and ex-
pressions for D E [Eqs. (14) and (15)] and v [Eq. (16)] were just
discussed (also see Refs. 10 and 11).

The solid and dashed lines in Fig. 3 show g and g 0 , correspond-
ingly, as given by Eqs. (21–29), whereas the � lled squares indicate
the experimental data of Vargaftik.40 The difference between g and
g 0 is evaluated as 5% in the low-temperature regime. At temperature
T > 1000 K these values correlate well with each other.

The solid line in Fig. 4 shows k , as given by Eqs. (21–29). The
dashed line corresponds to the Mason and Monchick’s second ap-
proximation k 2 . The � lled squares indicate the experimental data
of Vargaftik.40 Mason–Monchick’s � rst approximation14 and the
Aiken approximation1 were analyzed by Lebed and Riabov10,11 in
detail. The present analysis shows that the correlation between the
exact solution, Mason and Monchick’s second approximation,14 and
experimental data40 is acceptable. The small discrepancy between
the theoretical values of g and k and the experimental data (see
Figs. 3 and 4) can be eliminated by a proper choice of the potential
at T < 1000 K.

Fig. 3 Viscosity coef� cient in nitrogen: u , ´, solution of Eq. (21); – – –,
´0 , solution of Eq. (26); and j , experimental data.40

Fig. 4 Thermal conductivity coef� cient in nitrogen: u , ¸, solution of
Eq. (22); – – – , (n ), ¸2, solution of Eq. (30); and j , experimental data.40

IX. Transport Coef� cients in Nonequilibrium
Diatomic Gases (General Case)

Mason and Monchick’s second-order approximation technique14

has been used for calculating the transport coef� cients in the
nonequilibrium case of the arbitrary value of KnR . As it was
just demonstrated, this approximation is very good in the near-
equilibrium case. The procedure of obtaining the coef� cients is
described by Lebed and Riabov10,11 in detail. Using the fact that
the relaxation terms in transport coef� cient formulas are small and
they could be omitted, we � nd from Eqs. (6–8) the following ex-
pressions:

V i
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In the nonequilibrium case1,10,15 the expressions for V i
r and qr are
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In the equilibrium case the parameters h E i and h E 2 i in Eqs. (33–

35) and (36– 41) should be changed to their equilibrium values. In
the relaxation case the small values well proportioned to 1/ p s R1(T )
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should be omitted. It was noticed10,15 that the expressions for V i
r

and qr from Eqs. (36–41) have only the gradients of values h E i
and kT , which characterize the system as a whole. In addition, the
coef� cients at these gradients are the functions of parameters of the
i th level and the system as well. This property of the system of
Eqs. (36–41) is very convenient for applications.29,33 ¡ 35 The similar
expressions were found by Lebed and Riabov41 and Riabov42 ¡ 44 for
multicomponent gas mixtures. In equilibrium case the expressions
in Eqs. (33–35) and (36– 41) are the same as in the study of Ferziger
and Kaper.1

Using Eqs. (33–35) and (36– 41), we can � nd the gas dynamic
equations in the common case as the following:
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In the formulas of Eqs. (42– 46), we have used the s -approximation
method.10 The relaxation time of the i th rotational level has been
approximated by the value of the relaxation time of the rotational
energy s R . The parameter s R should be selected after an analysis of
the rotational-translational relaxation conditions, as it was done, for
example, by Lebed and Riabov.10,29

The closed system of Eqs. (42– 46) contains the coef� cients g 0,
k 0, D0, p s R1(T ), and p s R , which are given in Figs. 1– 4 for nitrogen
at temperatures from 200 to 10,000 K. The parameter q D0 / g 0 is
approximately constant and equals 1.20. The system of Eqs. (42–

46) could be applied at any value of parameter KnR .

