
 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

Networking Software Studies with the Structured Testing Methodology

Vladimir V. Riabov
Rivier College, Department of Mathematics & Computer Science

420 South Main Street
Nashua, New Hampshire 03060, USA

E-mail: vriabov@rivier.edu

Abstract

The results of systematic software analyses with McCabe’s and Halstead’s metrics
are presented for designing and testing three networking systems: the Carrier
Internetworking switched routing solution, which allows managing the Internet-based
virtual private networks over a multiservice asynchronous transfer mode
infrastructure; Carrier Networks Support system that provides both services of
conventional Layer-2 switches and the routing and control services of Layer-3
devices; and a system for providing different networking services (IP-VPNs,
Firewalls, Network Address Translations, IP Quality-of-Service, and Web steering).
The graph-based metrics (cyclomatic complexity, essential complexity, module design
complexity, system design complexity, and system integration complexity) have been
applied for studying the decision-structure complexity of code modules, code quality
(unstructured logic), the amount of interaction between modules, and the estimated
number of integration tests that are necessary to guard against errors. Nine protocol-
based areas of the code (2,447 modules written in 149,094 lines of C-code) have been
analyzed for BGP, Frame Relay, IGMP, IP, ISIS, OSPF, PPP, RIP, and SNMP
networking protocols. It has been found that 511 modules (19.4% of the protocol-
based code) are both unreliable and unmaintainable, including 27% of the BGP, IP,
and OSPF code modules. Only the Frame Relay part of the code is well designed and
programmed with a few possible errors. The number of unreliable code modules
(29%) correlates well with the number of customer requests, error-fixing submits, and
a number of possible errors (1,473) that have been estimated with the Halstead’s
metrics. Following the McCabe’s approach of structured testing, 14,401 unit tests and
11,963 module integration tests have been developed to cover the protocol-based code
areas. Comparing different Code Releases, it is shown that the reduction of the code
complexity leads to significant reduction of the errors and maintainability efforts. The
test and code coverage issues for embedded networking systems are also discussed.

1. Introduction

The McCabe’s structured testing methodology [1] has become a widely used
approach in the complexity code analysis, independent logical path testing, integration
test planning, and test coverage efforts in different industries. Since 1996, this
methodology becomes the standard, which was recommended by the National Institute
of Standards and Technology [1]. The approach was developed by McCabe [2] who
applied the graph-theoretical complexity measuring techniques in studies of
management and controlling the program (code) complexity. Based on the
experimental results of Miller [3], McCabe suggests that the code modules approach
zero defects when the cyclomatic complexity is less than 10.

 1

mailto:vriabov@rivier.edu

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

Nowadays, the McCabe’s QA tools [4-7] become available for software designers
and test engineers [1]. Unfortunately, some companies (including some networking
companies) are not familiar with the structured testing methodology and continue
using “traditional” metrics (i.e., Reviewed-Lines-Of-Code [14, 15]) in their unit-and-
integration testing practice. As a result, the quality of networking-service software and
products is low, and testing, debugging, and sustaining efforts are tremendous.

In present study, the results of systematic analyses of networking-systems
software with different metrics are presented for tree industrial projects A, B, and C. It
has been found that the number of unreliable code functions correlates well with the
number of customer requests, error-fixing submits, and the possible errors, which have
been estimated with the McCabe’s and Halstead’s metrics [1, 4]. Also it is shown that
the reduction of the code complexity leads to significant reduction of the errors and
maintainability efforts. The unit and integration test strategies have been developed
following the McCabe structured testing methodology [1]. The methodology provides
unique code coverage capacity [5]. Therefore, test and code coverage issues for
embedded networking systems are considered as well.

2. Three Networking Code-Analysis Projects

The structured testing methodology [1], McCabe’s IQ tools [4-8] and DISCOVER
tool [9] have been used in the C-preprocessed code analyses of different
internetworking systems. The first system (Project A) has been developed as a
prototype of the Carrier Internetworking switched routing solution, which allows
managing the Internet protocol (IP) virtual private networks (VPNs) environment over
a multiservice asynchronous transfer mode infrastructure. More than 1.2 million lines
of code (allocated in 1475 files) have been parsed and analyzed using the DISCOVER
tool. The Cyclomatic Complexity and Nested Control Structures metrics have been
applied for studying the complexity and quality of the code.

