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All computer science disciplines have deep roots in various areas of mathematics, and 
students and engineers should be familiar with corresponding mathematical concepts and 
their implementations in real-world applications. This paper reviews several areas of 
computer science theory and its applications (e.g., computational fluid dynamics, modern 
encryption algorithms, code development and testing, and system simulation and 
modeling), where “traditional” and non-trivial mathematical methods (the analysis of 
singular differential equations, strange attractors, the group theory, modular arithmetic, 
the theory of graphs, and statistical modeling of rarefied-gas flows with the Direct 
Simulation Monte-Carlo technique) play key roles. 
 
1. Some Challenges in Computational Fluid Dynamics 
 
1.1 Solving singular differential equations 
 
Various problems of applied mathematics, thermophysics, and aerodynamics (e.g., 
stability of mechanical systems and flow boundary layers, fuel combustion, and heat 
protection of spacecraft) come to solving differential equations with small coefficients at 
the highest derivatives. This phenomenon leads to the formation of regions with small 
linear dimensions where gradients of functions are large. The numerical analysis of such 
problems by traditional box-schemes is restricted by non-uniform convergence or 
divergence of numerical solutions. In the first case study, the numerical solutions of the 
model singular ordinary differential equation have been evaluated for the linear boundary 
value problem [1]. The developed numerical method [2] was used for the analysis of gas 
flow parameters in boundary and viscous shock layers under the conditions of blowing on 
the body surface and nonequilibrium chemical reactions [3, 4]. 
 
From a mathematical point of view, the increase of the flow rate of blowing gas or 
chemical-reaction rates is equivalent to the existence of a small coefficient at the highest 
derivative in the boundary-layer equations [1]. A sublayer (of uncertain location) with 
large gradients of functions is created. The gas flow in the boundary layer was studied 
using a two-point exponential box-scheme and an effective regularization algorithm [2]. 
The uniform second-order convergence was obtained for functions and derivatives in the 
full range of small parameters such as blowing factors and inverse chemical-reaction 
rates. The approach is applied to boundary layers with gas injection and combustion [3]. 
 
 
 



 

 

1.2 Strange attractors: an evolution of dynamic systems 
 
The other CFD topic covers mathematical foundations of evolution of dynamic systems 
that could be described in terms of strange attractors. The case studies examine numerical 
modeling of chaotic dynamic systems (e.g., turbulence, weather forecast, and economic 
system development) [5]. They were introduced through classical examples of 
bifurcations of systems modeling equilibrium in chemical reactions, socio-economy 
(Rössler attractor) and atmospheric dynamics (Lorenz attractor) [5]. 
 
The Lorenz attractor was first studied by E. N. Lorenz in [6]. It was derived from a 
simplified model of convection in the Earth’s atmosphere. The system is most commonly 
expressed as the following three coupled non-linear differential equations:  
 

    dx / dt = a (y - x)      (1) 
dy / dt = x (b - z) – y     (2) 
    dz / dt = xy - c z      (3) 

 
Here (x, y, z) are the Cartesian coordinates, “t” is the time variable, "a" is the Prandtl 
number, "b" is the Rayleigh number, and “c” is the system parameter. The series does not 
form limit cycles nor does it ever reach a steady state (see Fig. 1). Instead, it is an 
example of deterministic chaos. As with other chaotic systems, the Lorenz system is 
sensitive to the initial conditions: two initial states no matter how close will diverge. 
 

 

 

 

   A) b=12, a=10, c=8/3 B) b=16, a=10, c=8/3 C) b=28, a=10, c=8/3 
 

Figure 1. Solutions of the Lorenz system (Eqs. 1-3) for different values of b. 
 
The general assumption is that a, b, c > 0; a = 10, and c is varied [7]. The system exhibits 
chaotic behavior for b = 28, but displays knotted periodic orbits for other values of b. A 
saddle-node bifurcation occurs at c(b – 1) = 0. When a ≠ 0 and c(b – 1) ≥ 0, the equations 
generate three critical points. The critical points at (0,0,0) correspond to no convection, 



 

 

and the critical points at (±[c(b – 1)]0.5, ±[c(b – 1)]0.5, b – 1) correspond to steady 
convection. This pair is stable only if b < a(a + c + 3)/(a – c – 1). When a = 10, b = 28, c 
= 8/3, the Lorenz system has chaotic solutions, but not all solutions are chaotic.  
 