X. Two Cases of Rotational Relaxation
in Viscous Gas Flows

The combined effect of the rotational-translational relaxation
and the viscosity and thermal conductivity processes was stud-
ied by Molodtsov and Riabov,33 Riabov,15,29,34,35 Olynick et al.,36

Skovorodko,37 and Rebrov and Chekmarev.38 The full system of
the Navier–Stokes equations and the relaxation equation (42–26),
basedon s -approximation technique, has been solved by the implicit

Fig. 5 Rotational TR and translational Tt temperatures in spherically
expanding � ow of nitrogen: j , TR and u , Tt in viscous � ow; m , TR and
n , Tt in inviscid � ow; and – – – , equilibrium inviscid � ow (TR = Tt ) at
° = 1:4.

technique described by Riabov35 in detail. The structure of spher-
ical expanded � ows and underexpanded viscous jets was analyzed
by Riabov.15,29,35

In the present study the system of Eqs. (42– 46) has been nu-
merically solved in two cases of spherically expanding � ows and
nonequilibrium gas � ow near a sphere. The quantity p s R2(T ) has
been used in calculations.

A. Spherical Expanded Flows of a Viscous Gas

The changes of TR and Tt in the spherical expanding � ow
of nitrogen are shown in Fig. 5. The result of computations for
the Reynolds number Re¤ = q ¤ u ¤ r ¤ / g (T¤ ) = 161.83; K ¤ = q ¤ u ¤ r ¤ /
p ¤ s R (T¤ ) = 28.4; p ¤ / p1 = 41.67; Tt ¤ = TR ¤ , and T01 = 1.2¢ T¤ is
shown by � lled squares (TR ) and empty squares (Tt ). An asterisk
indicates the parameters at sonic conditions. The results for inviscid
nonequilibrium � ow (� lled triangles for TR and empty triangles for
Tt ) are obtained by the method of Lebed and Riabov.29 The dashed
line in Fig. 5 corresponds to equilibrium values (Tt = TR ) for inviscid
gas � ow at the speci� c heat ratio c = 1.4.

The numerical results con� rm the earlier discovered lag-
ging35,37,38 of rotational temperature compared to translational one.
The speed of decrease of TR slows down with the gas expanding in
the inner supersonic area of the � ow. Rotational-translational equi-
librium never exists in front of the shock wave in such � ow and
TR > Tt both in the viscous and inviscid gas � ows.

As the result of gas compression in the shock wave, a fast increase
of translational and rotational temperatures occurs. In the subsonic
area of the � ow behind the shock wave, the temperatures reach the
value of the stagnation temperature T01 .

B. Nonequilibrium Flows of a Viscous Gas near a Sphere

The � ow near a front area of a sphere might be considered as an
example of a compressing nonequilibrium viscous � ow. The cal-
culated values of rotational-translational relaxation time [Eq. (18)]
were used by Molodtsov and Riabov33 in the analysis of the mole-
cular nitrogen � ow near a sphere. A signi� cant difference between
rotational energy and translational temperature distributions was
discussed. The similar effect was studied by Olynick et al.36 com-
paring Monte Carlo methods and Navier–Stokes equations approach
for reentry � ows near the continuum limit. The study of Boyd18 indi-
cates a signi� cant in� uence of the rotational-relaxation time model
on the � ow structure within shock waves in diatomic gases.

In the present study the full system of the Navier–Stokes equations
and the relaxation equations (42– 46), based on s -approximation
technique, has been solved by the implicit numerical technique de-
scribed by Riabov34 and Molodstov and Riabov33 in detail. The gas
� ow of molecular nitrogen was assumed to be undisturbed on the
outer boundary of the computational region located at the distance
of radius of the sphere R from the spherical surface. At the body sur-
face the slip, temperature, and rotational energy jump conditions34

were used.
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a)

b)

Fig. 6 Nonequilibrium rotational TR, translational Tt, and equilib-
rium overall T temperatures at the stagnation stream line near a sphere:
a) Kn1 ;R = 0:08 (Re0;R = 16:86), M 1 = 9, T0 = 298 K, tw = 0:3; j , ex-
perimental data45; and b) Kn1 ;R = 0:017 (Re0;R = 57:4), M1 = 18:8,
T0 = 1600 K, tw = 0:19; j , experimental data.46