The second system (Project B) has been designed to support carrier networks. It
provides both services of conventional Layer 2 switches [10] and the routing and
control services of Layer 3 devices [11-13]. The McCabe IQ tool [4, 6, 7] has been
used to study the Project-B code (about 300,000 lines) on the protocol basis. The
Cyclomatic Complexity, Essential Complexity, Module Design Complexity, System
Design Complexity, and System Integration Complexity metrics have been applied for
studying the complexity of a code module’s decision structure, the quality of the code
(unstructured code constructs), a module’s decision structure, the amount of
interaction between modules in the program, and the estimation of the number of
integration tests necessary to guard against errors. Nine protocol-based subtrees of the
code (3400 modules written in the C programming language for BGP, DVMRP,
Frame Relay, ISIS, IP, MOSPF, OSPF2, PIM, and PPP protocols) have been analyzed.

The third system (Project C) has been developed for providing different
networking services (IP-VPNs, Firewalls, Network Address Translations (NAT), IP
Quality-of-Service (QoS), Web steering, and others) [13]. The complexity code
analysis of the C-preprocessed code and comparative analyses of the code releases
have been made by estimating the Risk Factor, Cyclomatic Complexity, Essential
Complexity, Module/Function Design Complexity, Number-of-Lines of Code,
Estimated Number of Possible Errors, and Number of Unreliable & Unmaintainable
Functions using the McCabe IQ tool [4, 6, 7]. The code and test coverage procedures
[5] have been developed and utilized in this project as well.

 2

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

The detailed analyses of the codes allow to identify major areas of the code
structures to be reviewed. The code revisions help to find the code areas with potential
errors and to change a code design practice of the code designers.

3. McCabe’s Structured Testing Methodology

3.1 Methodology and McCabe QA Tools

The McCabe’s methodology [1, 2] and McCabe QA tools [4-7] have been used to
perform an analysis of codes for the projects A, B, and C, which are described in the
previous section. These enormous code structures can be effectively studied by the
customized metrics (Cyclomatic Complexity (v), Essential Complexity (ev), Module
Design Complexity (iv), System Design Complexity (S0), and System Integration
Complexity (S1) metrics) [1, 2] to understand the level of complexity of a code
module’s decision structure, the quality of the code (unstructured code constructs), a
module’s design structure, the amount of interaction between modules in a program,
and the estimation of the number of integration tests necessary to guard against errors.

3.2 Software Metrics Overview

The McCabe metrics are based on graph theory and mathematically rigorous
analyses of the structure of software, which explicitly identify high-risk areas. The
McCabe metrics are defined in Refs 1, 3, 4-7.

Cyclomatic complexity, v, is a measure of the complexity of a module’s decision
structure [1, 2]. It is the number of linearly independent paths and, therefore, the
minimum number of paths that should be tested to reasonably guard against errors. A
high cyclomatic complexity indicates that the code may be of low quality and difficult
to test and maintain. In addition, empirical studies have established a correlation
between high cyclomatic complexity and error-prone software [14]. The results of
experiments by Miller [3] suggest that modules approach zero defects when the
McCabe’s Cyclomatic Complexity is within 7 ± 2. Therefore, the threshold of v-
metric is chosen as 10.

A node is the smallest unit of code in a program. Edges on a flowgraph represent
the transfer of control from one node to another [1]. Given a module whose flowgraph
has e edges and n nodes, its cyclomatic complexity is v = e - n + 2.

Essential complexity, ev, is a measure of unstructuredness, the degree to which a
module contains unstructured constructs [1, 4], which decrease the quality of the code
and increase the effort required to maintain the code and break it into separate
modules. When a number of unstructured constructs is high (essential complexity is
high), modularization and maintenance is difficult. In fact, during maintenance, fixing
a bug in one section often introduces an error elsewhere in the code.