The Matlab calculations show the system evolution for different values of b (see Fig. 1). 
For small values of b, the system is stable and evolves to one of two fixed point attrac-
tors. When b is larger than 24.28, the fixed points become repulsors and the trajectory is 
repelled by them in a very complex way, evolving without ever crossing itself [7]. 
 
The sensitive dependence of the solution on initial condition at a=10, b=28, c=8/3 was 
discussed in [8, 9]. Three time segments (at t = 1, 2, and 3) that have been received with 
the Java animation [8] and shown in [9, Fig. 7] illustrate the 3-D evolution of two 
trajectories in the Lorenz attractor starting at two initial points that differ only by 10-5 in 
the x-coordinate. Initially, the two trajectories seem coincident, but, after some time, the 
divergence is obvious [7-9]. 
 
2. Modern Cryptography 
 
Many computer security topics involve Math concepts that are not often taught, or 
inadequately covered, in college curricula, including sets, permutations, combinations, 
and probability; number theory (divisibility, primes, groups, rings, and fields); modular 
arithmetic; and computability theory (the reasonableness of an algorithm). The challenge 
is how to introduce these topics to a typically Math-phobic audience, without eliciting a 
“deer in the headlights” response. In our classes, we try to motivate coverage based on 
real-world applications of these concepts. 
 
We start every class with a brief discussion of an unusual non-trivial topic that is called a 
“warm-up” exercise [10]. After these "warm-up" exercises, the instructor offers a 
discussion on the main topic and asks students for a feedback on lecture materials and 
their arguments on selecting a competitive strategy for the problem analysis and 
development. These discussions help students to focus on the main point of the class 
session and stay active in class. Here is an example of the "warm-up" exercise that opens 
an introductory discussion of the theory of large numbers, which leads to the applied 
theory of encryption algorithms, such as the RSA Public-Key encryption algorithm [11]. 
At the same time, it illustrates a strong bond between mathematics and computer science. 
A student (even if he/she is not familiar with the theory of numbers) can solve the 
problem by a simple experimentation. 
 
2.1 Warm-up case study: What is the last digit of the number 63875927 [mod(10)]? 
 
We are interested in the last digit only of this number. Following the Newton’s Binomial 
Theorem, it is absolutely enough to consider the last digit of a simpler number 75927. 
Doing experiments with powers of number 7, we find that the last digit can only be 7, 9, 
3, or 1, and therefore, it is a cycle of four cases. The power, 5927 can be represented as 
5927 = 4×1481+3. Therefore, the last digit of 75927 (and 63875927) is the same as the last 



 

 

digit of 73 = 343, which is “3”. Knowing two key parameters [e.g., the base (10) and the 
power (5927)], we can now restore all digits of the given huge number. 
 
2.2 Modular arithmetic and public key cryptography 
 
Modern encryption algorithms are based on applications of modular arithmetic [12] and 
prime numbers. To explore different topics of the number theory (e.g., divisibility, prime 
numbers, groups, rings, and fields) and modular arithmetic, students used Java applets 
[10, 13] that were created using recommendations from [14, 15]. 
 
Sometimes the modular multiplicative inverse has a solution, and sometimes it does not. 
For example, the inverses of 2, 4, 5, 6, and 8 (mod 10) do not exist. It turns out that a-1 ≡ 
x (mod p) that has a solution iff a and p are relatively prime. In the considered case, the 
multiplicative inverses exist for the relative primes (to p = 10) of 1, 3, 7, and 9. This 
example could be used in introducing the finite field of order p, known as the Galois 
Field [10, 12], GF(p), which is defined as the set Zp of integers {0, 1, ..., p - 1}, together 
with the arithmetic operations modulo p. The subset Zp* is defined as the set of (mod p) 
integers that are relatively prime to p. In this case study, p = 10 and Zp* = {1, 3, 7, 9}. 
Every element in Z10* is present in the multiplicative table [10] based on these four 
elements only, and no other elements other than those are present. Furthermore, every 
element in Z10* is present in every row of the table. It turns out that this is true for all p; 
therefore, Zp* is closed under multiplication (mod p). 
 