The distribution of the nonequilibrium rotational (TR , circles) and
translational (Tt , triangles) temperatures are shown in Fig. 6 for two
cases of rare� ed upstream � ow: a) Knudsen number Kn1 , R = 0.08
(or Reynolds number Re0, R = 16.86), Mach number M 1 = 9, stag-
nation temperature T0 = 298 K, and temperature factor tw = 0.3,
and b) Kn 1 , R = 0.017 (Re0, R = 57.4), M 1 = 18.8, T0 = 1600 K,
tw = 0.19. In the viscous shock layer near a sphere, a signi� cant
difference between the translational and rotational temperatures can
be observed. The shock-layer thickness becomes bigger under the
nonequilibrium � ow conditions than in the case of equilibrium � ow
at TR = Tt (see empty squares in Fig. 6). The numerical results for
TR correlate well with the experimental data of Tirumalesa45 and
Ahouse and Bogdonoff46 (marked by � lled squares in Fig. 6), ob-
tained in wind tunnels by the electron-beam diagnostics. A discrep-
ancy of the results at the leading stagnation point of the sphere can
be explained by the strong in� uence of secondary electrons in the
experiments45,46 as well as by a chosen approximation of the slip
and temperature jump conditions in calculations.

XI. Conclusions
The nonequilibrium gas dynamic equations have been derived for

rotational-translational processes in diatomic gases in the general
case of the arbitrary energy exchange ratio, which is characterized
by parameter KnR . The analytical form of the energy and momen-
tum parameters is found in this case based on the Parker’s molecular
collision model. The calculations of relaxation time, viscosity and
thermal conductivity, and diffusion coef� cients have been carried
out by using the Monte Carlo simulation technique in the tempera-

ture range 200 · T · 10,000 K for nitrogen. The results are applied
for different conditions of ultrasound, shock-wave, and underex-
panded jet experiments.

The calculations show that the rotational relaxation time s R1 , ob-
tained by using the Chapman–Enskog iteration method, is 2 or 2.5
times as large as the time s R2 , which is found directly from the
relaxation equation by calculating the increased rate of the inter-
nal energy of molecules, which originally were not internally ex-
cited. The difference is apparently caused by the adiabatic nature
of the energy exchange between the highly excited rotational states
of the molecules. The quantity p s R1(T ) has been used for inter-
preting the experimental data on the scattering and absorption of
ultrasound. The quantity p s R2(T ) has been used for interpreting the
data of experiments in shock tubes. The available experimental data,
both on ultrasound and on shock waves, differ from one another by
200–300%, which is approximately equal to the difference between
p s R1(T ) and p s R2(T ).

The nonequilibrium viscous gas � ow near a sphere has been stud-
ied. The full system of the Navier–Stokes equations and the relax-
ation equation, based on the s -approximation technique, has been
solved by the implicit numerical technique. The numerical and ex-
perimental data are well correlated.

Acknowledgments
The author would like to express gratitude to I. V. Lebed for his

fruitful participation in developing methods for solving the prob-
lem. Discussions with G. Dubrovskiy, E. Kolesnichenko, S. Losev,
A. Osipov, and S. Umanskiy at earlier stages of this research are
gratefully acknowledged.

References
1Ferziger, J., and Kaper, H. G., Mathematical Theory of Transport Pro-

cesses in Gases, North-Holland, Amsterdam, 1972, pp. 37–229.
2Kogan, M. N., Rare� ed Gas Dynamics, Plenum, New York, 1969, pp.

34–241.
3Alekseev, B. V., “On the Theory of the Enskog Generalized Method,”

Tekhnicheskaya i Eksperimentalnaya Khimiya, Vol. 5, No. 4, 1969, pp. 88–

97 (in Russian).
4Galkin, V. S., Kogan, M. N., and Makashev, N. K., “The Chapman–

Enskog Generalized Method,” Doklady Akademii Nauk SSSR, Vol. 220, No.
2, 1975, pp. 304–307 (in Russian).