Essential complexity is calculated by removing all structured constructs from a
module’s flowgraph and then measuring the cyclomatic complexity of the reduced
flowgraph [1, 2]. The reduced flowgraph gives you a clear view of unstructured code.

When essential complexity is 1, the module is fully structured. When essential
complexity is greater than 1, but less than the cyclomatic complexity, the module is
partly structured. When essential complexity equals cyclomatic complexity, the
module is completely unstructured. The partly and completely unstructured modules
should be recommended for redesigning.

 3

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

Module design complexity, iv, is a measure of a module’s decision structure as it
relates to calls to other modules [1, 2, 4]. This quantifies the testing effort of a module
with respect to integration with subordinate modules. Software with high module
design complexity tends to have a high degree of control coupling, which makes it
difficult to isolate, maintain, and reuse individual software components.

To calculate the iv-metric, all decisions and loops that do not contain calls to
subordinate modules are removed from the module’s flowgraph [1, 4]. The module
design complexity is the cyclomatic complexity of this reduced flowgraph and,
therefore, of the module structure as it relates to those calls. Module design
complexity can be no greater than the cyclomatic complexity of the original flowgraph
and typically is much less.

All decisions and loops that do not contain calls to subordinate modules should be
removed. The original flow-graph is superimposed over the design-reduced flowgraph
to show the decisions and loops that were removed.

System design complexity, S0, measures the amount of interaction between
modules in a program [1, 4]. It provides a summary of the module design complexity
of the system components and measures the effort required for bottom-up integration
testing. This metric also provides an overall measure of the size and complexity of a
program’s design, without reflecting the internal calculations of individual modules.
Systems with high design complexity often have complex interactions between
components and tend to be difficult to maintain.

The S0 metric is calculated as the sum of the module design complexities of all
modules in a program. It reveals the complexity of the module calls in a program.

Integration complexity, S1, measures the number of integration tests necessary to
guard against errors [1, 2, 4]. In other words, it is the number of linearly independent
sub-trees in a program. A subtree is a sequence of calls and returns from a module to
its descendant modules. Just as the cyclomatic complexity of a module defines the
number of test paths in the required basis set for that module, integration complexity
defines the number of linearly independent subtree tests in a basis set for a program.

The S1 metric quantifies the integration testing effort and represents the
complexity of the system design. It is calculated by using a simple formula, S1 = S0 -
N + 1, where N is the number of modules in the program. Modules with no decision
logic do not contribute to S1. This fact isolates system complexity from its total size.

The McCabe QA tool produces Halstead metrics [14, 15] for selected languages
[4]. Supported by numerous industry studies [14], the B-metric of Halstead represents
the estimated number of errors in the program.

3.3 Processing with the McCabe Tools

 The procedures of the project processing with the McCabe tools are described in
Refs. 4-7. In general, they can be divided into three groups at the Code Building level,
Testing level, and Analysis level (see Fig. 1 for details).

4. Results of the Project-A Code Analysis

4.1 Project-A Code Review With DISCOVER Tool

The DISCOVER tool [9] has been used to perform an analysis of the Project-A
code. It has been found that the code contains 6970 functions (defined in 781 files),

 4

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

3410 variables, and 1652 classes/structures. This enormous code structure has been
studied by 14 metrics [9] to understand the level of complexity (v-metric) and the
maximum depth of nested control structures (DEPTH-metric).

4.2 Cyclomatic Complexity Metric Analysis of the Project-A code

 In present study, the cyclomatic complexity v-metric has been evaluated by the
DISCOVER v-Metrics queries for all 6970 functions of the Project-A code. Almost
14% of the code functions have the cyclomatic complexity more than 10 (including
282 functions with the cyclomatic complexity more than 20). All files, which contain
functions with the cyclomatic complexity more than 50 (28 functions), should be
reevaluated. They are concentrated in five subdirectories (SNMP protocol, Database
Management, Network Interface Card, and other management utilities).
 Unfortunately, the DISCOVER tool allows to estimate only the module/function
complexity, not the system as a whole. The other software tools of studying the
system complexity [4] can be recommended in this case. The v-metrics have to be
calculated at earlier stages of the software development life cycle [14, 15]. The
complexity code analysis would identify areas of possible error concentration and test
strategies. Unfortunately, the Cyclomatic Complexity algorithms place the same
weight on nested and non-nested loops. It is a well-known fact [1, 14, 15] that deeply
nested conditional structures are harder to understand and modify than non-nested
structures. Therefore, the Nested Control Structures (DEPTH) metrics has been
applied for studying the scope of the code.