This fundamental property of relative primes allows introducing Euler's totient function, 
φ(p) [10, 12] (the number of positive integers less than p, that are relative primes to p) 
with the following properties (Eqs. 4-6):  
 

φ(1) = 1        (4) 
  φ(p) = p – 1 (for p prime)      (5) 
  φ(m) < m – 1 (for m composite)     (6) 
 
In other words, the totient function φ(p) is the number of elements in Zp* (see Fig. 2). 
 

 
 

Figure 2.  The values of Euler's totient function φ(n) at various values of n. 



 

 

 
The Euler's totient function φ(n) has the unique “composition” property [10-12] (Eq. 7, 
below): assume we have two distinct prime numbers, p and q, and an integer n = pq, then  
 

φ(n) = φ(pq) = φ(p) × φ(q) = (p – 1) × (q – 1)   (7) 
 
This fact laid the foundation to various modern encryption algorithms [10, 15], including 
the RSA public key encryption [11]. 
 
2.3 The Advanced Encryption Standard (AES) 
 
In January 1997, the National Institute of Standards (NIST) announced a contest to select 
a new encryption standard to be used for protecting sensitive, non-classified, U.S. 
government information. After rigorous reviews of 5 final proposals, NIST chose a 
submission called "Rijndael" by two Belgian cryptographers – Joan Daemen and Vincent 
Rijmen [16]. Rijndael uses arithmetic in the Galois Field GF(28), the finite field of order 
256. It can be shown [12] that the order of a finite field (number of elements in the field) 
must be a power of a prime, pn, where n is a positive integer. Therefore, in Rijndael n = 8, 
and each element of the field can be represented by an octet. The bits in the octet are the 
coefficients of a polynomial over Z2 modulo the irreducible Z2 polynomial [12]. 
 
Byte values are represented as polynomials with the least significant bit being the 
coefficient of x0, and the most significant bit the coefficient of x7, e.g., {10100011} 
identifies the specific field element: x7 + x5 + x + 1. Some finite field operations involve 
one additional bit to the left of an 8-bit byte. When this extra bit is present, it appears as 
{01} to the left of the other 8 bits: {01} {00011011}. Addition in a finite field is achieved 
by "adding" the coefficients for the corresponding powers in the polynomials for the two 
elements. This operation of addition is performed using an XOR operation denoted by     . 
For example, all notations below are equivalent: 
 

(x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2 + 0           [polynomial notation]; 
{01010111}   {10000011} = {11010100}   [binary notation]. 

  
Multiplication in Rijndael is the multiplication of polynomials modulo the irreducible 
polynomial [12]. For example, in the polynomial notation: 
 

(x6 + x4 + x2 + x + 1) • (x7 + x + 1) = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1, and 
(x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1) mod (x6 + x4 + x2 + x + 1) = x7 + x + 1. 

 
The modular reduction by m(x) ensures that the result will be a binary polynomial of 
degree less than 8, and thus can be represented in a byte. This multiplication is 
associative, and the element {01} is the multiplicative identity. For any non-zero binary 
polynomial b(x) of degree less than 8, the multiplicative inverse of b(x), denoted by b-1(x) 
can be found using the Extended Euclidean algorithm [12]. As it follows from the above, 
the set of 256 possible byte values, with XOR used as addition, and the multiplication 
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defined as above, has the structure of the finite field GF(28). The detail description of the 
AES algorithm can be found in [16, 17]. 
 
2.4 Deciphering with the linguistic letter frequency analysis 
 
For several decades the substitution cipher approach with the Letter Frequency Analysis 
[13, 18, 19] has been also effectively used. To explore this approach, which is based on 
applying the linguistic properties of an original plaintext [20, 21], students make some 
assumptions about the plaintext: 
  

• That the plaintext consists of characters, not some kind of binary code.  
• That it is written in some natural language with known linguistic properties (e.g., 

English).  
• That we know the frequency of letters in a typical piece of text in that language.  
• That the plaintext is typical of normal English text, and so we expect the same 

frequencies of letters (approximately, within statistical fluctuations).  
 
