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1 Introduction

The problem of deriving the nonequilibrium gas dynamic equations from the first prin-
ciples of the kinetic theory of gases was studied by Ferziger and Kaper [1] in the cases of
near-equilibrium and slow-relaxation processes of the energy exchange between internal
and translational degrees of molecular freedom. The case of the arbitrary energy exchange
ratio was analyzed in [2], [3], [4], [5] for polyatomic gas mixtures.

In the present study the problem of redistribution of translational and rotational en-
ergy has been solved for diatomic gases within the framework of the Chapman-Enskog
method [1], [5], [6] and the Parker model [7] in the general case of the arbitrary energy
exchange ratio. The gasdynamic equations, transport coefficients and relaxation time
have been found for nonequilibrium processes in diatomic gases [5], [6]. The calculations
of relaxation time, viscosity, thermal conductivity, and diffusion coefficients are carried
out in the temperature range from 200 K to 10,000 K for nitrogen by using the technique
of integral brackets [1], [4]. The calculated parameters are compared with the values
obtained by the approximate method [8] as well as data from experiments [9], [10] in
ultrasonic, shock-wave, and vacuum devices. The correlation of theoretical and exper-
imental data is satisfactory. The applicability of one- and two-temperature relaxation
models for para-hydrogen at the rotational temperature range from 0 to 1200 K is dis-
cussed. The numerical solutions of the Navier-Stokes equations are analyzed for spherical
expanding nitrogen flow and supersonic flow near a sphere.

2 Rotational relaxation time estimations

Two definitions of relaxation time are widely used. In the first case the expression for
the temperature dependence of the relaxation time, τR1(T ), is obtained by using the
Chapman-Enskog iteration method of solving the Boltzmann equation for a gas of parti-
cles with internal degrees of freedom [1]. In the second case the relaxation time, τR2(T ), is
found directly from the relaxation equation (see Eq. (17) from [6]) by calculating the rate
of increase of the internal energy of the molecules that originally were not excited [11].

In the present study parameters pτR1(T ) and pτR2(T ) are calculated for nitrogen by
formulas (18)-(20) from [6]. Multifold integrals are calculated at 200 points over the range
200 K ≤ T ≤ 10,000 K, using the Monte-Carlo technique [5], with 4000 tests at each
point. The data for intermediate points are determined by using cubic splines [6]. The
estimated accuracy of the calculations is 1.5 percent. The higher orders of the theory of
perturbations [6] make a substantial contribution at T < 400 K, and the accuracy of the
calculations is lower under these conditions. The results of calculations pτR2 and pτR1
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Fig. 1. Parameters pτR2 (left ) and pτR1 (right ) versus temperature T

are shown in Fig. 1 (solid lines). The experimental data (filled squares) were acquired
in [9], [10]. The calculations show that at 200 K ≤ T ≤ 10,000 K, pτR1 is 2 or 2.5 times
as large as pτR2. This difference is apparently due to the adiabatic nature of the energy
exchange between the highly excited rotational states of the molecules [5]. The effect of
the initial energy distribution at rotational levels was not considered in this comparison.
The quantity pτR1(T ) was used for interpreting the experimental data on the scattering
and absorption of ultrasound, where the effect of the ultrasound frequency on pτR1 was
disregarded [9]. The quantity pτR2(T ) was used for interpreting the data of experiments
in shock tubes. The available experimental data [9], [10], both on ultrasound and on
shock waves, differ from one another by 200-300 percent, which is approximately equal
to the difference between pτR1 and pτR2, as evident from Fig. 1.

3 The effect of initial rotational energy distribution

The effect of the initial energy distribution at rotational levels has been estimated in [5]
under the assumption that at initial time the distribution corresponds to the Boltzmann
distribution with rotational temperature TR > 0. Therefore, the translational-rotational
relaxation time becomes a function of both T and TR (see Eq. (1.7) in [5]). The parameter
pτR2(T , TR), calculated for nitrogen at T = 1000 K, decreases from 2.13×10−4 kg/(m·s)
for TR = 0 K to 5.24×10−5 kg/(m·s) for TR = 800 K.