4.3 Nested Control Structures (DEPTH) metrics

 The maximum depth of nested control structures in all 6970 functions has been
studied using the DISCOVER DEPTH metric. The study results show that maximum
number (2619) of functions (38%) has normal depth (1) of nested control structures.
At the same time, the code has 413 functions with the parameter of DEPTH bigger
than 3 (including 25 Nested Control Structures with DEPTH bigger than 6).

5. Results of the Project-B Code Analysis

5.1 Study of Cyclomatic Complexity (v)
 In present study, the cyclomatic complexity metrics have been found for all 3400
modules (C-preprocessed functions) related to nine protocols that has been reviewed
in Project-B mentioned above. The results are shown in Table 1. It has been found that
38% of the code modules have the Cyclomatic Complexity more than 10 (including
592 functions (out of 3400) with the Cyclomatic Complexity more than 20). Only two
protocol-based parts of the code (FR and ISIS) have relatively low v-metrics, namely,
at least 76% of the code with v ≤ 10.

5.2 Study of Essential Cyclomatic Complexity (ev)

The essential cyclomatic complexity metrics have been found for all 3400
modules related to nine protocols mentioned above. The results are shown in Table 1.

 5

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

It has been found that 48% of the code modules have the Essential Cyclomatic
Complexity more than 4 (including 771 functions (out of 3400) with the Essential
Cyclomatic Complexity more than 10). Only two protocol-based parts of the code (FR
and ISIS) have relatively low ev-metrics, namely, at least 65% of the code with ev ≤ 4.

5.3 Unreliable and Unmaintainable Code Modules Study

 Using both metrics, Cyclomatic Complexity (v) and Essential Cyclomatic
Complexity (ev), the code areas of reliability (v ≤ 10) and maintainability (ev ≤ 4)
have been found. The areas have been identified from the scatter plots for each of nine
protocols. The most unreliable and unmaintainable areas (at v >10 and ev > 4) are
shown in Table 1.
 Totally 1147 modules (functions) are unreliable and unmaintainable, which
represent 34% of the code. Following the definitions, when essential complexity is 1,
the module is fully structured. When essential complexity is greater than 1, but less
than the cyclomatic complexity, the module is partly structured. When essential
complexity equals cyclomatic complexity, the module is completely unstructured.
Among 3400 modules considered, 1447 modules (42%) are fully structured, 1453
modules (43%) are partly structured, and 500 modules (15%) are completely
unstructured.

5.4 Study of Module Design Complexity (iv)

The module design complexity metrics have been found for all 3400 modules
related to nine protocols mentioned above. It is found that 1066 modules (functions)
(31%) have the Module Design Complexity more than 5 (including 143 functions (out
of 3400) with the Module Design Complexity more than 20). Only four protocol-
based parts of the code (FR, ISIS, IP, and PPP) have relatively low iv metrics, namely,
at least 71% of the code with iv ≤ 5. In these cases only 4 integration tests per module
can be designed. BGP, MOSPF, and PIM have the worst characteristics (more than
42% of the modules require more than 7 integration tests per module).

5.5 Study of System Design Complexity (S0) and System Integration
Complexity (S1)

The system design complexity metric has been found for all nine protocols
mentioned above. The protocol-based part of the code is characterized by the
parameter of the System Design Complexity (S0) of 19417, which is a top estimation
of the number of unit tests that are required to fully test the release program. Also the
code is characterized by the parameter of the System Integration Complexity (S1) of
16026, which is a top estimation of the number of integration tests that are required to
fully test the release program.