As long as we know that there is a 1-to-1, unique mapping from plaintext to ciphertext 
(and, therefore, from ciphertext to plaintext), we can employ our knowledge of those 
letter frequencies to crack a substitution cipher. It is important to note that we need a 
large enough piece of text to give us some expectation that we have a large statistical 
sample. The longer the message, the better statistical sample we are likely to have.  
 

  
 
Figure 3.  Deciphering the structured ciphertext. MonoAlphabetic Cipher Breaker (left) 
and letter frequencies in typical English (right). 
 
Known letter frequencies in typical English text may be found on the web [19]. A typical 
representation of the letter frequencies in traditional English (E, T, A, O, I, N, S …) is 



 

 

shown on the bar chart (see Fig. 3, right). The Java tool [10] allows a student to view the 
letter frequencies for the ciphertext being examined (see Fig. 3, center).  Students may 
display letter frequencies in alphabetic order, or in order by frequency. If one of the 
characters has a 20% then the language may be German since it has a very high 
percentage of E. Italian has 3 letters with a frequency greater than 10% and 9 characters 
are less than 1% [20]. 
 
The linguistic analysis [22] also shows that common pairs in English are consonants TH 
and vowels EA. Others are OF, TO, IN, IT, IS, BE, AS, AT, SO, WE, HE, BY, OR, ON, 
DO, IF, ME, MY, UP. Common pairs of repeated letters are SS, EE, TT, FF, LL, MM 
and OO. Common triplets of text are THE, EST, FOR, AND, HIS, ENT or THA. 
 
The MonoAlphabetic Cipher Breaker Java applet [10] (see Fig. 3, left) was used for 
deciphering the structured ciphertext (620 words; 2,485 letters out of 3,533 characters), 
where the original word spacing, punctuation, and style have been retained. Travis Brant, 
a CS graduate student, wrote in the assignment report: “…The solution was reached by 
only using the statistical distribution for the first three characters. Once those were in 
place, the text was long enough that searching for uncommon words with only one 
missing character was easily done. Once this practice was put into place, decoding the 
bulk of the message was reduced to an iterative process of searching for the next nearly-
complete word. Decoding this message took about fifteen minutes.” 
 

  
 

Figure 4.  Deciphering the ciphertext organized in groups of four letters. 
MonoAlphabetic Cipher Breaker (left) and letter frequencies in typical English (right). 

 
The second ciphertext (25,955 words; 103,818 letters out of 129,772 characters) was 
organized in groups of four letters and word spacing and punctuation have been 



 

 

removed. The absence of the content clues (word spacing and punctuation) makes it more 
difficult to decipher the ciphertext, while the larger sample allows greater use of letter 
frequency analysis (see Fig. 4). Travis Brant reported:  
 

“… Deciphering this example was much more difficult than anticipated. The lack of 
preserved whitespace and punctuation made searching for possible word separation 
difficult. Once statistical analysis was performed on the text, there was little exposed 
that seemed correct. The only word that stuck out was the end of the first line, 
“ENAT IONS”. I figured that this was as good of a start as any. Next, I caught some 
word pairings on the first three sections of line thirty, “OCIM ONTI NUED”. At this 
point, I swapped M for C to create “O?IC ONTI NUED”. At this point swapping Z 
for R brought more words forth. A large breakthrough was reached when L was 
swapped for G, spelling “GULL IVER” as the first words. From here, I looked up a 
sample of the text from this story “Gulliver’s Travels” and saw that the message was 
the text from Jonathan Swift’s work. I used the text from the book to identify and fix 
the remaining glitches in the decoded text, and was finished. The message was indeed 
the story of “Gulliver’s Travels” by Jonathan Swift. This problem took about one-
and-a-half hour of analysis to decipher”.  

 
To reduce the time of deciphering this unstructured ciphertext, one student even wrote the 
customized UNIX scripts and a standard UNIX dictionary to help with the mechanics of 
the solution [10]. 
 