The problem of a proper selection of the relaxation time [τR2(T ) versus τR2(T , TR)] for
a more accurate description of the manner in which the system approaches equilibrium is
studied for para-hydrogen. The solution of the kinetic equation in τ approximation (see
Eq. (17) in [6]) was compared with the solution obtained by numerical integration of the
system of kinetic equations for the occupancies of the individual rotational levels [5]. In
these calculations, the constants of the rotational-transfer rates were estimated within
the framework of the effective-potential method [12]. The calculation results are shown
in Fig. 2 (left ), where parameters pτR2(T , TR), estimated at constant temperature T =
400 K, (triangles) are compared with the results of numerical integration of the system of
kinetic equations (circles). The point TR = 0 K of the first curve corresponds to pτR2(T ).
A dependence of the relaxation time on TR is observed. Therefore, the use of a function
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Fig. 2. The rotational relaxation parameters pτR2(T , TR) in para-hydrogen at constant tem-
perature T = 400K (left ) and in nitrogen expanding into a vacuum (right )

pτR2(T , TR) significantly improves the approximate solution of the relaxation equation,
and the initial distribution of energy at rotational levels should be taken into account
within the framework of the τ approximation.

4 Rotational relaxation in freely expanding gas flows

Studies [13], [14] of the rotational relaxation in expanding gas flows discovered a sig-
nificant decrease of the gas density downstream that leads to a decrease in the number
of molecular collisions. The departure of the gas rotational energy from the equilibrium
value was observed.

Lebed and Riabov [15], [16] studied another cause for the rotational energy departure.
At the decrease of kinetic temperature Tt, adiabatic collision conditions [17] should be
taken into account, and the relaxation time τR increases due to the sharp decrease of
the rotational transfer probabilities. Using this method [15], the relaxation times were
calculated for nitrogen at stagnation temperature T0 = 295 K [see Fig. 2 (right )] under
the conditions of aerodynamic experiments in underexpanded jets [13], [14], [16]. The
calculations based on the classical concept [7] [see solid line in Fig. 2 (right )] do not
show a tendency of increasing pτR with the decrease of Tt under adiabatic rotational
energy exchange conditions. At temperatures Tt > 273 K, numerical results correlate
well with experimental data [9], [10]. In the expansion of nitrogen, starting at T0 =
300 K, the maximum population of molecules occurs at rotational levels J from 6 to
4 [15], [17]. The results of calculating pτR for J = 6, 5, and 4 are shown in Fig. 2 (right )
(empty triangles, circles, and squares, correspondingly). The values of pτR increase with
decrease of Tt. At Tt > 100 K, the adiabatic condition breaks down, and the parameter
pτR could be estimated by the Parker’s model [7].

For qualitative estimations, the energy relaxation time is replaced by the relaxation
time of the level J. This approximate method [15] correctly represents the nature of the
R-T nonequilibrium process, i.e., an increase of pτR with decreasing Tt. Figure 3 (left )
shows the distributions of rotational temperature TR along the axis of nitrogen jet. The
result of using the classical mechanics concept [7] is shown there by diamonds. The curves
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Fig. 3. The rotational TR and translational Tt temperatures in spherically expanding flow of
nitrogen (left ) and at the stagnation streamline near a sphere (right )

marked by empty triangles, circles, and squares were obtained for values of pτR at J =
6, 5, and 4, correspondingly. The calculations were made at K = ρur/(pτR) = 2730, p0rj

= 240 torr·mm and T0 = 295 K.
The experimental data ((filled squares) [13], (triangles) [14]) for TR are upper and

lower bounds on the distribution of rotational energy along the nitrogen jet. Numerical
results, based on the quantum concept of rotational energy exchange, correlate well with
the experimental data [14]. The data contradicts the classical model predictions [7] of TR.
The experimental and computational results demonstrate the necessity of considering the
quantum concept in describing R-T relaxation in underexpanded jets. This concept was
used in evaluating various relaxation models in expanding low-density nitrogen flows [18].