5.6 Halstead B-Metrics Study

The Halstead B-metrics (possible errors) have been found for all 3400 modules
related to nine protocols mentioned above. The results are shown in Table 1. It has

 6

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

been found that the Project-B code potentially contains 2920 errors estimated by the
Halstead metrics approach [4]. Significant parts of the code (203 code modules, 6%)
have the Number-of-Error B-Metric more than 3. Only five protocol-based parts of the
code (FR, ISIS, IP, OSPF2, and PPP) have relatively low (significantly less than
average error level of 0.86 per module) B-error metrics. In other four cases (BGP,
DVMRP, MOSPF, and PIM), the error level is the highest one (more than one error
per module).

5.7 Comparison of Two Customer Releases of Project-B: Redesign Efforts

 Based on the detailed analysis of the Project-B code, we selected 271 modules of
the old Customer Release B.1.2 and recommended them for redesigning by the
software development team. After the re-engineering efforts, 16 old modules have
been deleted and 7 new modules have been added for issuing the new Customer
Release B.1.3. Analyzing the deleted modules, we found that 7 deleted modules were
unreliable (v > 10) and 6 deleted modules were unmaintainable (ev > 4). Also, 19% of
the deleted code was both unreliable and unmaintainable. These facts correlate well
with our previous findings (see section 5.3). More, all seven new modules have been
reliable and maintainable.
 After redesigning, code changes resulted in the reduction of the cyclomatic code
complexity by 115 units. 70 old modules (41% of the code) were improved, and only
12 modules (about 7% of the code) become worse. This analysis demonstrates a
robustness of the structured testing methodology and mutual successful efforts of
design and test engineers, which allow improving the quality of the Customer
Releases.

6. Results of the Project-C Code Analysis

The McCabe Structured Testing Methodology [1, 2] has been used in the
complexity code analysis of all Code Releases in the Project C, as well as in the
comparative study of the Releases. The data contains parameters of Risk Factor,
Cyclomatic Complexity, Essential Complexity, Module/Function Design Complexity,
Number of Lines-of-Code, Estimated Number of Possible Errors, and Number of
Unreliable & Unmaintainable Functions for all 60 directories of the Project-C code
(RMC/CMC platform). Here we discuss the major findings of the comparative study
of two Releases C-4 vs. C-3.

6.1 Review of the Project C-4

 The code directories have been divided into 7 groups (Embedded Management,
OS/Tools, Platform, Protocols, Routing, Services, and Wireless). The distribution of
the directories by the group membership is given in Table 2.

The analysis of Releases indicates that all directories can be ranged by the key
evaluating parameter of the Risk Factor, which is based on average parameters of the
Cyclomatic Complexity, Essential Complexity, Module/Function Design Complexity,
Estimated Number of Possible Errors, and Number of Unreliable & Unmaintainable
Functions (see Refs. 1, 2).

The Project-C code has a high level of the risk factor (RF = 1.843). The most part
of the code (38 out of 60, or 63%) has the “RED” values of a risk factor (RF > 1.5).

 7

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

The “YELLOW” zone (1.5 > RF > 1.0) includes 18.5% of the used code, and the
“GREEN” low-risk area (RF < 1.0) includes the rest 18.5% of the used code. It is a
very important fact that the directories related to Routing, Services, and Wireless
functionality (15% of the total used code) have totally a high level of a risk factor
(RED). The most part of the Protocol-functionality code (85%) is also characterized
by a high level of a risk factor (RED). Only 18% of the Platform-functional code has a
low level of a risk factor (GREEN), in contrast to 57% of the OS/Tools-functional
software allocated in the same GREEN risk-factor zone.

The study covers 16,275 functions of the C-preprocessed code (860K lines)
allocated in 979 files. The average parameters (per function) of the v-Cyclomatic
Complexity Metric and the ev-Essential Complexity Metric are very high (vaver =
10.54, evaver = 4.165), which indicates the inappropriate quality of the Project-C
software system design. As a result, 4810 functions (30%) are unreliable (v > 10), and
3381 functions (21%) are both unmaintainable and unreliable (ev > 4 & v > 10).

