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Abstract: The problem of redistribution of translational and rotational energy has been solved for diatomic gases within 
the framework of the Chapman-Enskog method and the Parker model in the general case of the arbitrary energy exchange 
ratio. The nonequilibrium gasdynamic equations, transport coefficients and relaxation time have been found for 
rotational-translational processes in a diatomic gas. The calculations of relaxation time, viscosity, thermal conductivity, 
and diffusion coefficients are carried out in the temperature range from 200 K to 10,000 K for nitrogen. The calculated 
parameters and coefficients are compared with the values obtained by the Mason-Monchick approximate method as well 
as data from experiments in ultrasonic, shock-wave, and vacuum devices. The correlation of the theoretical and 
experimental data is satisfactory. The applicability of one- and two-temperature relaxation models is discussed. The 
numerical solutions of the obtained system of the Navier-Stokes equations are analyzed for the cases of nitrogen flow in 
underexpanded jets and supersonic rarefied gas flow near a sphere.  
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INTRODUCTION 

The problem of deriving the nonequilibrium gas dynamic equations from the first principles of the kinetic theory 
of gases was studied by Ferziger and Kaper [1] in the cases of near-equilibrium and slow-relaxation processes of the 
energy exchange between internal and translational degrees of molecular freedom. The case of the arbitrary energy 
exchange ratio was analyzed by Alekseev [2], Kogan and Makashev [3], Matsuk and Rykov [4], and Lebed and 
Riabov [5] for polyatomic gas mixtures. 

In the present study the problem of redistribution of translational and rotational energy has been solved for 
diatomic gases within the framework of the Chapman-Enskog method [1], [5], [6] and the Parker model [7] in the 
general case of the arbitrary energy exchange ratio. The nonequilibrium gasdynamic equations, transport coefficients 
and relaxation time have been found for rotational-translational processes in a diatomic gas [5], [6]. The calculations 
of relaxation time, viscosity, thermal conductivity, and diffusion coefficients are carried out in the temperature range 
from 200 K to 10,000 K for nitrogen by using the technique of integral brackets [1], [4]. The calculated parameters 
and coefficients are compared with the values obtained by the Mason-Monchick approximate method [8] and data 
from experiments [9], [10] in ultrasonic, shock-wave, and vacuum devices. The correlation of the theoretical and 
experimental data is satisfactory. The applicability of one- and two-temperature relaxation models for para-hydrogen 
at the rotational temperature range from 0 K to 1200 K is discussed. The numerical solutions of the Navier-Stokes 
equations are analyzed for spherical expanding nitrogen flow and supersonic rarefied gas flow near a sphere. 

 

ROTATIONAL RELAXATION TIME 

Two definitions of relaxation time are widely used. In the first case the expression for the temperature 
dependence of the relaxation time, �R1(T), is obtained by using the Chapman-Enskog iteration method of solving the 
Boltzmann equation for a gas of particles with internal degrees of freedom [1]. In the second case the relaxation 

27th International Symposium on Rarefied Gas Dynamics, 2010
AIP Conf. Proc. 1333, 1257-1262 (2011); doi: 10.1063/1.3562816
©   2011 American Institute of Physics 978-0-7354-0888-0/$30.00

1257



time, �R2(T), is found directly from the relaxation equation (see Eq. (17) from [6]) by calculating the rate of increase 
of the internal energy of the molecules that originally were not excited [11]. 

 

1.00E-05

1.00E-04

1.00E-03

1.00E-02

100 1000 10000
Temperature T, K

p*
ta

u1
, k

g/
(m

*s
)

Calculation
Experiment [9,10]
Experiment2

 

1.00E-05

1.00E-04

1.00E-03

1.00E-02

100 1000 10000

Temperature T, K

p*
ta

u2
, k

g/
(m

*s
)

Calculation
Experiment [9,10]
Experiment2

 
FIGURE 1.  Parameters p�R1 (left) and p�R2 (right) vs. temperature T. Experimental data from [9], [10]. 