3. The Graph Theory Implementation in the Structured Testing Methodology 
 
In this case study, the structured testing methodology [23] and graph-based metrics 
(cyclomatic complexity v, essential complexity ev, module design complexity iv, system 
design complexity S0, and system integration complexity S1) [24] were reviewed and 
applied for studying the C-code complexity and estimating the number of possible errors 
and required unit and integration tests for the Carrier Networks Support system [25]. 
Comparing different code releases, it is found that the reduction of the code complexity 
leads to significant reduction of errors and maintainability efforts. Students worked on 
the selected cases analyzing algorithms, creating computer codes (in C/C++ or Java), 
running them at various parameters, comparing numerical results with known data, and 
presenting the findings to classmates [26, 27]. 
 
3.1 Software complexity metrics overview 
 
The McCabe metrics [23, 24] are based on graph theory and mathematically rigorous 
analyses of the code structure, which explicitly identify high-risk areas. For each module 
(a subroutine with a single entry point and a single exit point), an annotated code listing 
and flowgraph is generated as shown in Fig. 5. The flowgraph is an architectural diagram 
of a software module’s logic. 
 



 

 

Cyclomatic complexity, v, is a measure of the complexity of a module’s decision 
structure [24]. It is the minimum number of independent paths that should be tested to 
reasonably guard against errors. A high cyclomatic complexity indicates that the code 
may be of low quality and difficult to test and maintain. The results of Miller’s 
psychological experiments [28, 29] suggest that modules approach zero defects when v is 
within 7 ± 2. Therefore, the threshold of v-metric is chosen as 10. A node is the smallest 
unit of code in a program. Edges on a flowgraph represent the transfer of control from 
one node to another [24]. A module flowgraph with e edges and n nodes has the 
cyclomatic complexity v = e - n + 2 that is the number of topologically independent 
regions of the graph [23, 24, 26] (see Fig. 6). 
 

 
Figure 5. The annotated source listing and the related flowgraph. 

 

 
Figure 6. Three methods of evaluating the cyclomatic complexity of the sample graph. 



 

 

 
Essential complexity, ev, is a measure of unstructuredness [24], the degree to which a 
module contains unstructured logical constructs [23], which decrease the quality of the 
code and increase the effort required to maintain the code and break it into separate 
modules. When a number of unstructured constructs is high (ev is high), modularization 
and maintenance is difficult. These modules should be recommended for redesigning. 
 
Module design complexity, iv, is a measure of its decision structure as it relates to calls to 
other modules [23]. This quantifies test efforts of a module with respect to integration 
with other modules. Software with high values of iv tends to have a high degree of 
control coupling, which makes it difficult to isolate, maintain, and reuse software 
components. 
 
System design complexity, S0, measures the amount of interaction between modules in a 
program [23]. The S0 metric is calculated as the sum of the module design complexities 
of all modules in a program. It reveals the complexity of the module calls in a program 
and measures the effort required for bottom-up integration testing. Integration 
complexity, S1, measures the number of integration tests necessary to guard against errors 
[23]. It is the number of linearly independent sub-trees in a program. A sub-tree is a 
sequence of calls and returns from a module to its descendant modules. The S1 metric 
quantifies the integration testing effort. It is calculated by using a simple formula [23], S1 
= S0 - N + 1, where N is the number of modules in the program. Modules with no decision 
logic do not contribute to S1. This fact isolates system complexity from its total size.  
 
The McCabe IQ tool produces Halstead metrics [29, 30] for selected languages. 
Supported by numerous industry studies [23, 25], the B-metric of Halstead represents the 
estimated number of errors in the program. 
 
3.2 Results of the project code analysis 
 
The structured testing methodology [23] and McCabe’s IQ tools were used in the C code 
analyses of different internetworking systems. As an example, the Support Carrier 
Networks system [25, 26] is studied. It provides both services of conventional Layer-2 
switches and the routing and control services of Layer-3 devices. The code (3400 
modules, about 300,000 code lines written in C language) was examined with the 
McCabe metrics [23, 24]. Nine protocol-based sub-trees of the code (for BGP, DVMRP, 
FR, ISIS, IP, MOSPF, OSPF2, PIM, and PPP networking protocols) were analyzed. This 
code analysis identified areas with potential errors and modules to be reviewed. This 
experience significantly improved the code implementation practices of our students. 
 