The latest version of the code (Release C-4) contains 8,613 possible errors (1 error
per 100 lines of the code, or 1 error per 2 functions at average). This estimation is
based on the Halstead’s methodology [4, 14, 15], and represents the upper level of
errors in badly designed logic-and-operator structures.

A large volume of unit-test and integration-test efforts should be provided and
proper managed in this case. The upper-level estimation of the test efforts indicates
that 96,721 independent logical paths should be analyzed in the unit testing, and
80,526 integration cases should be planned for testing.

6.2 Comparative Analysis of Two Releases (C-4 vs. C-3)
Changes have been made in 36 directories out of total 60 used directories (60%)

of the Project C-4 code. The modified directories by types of functionality are shown
in Table 2. The modification efforts are 50 % higher than in the previous Release C-3.
 The changes in the Project-C code affected 36 directories (60%) mostly allocated
in the RED highest risk zone (75% of all changes). Only 36% functions in the GREEN
risk zone and 45% functions in the YELLOW risk zone have been modified. The
details of this analysis are given in the Table 2.
 A significant reduction of the risk factor has been achieved for functions from the
RED zone in the Interprocess-Communication (Platform) directory by 5%, in the
Address-Manager (Protocols) directory by 2%, in the Remote-Procedure-Call
(Platform) directory by 3%, and in the Card-Manager (Platform) directory by 2%.
Unfortunately, the risk factor of the whole code remains at the same level of 1.84
(RED) in the latest Release C-4. The latest fact indicates that no major code
reconstruction efforts have been made at this stage of the Project-C.
 Some functions become even more risky after modifications in the latest Release
C-4. For example, the risk factor increased in the following directories: Interface-
Manager (Platform) by 4%; ROUTING (Routing) by 3%; Card3-Driver (Platform) by
2%; Layer-2-Tunneling (Protocols) by 2%; Configuration-Manager (Platform) by 4%;
Portal-Server (Services) by 3%; and Database Manager (OS/Tools) by 9% in the RED
zone, and Interconnection-Service-Node (Platform) in the GREEN zone.
 The Project C-4 code has been expanded by 8388 lines of C-preprocessed code.
As a result of this code expansion, the Estimated Number of Possible Errors was
increased by 115 errors, the Cyclomatic Complexity was increased by 1943
independent logical paths, the Essential Complexity (Unstructured Logic) was
increased by 714, the Module Design Complexity was increased by 1082, which
indicates the number of additional unit tests (1082) and integration tests (932).

 8

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

 The quality of changes is at the high level of confidence, which can be
characterized by low increased Number of Unreliable & Unmaintainable Functions
(63). Totally 116 new functions at very low parameters of Cyclomatic Complexity and
Essential Complexity have been added into the ReleaseC-4.

Based on this analysis, it has been recommended to the Project-C Software
Development Team to concentrate their efforts on the code logical restructuring and
reducing the Risk Factors of the modified code areas in the vital performance areas,
which are valuable to the customers.

6.3 Protocol Based Analysis

 Nine protocol-based areas of the code (2,447 modules written in 149,094 lines of
code) have been analyzed, namely BGP, FR, IGMP, IP, ISIS, OSPF, PPP, RIP, and
SNMP. It has been found that 29% of the code modules have the cyclomatic
complexity more than 10 (including 320 functions with v > 20). Only the Frame Relay
part is well designed and programmed with few possible errors. Also, 39% of BGP,
31% of PPP and 30% of IP, OSPF, and RIP code areas are unreliable with v > 10. We
found that 511 modules (19.4% of the protocol-based code) are both unreliable and
unmaintainable (v > 10 and ev > 4), including 27% of the BGP, IP, and OSPF
unreliable-and-unmaintainable code areas. The estimated number of possible errors in
the protocol-based code is 1,473. Following the McCabe’s approach of structured
testing, 14,401 unit tests and 11,963 module integration tests have been developed to
cover nine protocol-based selected areas of the Project-C code.
 Studying the relationship between software defect corrections and cyclomatic
complexity [16], we have found a great correlation between the numbers of possible
errors, unreliable functions (with v > 10), error submits from Code Engineering
Releases and Customer Error Reports (see Figs. 2 and 3 correspondingly).