5 Transport coefficients in non-equilibrium diatomic gases

The analytic formulas for transport coefficients were found by Lebed and Riabov (see Eqs.
(21-29) in [6]): the coefficients of shear viscosity corresponding to rotationally inelastic
and elastic collisions, η and η0; the corresponding values of the thermal conductivity,
λ and λ0; and the self-diffusion coefficient of the elastically colliding molecules, D0.
The simplest approximations for the thermal conductivity coefficient λ were analyzed
in [1], [5], [6], [8]. The first approximation [8] was based on the diffusive transfer, but it
disregarded the relaxation of the rotational energy. The relaxation was taken into account
partially in the next, second, approximation [8] for the thermal conductivity coefficient
λ2. Triangles and circles in Fig. 4 (left ) show η and η0, correspondingly, as given by Eqs.
(21-29) from [6], while the filled squares indicate the experimental data of Vargaftik [19].
The difference between η and η0 is evaluated as 5 percent in the low-temperature regime.
At temperature T > 1000 K these values correlate well with each other. The parameter
ρD0/η0 is approximately constant and equals to 1.20.

Triangles in Fig. 4 (right ) show λ, as given by Eqs. (21-29) from [6]. Circles correspond
to the Mason and Monchick’s second approximation [8], λ2. The filled squares indicate
the experimental data of Vargaftik [19]. The present analysis shows that the correlation
between the exact solution, the Mason and Monchick’s second approximation [8], and
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Fig. 4. Viscosity (left ) and conductivity coefficients (right ) in nitrogen

experimental data [19] is acceptable. The small discrepancy between the theoretical values
of η and λ and the experimental data (see Fig. 4) can be eliminated by a proper choice
of the molecule collision potential at T < 1000 K.

6 Rotational relaxation in viscous gas flow near a sphere

The combined effect of the rotational-translational relaxation and the viscosity and ther-
mal conductivity processes is studied here by solving the full system of the Navier-Stokes
equations and the relaxation equation (see Eq. (42-46) from [6]) with the implicit nu-
merical technique [20]. The flow of molecular nitrogen was assumed to be undisturbed
on the outer boundary of the computational region. At the spherical surface the slip,
temperature and rotational energy jump conditions [20] were used.

The distributions of the nonequilibrium rotational (TR, empty squares) and transla-
tional (Tt, triangles) temperatures are shown in Fig. 3 (right ) for flow at Knudsen number
Kn = 0.08 (or Reynolds number Re0 = 16.86), Mach number M = 9, stagnation tem-
perature T0 = 298 K, and temperature factor tw = 0.3. In the viscous shock layer near
a sphere, a significant difference between the translational and rotational temperatures
can be observed. The shock-layer becomes thicker under the nonequilibrium flow condi-
tions than in the case of equilibrium flow at TR = Tt [see circles in Fig. 3 (right )]. The
numerical results for TR correlate well with the experimental data [21] [marked by filled
squares in Fig. 3 (right )], obtained in a wind tunnel by the electron-beam diagnostics.

7 Conclusion

The calculations of relaxation time, viscosity and thermal conductivity, and diffusion
coefficients were carried out by using the Monte-Carlo simulation technique for nitrogen
at 200 K ≤ T ≤ 10,000 K . The calculations and available experimental data show that the
rotational relaxation time, τR1, obtained by using the Chapman-Enskog iteration method,
is 2 or 2.5 times as large as the time τR2, which is found directly from the relaxation
equation. The difference is apparently due to the adiabatic nature of the energy exchange
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between the highly excited rotational states of the molecules. The quantity pτR1 is used
for interpreting the experimental data on the scattering and absorption of ultrasound.
The quantity pτR2 is used for interpreting the data of experiments in shock tubes. The
use of a function pτR2(T , TR) significantly improves the approximate solution of the
relaxation equation, and the initial distribution of energy at rotational levels should be
taken into account within the framework of the τ approximation.
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