It was found that 38% of the code modules have the cyclomatic complexity v more than 
10. About 48% of modules have the essential cyclomatic complexity iv more than 4. Only 
two parts of the code (for FR and ISIS protocols) have low v and ev metrics. Totally 1147 
modules (34%) are unreliable and unmaintainable. Among 3400 modules considered, 
1447 modules (42%) are fully structured with ev = 1, and 500 modules (15%) are 



 

 

completely unstructured with ev = v. 1066 code modules (31%) have the module design 
complexity more than 5. Only four protocol-based branches of the code (FR, ISIS, IP, 
and PPP) have low iv-metrics. BGP, MOSPF, and PIM protocol implementations have 
the worst characteristics (42% of modules require more than 7 integration tests per 
module). The system design complexity (S0) is 19417, which is a top estimation of the 
number of unit tests that are required to fully test the program. The system integration 
complexity (S1) is 16026, which is a top estimation of the number of integration tests.  
 
The study of Halstead metrics [29, 30] indicates that the code potentially contains 2920 
errors; 203 code modules (6%) have the number of delivered bugs B > 3 per module. 
Only five parts of the code (for FR, ISIS, IP, OSPF2, and PPP protocols) have relatively 
low error metrics (B << 1). In other branches (for BGP, DVMRP, MOSPF, and PIM 
protocols), B > 1. 
 
3.3 Comparison of two customer software releases: Redesign efforts 
 
Based on this analysis of the code, we recommended 271 modules of the old Release 1.2 
for redesigning by the software development team. As a result, 16 old modules were 
deleted and 7 new modules were added for issuing the new Release 1.3. Analyzing the 
deleted modules, we found that 7 deleted modules were unreliable (v > 10) and 6 deleted 
modules were unmaintainable (ev > 4). Also, 19% of the deleted code was both unreliable 
and unmaintainable. All seven newly added modules were reliable and maintainable. 
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Figure 7. Correlation between the number of error submits, number of unreliable 
functions (with v > 10), and the number of possible errors for six protocols. 
 
After redesigning, the code cyclomatic complexity was reduced by 115 units; 70 old 
modules (41% of the code) were improved, and only 12 modules (7% of the code) 
become worse. This analysis demonstrates a robustness of the structured testing 
methodology and mutual successful efforts of design and test engineers, which allow 
improving the quality of code releases sent to customers. Studying the relationship 
between software defect corrections and cyclomatic complexity [25, 26], we found a 



 

 

good correlation between the numbers of possible errors, unreliable functions (with v > 
10), and the error submits from the Code Releases (see Fig. 7). 
 
4. Statistical Modeling with the Direct Simulation Monte-Carlo Technique 
 
The direct simulation Monte Carlo (DSMC) method [31] and the two-dimensional DS2G 
code [32] have been used in this study as a numerical simulation technique for low-
density hypersonic gas flows. The DSMC method is a computer-simulating technique for 
the modeling of real-gas effects by a sample of randomly-selected molecules (thousands 
or even millions). The position coordinates and velocity components of these molecules 
are stored in the computer memory and are modified with time as the molecules are 
concurrently followed through representative collisions and boundary interactions in the 
simulated physical space [31]. Intermolecular collisions in dilute gases are 
overwhelmingly likely to be binary collisions involving just two molecules. Given the 
physical properties of the molecules and the orientation of the trajectories, the post-
collision velocities are determined from the equations of linear momentum and energy 
that must be conserved in the collision. 
 