7. Recommendations for Re-engineering Efforts

 Based on reviewed information, several recommendations for teams of re-
engineering network-services software (Projects A, B, and C) have been developed:

• Reliable-and-maintainable modules (v < 10 and ev < 4) are the best candidates
for re-using in the new versions of the Projects’ products;

• Unreliable-and-unmaintainable modules (v > 10 and ev > 4) should be
redesigned;

• Reliable-and-unmaintainable modules and unreliable-and-maintainable
modules should be reviewed and tested;

• Future Unit & Integration Test plans can be developed using the McCabe’s
Independent Path techniques and Test & Code Coverage methodology [1, 4].

These efforts would allow improving the quality of the network-services software,
significantly reducing a number of “bugs” and maintenance efforts, attract new
customers, and, finally, increase company-marketing shares.

 9

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

8. Conclusion

The detailed analysis of the code identifies major areas of the code structure to be
reviewed. The code revision would allow to find the code areas with potential errors
and to improve a code design and testing practice. Particularly, the provided analysis
can be used in an identification of error-prone software, measuring the minimum
testing effort and revealing areas of concentration for testing, predicting the effort
required to maintain the code and break it into separate modules, allocating possibly
redundant code, indicating all inter-module control, and providing a fundamental basis
for integration testing. The complexity code analysis and structured testing
methodology should become a necessary attribute of software design, implementation,
and testing, sustaining, and re-engineering practice in networking industry.

References

1. Watson, A. H., and McCabe, T. J., Structured Testing: A Testing Methodology
Using the Cyclomatic Complexity Metric, NIST Special Publication, No. 500-
235, National Institute of Standards and Technology, Gaithersburg, MD,
1996, pp. 1-113.

2. McCabe, T. J., A Complexity Measure, IEEE Transactions on Software
Engineering, Vol. 2, No. 4, Dec. 1976, pp. 308-320.

3. Miller, G., The Magical Number of Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information, The Psychological Review,
March 1956.

4. Using McCabe QA, User’s Manual, Version 7.0, McCabe & Associates,
Columbia, MD, 1999.

5. Using McCabe Test, User’s Manual, Version 7.0, McCabe & Associates,
Columbia, MD, 1999.

6. Using McCabe C Parser, User’s Manual, Version 7.0, McCabe & Associates,
Columbia, MD, 1999.

7. Using McCabe IQ Add-Ons, User’s Guide, Version 7.0, McCabe &
Associates, Columbia, MD, 1999.

8. Testing Embedded Systems, Report No. 1027, McCabe & Associates,
Columbia, MD, 1999, pp. 1-2.

9. DISCOVER User Guide, Release 7.0 for SunOS, Solaris, HP-UX, and IRIX,
Software Emancipation Technology, Inc., 1999.

10. Tanenbaum, A., Computer Networks, 4th edition, Prentice Hall, 2003.
11. Peterson, Larry, and Davie, Bruce, Computer Networks: A Systems Approach,

3d edition, Morgan Kaufmann Publishers, 2004.
12. Sheldon, T., McGraw-Hill Encyclopedia of Networking &

Telecommunications, McGraw-Hill, 2001.
13. Coombs, C., Jr., and Coombs, C. A., Communications Network Test &

Measurement Handbook, McGraw-Hill, 1998.
14. Pressman, Roger, Software Engineering: A Practitioner's Approach, 6th

edition, McGraw-Hill, 2005.
15. Sommerville, Ian, Software Engineering, 7th edition, Addison-Wesley, 2004.
16. Heimann, D., Complexity and Defects in Software – A Case Study,

Proceedings of the McCabe Users Group Conference, May 1994.