5Matsuk, V. A., and Rykov, V. A., “The Application of The Chapman–

Enskog Method for the Reacting Gas Mixtures,” Journal of Applied Me-
chanics and Technical Physics, Vol. 18, No. 1, 1978, pp. 61–66.

6Kogan, M. N., and Makashev, N. K., “On the Gas Dynamic Equations for
Polyatomic Gases with the Arbitrary Rate Ration of Elastic and Non-Elastic
Processes,” Fluid Dynamics, Vol. 13, No. 2, 1978, pp. 126–132.

7Chapman, S., and Cowling, T. G., The Mathematical Theory of Non-
Uniform Gases, 3rd ed., Cambridge Univ. Press, London, 1970, pp. 46–279.

8Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Molecular Theory of
Gases and Liquids, Wiley, New York, 1954, pp. 441–610.

9Parker, J. G., “Rotational and Vibrational Relaxation inDiatomic Gases,”
Physics of Fluids, Vol. 2, No. 4, 1959, pp. 449– 462.

10Lebed, I. V., and Riabov, V. V., “The Closed System of Gas Dynamic
Equations and Transfer Coef� cients in Rotational Excited Gases,” Trudy
TsAGI, Issue 2256, 1984, pp. 1–24 (in Russian).

11Lebed, I. V., and Riabov, V. V., “Rotational Relaxation Time and Trans-
fer Coef� cients in a Diatomic Gas,” Journal of Applied Mechanics and Tech-
nical Physics, Vol. 24, No. 4, 1983, pp. 447– 454.

12Willauer, D. L., and Varghese, P. L., “Direct Simulation of Rotational
Relaxation Using State-to-State Cross Sections,” Journal of Thermophysics
and Heat Transfer, Vol. 7, No. 1, 1993, pp. 49–54.

13Sharma, S. P., “Rotational Relaxation of Molecular Hydrogen at Mod-
erate Temperatures,” Journal of Thermophysics and Heat Transfer, Vol. 8,
No. 1, 1994, pp. 35–39.

14Mason, E. A., and Monchick, L., “Heat Conductivity of Polyatomic
and Polar Gases,” Journal of Chemical Physics, Vol. 36, No. 6, 1962, pp.
1622–1639.

15Riabov, V. V., “Nonequilibrium Gas Dynamic Equations and Transfer
Coef� cients in Diatomic Gas,” AIAA Paper 94-2400, June 1994.

16Nikitin, E. E., and Osipov, A. I., “Vibrational Relaxation in Gases,”
Advances in Science and Technology, Kinetics and Catalysis Series, Vol. 4,
Nauka, Moscow, 1977, pp. 431– 435 (in Russian).

17Belyaev, Yu. N., Polyanskii, V. A., Romashin, I. V., and Shapiro,
E. G., “Transfer Phenomena in Gases and Gas Mixtures,” Mechanics Inst.
of Moscow State Univ., Rept. 1802, Moscow, 1976, pp. 1–30 (in Russian).

http://rosina.catchword.com/nw=1/rpsv/0887-8722^281993^297:1L.49[aid=5924,csa=0887-8722^26vol=7^26iss=1^26firstpage=49]
http://rosina.catchword.com/nw=1/rpsv/0887-8722^281994^298:1L.35[aid=5925]
http://rosina.catchword.com/nw=1/rpsv/0887-8722^281993^297:1L.49[aid=5924,csa=0887-8722^26vol=7^26iss=1^26firstpage=49]
http://rosina.catchword.com/nw=1/rpsv/0887-8722^281994^298:1L.35[aid=5925]


RIABOV 411

18Boyd, I. D., “Rotational-Translationa l Energy Transfer in Rare� ed
Nonequilibrium Flows,” Physics of Fluids A, Vol. 2, No. 3, 1990, pp. 447–

452.
19Brau, C. A., and Jonkman, R. H., “Classical Theory of Rotational Re-

laxation in Diatomic Gases,” Journal of Chemical Physics, Vol. 52, No. 2,
1970, pp. 474– 484.