This direct simulation of the physical processes [31] contrasts with the “traditional” 
approach of computational fluid dynamics (CFD), which is based on obtaining numerical 
solutions of the fundamental mathematical equations and proper boundary conditions that 
model the processes [1-3]. In the cases of rarefied gas flows, when the gas density is 
sufficiently low, the direct physical simulation becomes a valuable simulating approach 
without any recourse to the conventional mathematical models of the flow. Under these 
conditions, the DSMC method becomes a unique adequate tool, because the full set of the 
Navier-Stokes “continuum-flow” equations does not provide a valid model for rarefied-
gas flows, and conventional CFD methods are unable to handle the large number of 
independent variables that are involved in applications of the Boltzmann equation to 
realistic multidimensional problems [31]. The validation of the DSMC simulation 
approach was tested in comparing numerical results [33-36] with experimental data [37-
39]. The results of the aerodynamic studies for plates, wedges, and disks are discussed 
below. 
 
4.1 Aerodynamics of a blunt plate 
 
The comparison of the DSMC numerical results for a drag coefficient of a plate (thick-
ness δ = 0.1L) with experimental data [38] in air (specific heat ratio γ = 1.4) is studied for 
Knudsen numbers Kn∞,L from 0.02 to 3.2, Mach number M∞  = 10, and temperature factor 
tw = Tw/T0 = 1. Numerical results [34, 36] correlate well with experimental data [38] at 
0.02 < Kn∞,L < 1. The free-molecular limit [40] is approached at Kn∞,L > 3. 
 
The study of the influence of Mach number M∞ on aerodynamic characteristics of bodies 
of simple shape was conducted at moderate values of the Knudsen number and at 
constant values of similarity parameters: Kn∞,L, tw, and γ. The hypersonic stabilization 
regime [33] occurs at M∞θ >>1 in the case of streamlining of thin bodies when the angle 



 

 

θ between the generatrix of the body surface and the upstream-flow direction becomes 
small enough. This regime is realized at smaller values of M∞, if the angle θ increases. 
 
The results of previous studies [37-39] indicate that the hypersonic flow independency 
principle [33] is realized in the transition rarefied-flow regime at K = M∞×sinθ > 1. As 
was found in experiments [37-39], this principle is not true for thin bodies at small angles 
of attack in rarefied gas flows under the conditions K < 1. 
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Figure 8.  Drag and lift coefficients Cx, Cy for a blunt plate (δ = 0.06L) at Kn∞,L = 0.6 and 
M∞ = 7.5 (circles) and 10.7 (squares) in helium. Experimental data from Refs. 37-39. 
 
At small angles of attack α < 12 deg, the drag coefficient of a blunt plate having relative 
thickness δ = 0.06L becomes sensitive to the magnitude of the freestream Mach number 
in helium flow (see Fig. 8, left, M∞ = 7.5 and M∞ = 10.7). The results calculated by the 
DSMC technique (filled markers) correlate well with the experimental data [37-39] 
(empty markers). For the lift coefficient, the free-molecular flow data [40], as well as 
computational and experimental results presented in Fig. 8 (right), are independent of the 
Mach number, and the value Cy,FM is less by approximately 15% than the value Cy for the 
transitional flow regime at α > 16 deg. This phenomenon was discussed in Refs. 33, 37-
39. 
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Figure 9. Drag and lift coefficients Cx, Cy for a blunt plate (δ = 0.1L; α = 20 deg) in air 
vs. Knudsen number Kn∞,L at various temperature factors tw. Experimental data from 
[38]. 
 



 

 

The temperature factor, tw, is other important similarity parameter [33, 37-49, 41], which 
effects pressure at the body surface. Numerical data for a plate (δ = 0.1L) at angle attack 
α = 20 deg and various Kn∞,L has been studied (see Fig. 9). The lift coefficient, Cy 
changes non-monotonically from the continuum to the free-molecular flow regime. 
Maximum values occur in the transition flow regime. The influence of tw can be 
estimated as 25% for Cy. The results correlate well with the experimental data [38]. 
 
4.2 Aerodynamics of a wedge 
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Figure 10. Drag and lift coefficients Cx, Cy for a wedge (θ = 20 deg) in helium flow at 
Kn∞,L = 0.3 and M∞ = 11.8. Experimental data from Refs. 6-9. 
 