 10

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

BUILD
Level

TEST
Level

ANALYSIS
Level

Preprocessor Compile
& Link

Run
& Test

Control
Mgmt

ClearCase

PARSE

src files

src

*.I
files

Battlemap

Flowgraphs

Reports

Text Graphics

Test Plan

Instrumented src
inst-src; inst-lib.c

inst-src

Inst-lib.c

files

inst.exe

Output

IMPORT

Trace File

*.out

Coverage
Analysis

Coverage
Report

Source Code Traditional Procedures

McCabe’s Procedures

Figure 1 Procedures of the project code processing with the McCabe tools

 11

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

0

100

200

300

400
BGP

FR

IP

ISIS

OSPF

RIP Submits

Unreliable
Functions
Possible Errors

Figure 2 Correlation between the Number of Error Submits, Number of
Unreliable Functions (v > 10), and the Number of Possible Errors for Six
Protocols

 12

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

0
100
200
300
400

BGP

FR

ISISOSPF

RIP
Customer Reports

Unreliable
Functions
Possible Errors

Figure 3 Correlation between the Number of Customer Error Reports, the
Number of Unreliable Functions (v > 10), and the Number of Possible Errors
for Five Protocols

 13

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

Table 1 v-Cyclomatic Complexity and ev-Essential Cyclomatic Complexity
Metrics for Project-B Nine-Protocol Code
Range BGP DVMRP FR ISIS IP MOSPF OSPF2 PIM PPP Total
v=[1,10] 148 149 176 229 609 18 314 150 328 2121
[11,20] 62 54 38 42 205 9 101 66 110 687
[21,30] 34 20 8 24 58 2 45 35 35 261
[31,40] 11 12 4 4 32 1 21 15 13 113
[41,50] 11 9 4 3 16 - 16 6 9 74
[51,60] 6 6 1 - 7 - 7 6 7 40
[61,70] 5 4 1 - 7 - 3 7 4 31
[71,80] 5 2 - 1 3 1 2 3 2 19
[81,90] 2 2 1 - 1 - 2 4 3 15
[91,100] 2 - - - 1 - 1 1 1 6
[101,200] 5 2 - - 6 - 2 6 4 25
[201,300] 1 2 - - 1 - - - 3 7
[301,600] - - - - - - - - 1 1
Modules 292 262 233 303 946 31 514 299 520 3400
ev=[1,4] 137 111 158 197 470 13 273 167 255 1781
[5,10] 65 66 55 77 241 10 128 66 140 848
[11,20] 48 52 16 19 162 5 71 37 76 486
[21,30] 22 13 2 9 37 2 26 11 18 140
[31,40] 6 7 - 1 14 - 8 11 12 59
[41,50] 6 5 1 - 10 1 3 5 3 34
[51,60] 1 2 1 - 5 - 2 2 2 15
[61,70] 3 1 - - 1 - 3 - 4 12
[71,80] 1 - - - - - - - 2 3
[81,90] - 2 - - 3 - - - - 5
[91,100] 1 1 - - 2 - - - 1 5
[101,200] 1 2 - - 1 - - - 4 8
[201,300] 1 - - - - - - - 2 3
[301,600] - - - - - - - - 1 1
Unreliable
&Unmaint

129 112 50 70 292 13 190 109 182 1147

Estimated
Errors

399 309 167 181 685 32 396 336 415 2920

 14

 International Conference on Computer Sciences & Information Systems, Athens, Greece, 16-18 June 2005

Table 2 The Numbers of the Modified Directories by Types of Functionality
and Risk Factor Values
Type of
Directory

Embedded
Management

OS/Tools Platform Protocols Routing Services Wireless Total

GREEN-
risk (orig.)

3 4 4 0 0 0 0 11

YELLOW-
risk (orig.)

3 0 6 2 0 0 0 11

RED-risk
(original)

3 3 12 11 2 5 2 38

Total
Number of
Directories

9 7 22 13 2 5 2 60

Number of
Modified
Directories

5 3 15 8 2 2 1 36

%%
Modified
Directories

56% 43% 68% 62% 100% 40% 50% 60%

GREEN-
risk(modif.)

1 1 2 0 0 0 0 4
(36%)

YELLOW-
risk(modif.)

1 0 4 0 0 0 0 5
(45%)

RED-risk
(modified)

3 2 9 8 2 2 1 27
(71%)

 15

	6.1Review of the Project C-4