20Nyeland, C., “Rotational Relaxation of Homonuclear Diatomic
Molecules,” Journal of Chemical Physics, Vol. 46, No. 1, 1967, pp. 63–

67.
21Gordiets, B. F., Osipov, A. I., and Shelepin, L. A., Kinetic Processes in

Gases and Molecular Lasers, Nauka, Moscow, 1980, pp. 57–59 (in Russian).
22Lumpkin, F. E., Chapman, D. R., and Park, C., “A New Rotational

Relaxation Model for Use in Hypersonic Computational Fluid Mechanics,”
AIAA Paper 89-1737, June 1989.

23Rahn, L. A., and Palmer, R. E., “Studies of Nitrogen Self-Broadening
at High Temperatures with Inverse Raman Spectroscopy,” Journal of the
Optical Society of America, Vol. 3, No. 9, 1986, pp. 1164–1169.

24Koszykowski , M. L., Rahn, L. A., Palmer, R. E., and Coltrin, M. E.,
“Theoretical and Experimental Studies of High-Resolution Inverse Raman
Spectra of N2 at 1-10 atm,” Journal of Physical Chemistry, Vol. 91, No. 1,
1987, pp. 41– 46.

25Marchuk, G. I., Methods of Computational Mathematics, Nauka,
Moscow, 1977, pp. 203–207 (in Russian).

26Lordi, J. A., and Mates, R. E., “Rotational Relaxation in Nonpolar
Diatomic Gases,” Physics of Fluids, Vol. 13, No. 2, 1970, pp. 291–308.

27Marrone, P. V., “Temperature and Density Measurements in Free Jets
and Shock Waves,” Physics of Fluids, Vol. 10, No. 3, 1967, pp. 521–538.

28Borzenko, B. N., Karelov, N. V.,Rebrov, A. K., andSharafutdinov, R. G.,
“Experimental Investigation of the Molecular Rotational Level Population
in a Free Jet of Nitrogen,” Journal of Applied Mechanics and Technical
Physics, Vol. 17, No. 5, 1976, pp. 20–31.

29Lebed, I. V., and Riabov, V. V., “Quantum Effects in Rotational Re-
laxation of a Freely Expanding Gas,” Journal of Applied Mechanics and
Technical Physics, Vol. 20, No. 1, 1979, pp. 1–3.

30Riabov, V. V., “Aerodynamic Applications of Underexpande d Hyper-
sonic Viscous Jets,” Journal of Aircraft, Vol. 32, No. 3, 1995, pp. 471–

479.
31Lebed, I. V., and Nikitin, E. E., “Deactivation of Rotationally Excited

Halogen-Hydroge n Molecules of Halogen Hydrides,” Doklady Akademii
Nauk SSSR , Vol. 224, No. 2, 1975, pp. 377–380 (in Russian).

32Lebed, I. V., and Umanskii, S. Ya., “Rotational Relaxation of Strongly
Excited Molecules,” Khimiya Vysokikh Energii, Vol. 10, No. 6, 1976, pp.
501–506 (in Russian).

33Molodtsov, V. K., and Riabov, V. V., “Investigation of the Structural
Features of Rare� ed Gas Flows About a Sphere Using Navier–Stokes Equa-
tions,” Proceedings of the 13th International Symposium on Rare� ed Gas
Dynamics, Vol. 1, Plenum, New York, 1985, pp. 535–541.

34Riabov, V. V., “Numerical Investigation of the Flow of Nitrogen Past
a Sphere with Allowance for Rotational Relaxation,” Fluid Dynamics, Vol.
15, No. 2, 1980, pp. 320–324.