The dependence of drag and lift coefficients for a wedge (θ = 20 deg) on the angle of 
attack has been studied in numerical simulations of helium flow at Kn∞,L = 0.3, tw = 1, 
and the freestream Mach number M∞ = 11.8. The DSMC results (squares) are shown in 
Fig. 10 for drag and lift coefficients. The base area of the wedge and its length were taken 
as the reference area and length. The numerical results correlate well with the 
experimental data [37-39] (circles), which were obtained in a vacuum wind tunnel at the 
same flow parameters. In both transitional and free-molecular [40] regimes, the 
characteristics are not sensitive to changes in upstream flow parameters at M∞ > 9. 
Another interesting fact is that the lift-drag ratio in the transitional flow regime is larger 
by 50% than the corresponding parameter in the free-molecular regime [33, 38, 39, 41]. 
 
4.3 Aerodynamics of a disk 
 
In the free-molecular flow regime, the influence of the specific heat ratio γ on the 
aerodynamic characteristics of bodies depends on the normal component of the 
momentum of the reflected molecules, which is a function of γ [33, 38, 39]. The same 
phenomenon can be observed at the transitional conditions in the case of the disk at α = 
90 deg. The nitrogen-argon pair was the most acceptable one for testing [38, 39]. The 
dependencies of Cx of the disc for Ar (filled triangles) and N2 (filled squares) are shown 
in Fig. 11 for a wide range of Knudsen numbers (Kn∞,D). At the same parameters of the 
upstream flow, numerical data obtained by the DSMC technique for different models of 
molecules are compared with experimental data [37-39]. This analysis could be applied to 
the design of a disk ballute [42]. 
 



 

 

The influence of specific heat ratio on the drag coefficient is more significant for large 
values of Kn∞,D > 1. In the free molecular regime (Kn∞,D > 7), an increase of Cx is 
observed as γ increases [38-40]. This increase is caused by the dependence on γ of the 
reflected momentum of the molecules at tw = 1. The degree of this influence has been 
evaluated as 8% at Kn∞,D > 2. As the number Kn∞,D decreases, this influence decreases, 
and at Kn∞,D < 0.4, the drag coefficient of the disk in a diatomic gas becomes larger than 
that for a monatomic gas. In the continuum flow regime, the dependence of the drag-
coefficient on γ difference is insignificant. 
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Figure 11. Drag coefficient Cx for a disk (α = 90 deg) vs. Knudsen number Kn∞,D in 
argon and nitrogen. Experimental data from Refs. 37-39. 
 
5. Concluding Remarks on Students’ Involvement 
 
The author has described some algorithms, tools, and experience of using the Java 
Applets in computer security courses for seniors and graduate students. The experience 
has been in general a very positive one, while at the same time providing useful lessons 
learned. The author believe that this algorithm-exploration and project-based approach 
with the Java Applets can be effectively applied to courses of a similar nature in 
academia, and the model can be extended to other areas of applied mathematics. 
 
After brief in-class discussions of the case studies, each student continued working on a 
selected case analyzing algorithms, creating computer codes (in C/C++, Java, 
FORTRAN, or MATLAB), running them at various parameters, comparing numerical 
results with known data, and presenting the findings to classmates. 
 
In particular, students’ projects have revealed new information about hypersonic rarefied-
gas flows near simple-shape bodies (plates, wedges, and disks) that can be effectively 
used for investigation and prediction of aerothermodynamic characteristics of hypersonic 
probes and vehicles during the design of their missions under the complex rarefied 



 

 

atmospheric conditions of the Earth, Mars, Venus, and other planets. Fundamental insight 
into the probe characteristics and similarity parameters of these flows was obtained. For 
conditions approaching the hypersonic limit at M∞ >> 1, the Knudsen number Kn∞,L (or 
the equivalent Reynolds number Re0,L) and temperature factor tw are the primary 
similarity parameters. The influence of other parameters (the specific heat ratio γ, 
viscosity parameter n, and Mach number M∞) is significant at M∞θ << 1 and Re0 < 10. 
 
In the course evaluations, students stated that they became deeply engaged in course 
activities through examining the challenging problems related to the advanced concepts 
in applied mathematics (including the analysis of singular differential equations, strange 
attractors, the group theory, modular arithmetic, the theory of graphs, and statistical 
modeling of rarefied-gas flows with the Direct Simulation Monte-Carlo technique) and 
their practical applications. 
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