35Riabov, V. V., “Rotational Relaxation in Spherically Expanding Flow
of Viscous Gas,” Uchenyye Zapiski TsAGI, Vol. 9, No. 5, 1978, pp. 58–64
(in Russian).

36Olynick, D. R., Taylor, J. C., and Hassan, H. A., “Comparisons Between
Monte Carlo Methods and Navier–Stokes Equations for Re-Entry Flows,”
Journal of Thermophysics and Heat Transfer, Vol. 8, No. 2, 1994, pp. 251–

258.
37Skovorodko , P. A., “Rotational Relaxation in a Gas Expanding into

Vacuum,” Rare� ed Gas Dynamics, Inst. of Thermophysics , Siberian Branch
of the USSR Academy of Sciences, Novosibirsk, Russia, 1976, pp. 91–112
(in Russian).

38Rebrov, A. K., and Chekmarev, S. F., “Spherical Expansion of Rota-
tional Relaxing Viscous Gas into Flooded Space,” Rare� ed Gas Dynamics,
Inst. of Thermophysics , Siberian Branch of the USSR Academy of Sciences,
Novosibirsk, Russia, 1976, pp. 113–119 (in Russian).

39Taxman, N., “Classical Theory of Transport Phenomena in Dilute Poly-
atomic Gases,” Physics Review, Vol. 110, No. 6, 1958, pp. 1235–1238.

40Vargaftik, I. B., Handbook of the Thermophysica l Properties of Gases
and Liquids, Nauka, Moscow, 1972, pp. 252–259 (in Russian).

41Lebed, I. V., and Riabov, V. V., “Calculation of the Transfer Coef� cients
in Multicomponent Gas Mixtures,” Journal of Engineering Physics, Vol. 48,
No. 1, 1985, pp. 194–198.

42Riabov, V. V., “Approximate Calculation of Transport Coef� cients in
Multicomponent Mixtures,” Journal of Engineering Physics, Vol. 44, No. 2,
1983, pp. 183–189.

43Riabov, V. V., “Transfer Coef� cients of Multicomponent Air with Sub-
limation Products of Graphite,” Journal of Engineering Physics, Vol. 55,
No. 1, 1988, pp. 786–791.

44Riabov, V. V., “Approximate Calculation of Transport Coef� cients of
Earth andMars AtmosphericDissociating Gases,” Journal of Thermophysics
and Heat Transfer, Vol. 10, No. 2, 1996, pp. 209–216.

45Tirumalesa, D., “An Experimental Study of Hypersonic Rare� ed Flow
over a Blunt Body,” AIAA Journal, Vol. 6, No. 2, 1968, pp. 369, 370.

46Ahouse, D. R., and Bogdonoff , S. M., “An Experimental Flow Field
Study of the Rare� ed Blunt Body Problem,” AIAA Paper 69-656, June
1969.

http://rosina.catchword.com/nw=1/rpsv/0021-8669^281995^2932:3L.471[aid=5933,csa=0021-8669^26vol=32^26iss=3^26firstpage=471]
http://rosina.catchword.com/nw=1/rpsv/0899-8213^281990^292:3L.447[aid=5927]
http://rosina.catchword.com/nw=1/rpsv/0899-8213^281990^292:3L.447[aid=5927]
http://rosina.catchword.com/nw=1/rpsv/0021-8669^281995^2932:3L.471[aid=5933,csa=0021-8669^26vol=32^26iss=3^26firstpage=471]
http://rosina.catchword.com/nw=1/rpsv/0887-8722^281994^298:2L.251[aid=5934]
http://rosina.catchword.com/nw=1/rpsv/0887-8722^281996^2910:2L.209[aid=5787,csa=0887-8722^26vol=10^26iss=2^26firstpage=209]
http://rosina.catchword.com/nw=1/rpsv/0001-1452^281968^296:2L.369[aid=5935]
http://rosina.catchword.com/nw=1/rpsv/0887-8722^281996^2910:2L.209[aid=5787,csa=0887-8722^26vol=10^26iss=2^26firstpage=209]