 
In the present study parameters p�R1(T) and p�R2(T) are calculated for nitrogen by formulas (18)-(20) from [6]. 

Multifold integrals are calculated at 200 points over the range of temperatures 200 K � T � 10,000 K, using the 
Monte-Carlo technique [5], with 4000 tests at each point. The data for intermediate points are determined by means 
of the interpolation technique [6] using cubic splines of defect 1 with smoothing. The resulting estimated accuracy 
of the calculations is 1.5%. The higher orders of the theory of perturbations with respect to the anisotropy parameter 
� [6] in the molecule interaction potential make a substantial contribution at T < 400 K, and the accuracy of the 
calculations is lower under these conditions. 

The results of calculations p�R1(T) and p�R2(T) are shown in Fig. 1 (dashed and solid lines, correspondingly). The 
experimental data (squares) were acquired by Brau and Jonkman [9], and Lordi and Mates [10]. The calculations 
show that at 200 � T � 10,000 K, p�R1(T) is 2 or 2.5 times as large as p�R2(T). This difference is apparently due to the 
adiabatic nature of the energy exchange between the highly excited rotational states of the molecules [5]. The effect 
of the initial energy distribution at rotational levels was not considered in this comparison. 

The quantity p�R1(T) has been used for interpreting the experimental data on the scattering and absorption of 
ultrasound, where the effect of the ultrasound frequency on p�R1(T) was disregarded [9]. The quantity p�R2(T) has 
been used for interpreting the data of experiments in shock tubes. The available experimental data [9], [10], both on 
ultrasound and on shock waves, differ from one another by 200-300%, which is approximately equal to the 
difference between p�R1(T) and p�R2(T), as evident from Fig. 1. 

 

THE EFFECT OF INITIAL ROTATIONAL ENERGY DISTRIBUTION 

The effect of the initial energy distribution at rotational levels has been estimated in [5] under the assumption 
that at initial time the distribution corresponds to the Boltzmann distribution with rotational temperature TR > 0. In 
this case, the translational-rotational relaxation time becomes a function not only of translational temperature T but 
of TR as well [see Eq. (1.7) in Ref. 5]. The parameter p�R2 (T, TR), calculated for nitrogen at T = 1000 K, decreases 
from 2.13*10-4 kg/(m*s) for TR = 0 K to 5.24*10-5 kg/(m*s) for TR = 800 K. 

The problem of a proper selection of the relaxation time [�R2 (T) vs. �R2 (T, TR)] for a more accurate description of 
the manner in which the system approaches equilibrium was studied in [5] for para-hydrogen. The solution of the 
kinetic equation in �–approximation (see Eq. (17) from Ref. [6]) was compared with the exact solution obtained by 
numerical integration of the system of kinetic equations for the occupancies of the individual rotational levels [5]. In 
these calculations, the constants of the rotational-transfer rates for various rotational levels were estimated within the 
framework of the effective-potential method [12]. 

The results of the calculation are shown in Fig. 2, where parameters p�R2 (T, TR), estimated at constant 
temperature T = 400K, (triangles) are compared with the results of numerical integration of the system of kinetic 
equations for the occupancies (circles). The point TR = 0 K of the first curve corresponds to p�R2 (T). As in the case 
of the rotational relaxation of nitrogen, a strong dependence of the relaxation time on TR has been found. Therefore, 
the use of a two-parameter function p�R2 (T, TR) significantly improves the approximate solution of the traditional 
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kinetic equation. These results indicate that the initial distribution of energy at rotational levels should be taken into 
account within the framework of the �–approximation. 
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FIGURE 2.  The rotational relaxation parameters p�R2 (T, TR) in para-hydrogen at constant temperature T = 400K. 

 

ROTATIONAL RELAXATION IN FREELY EXPANDING GAS FLOWS 

Marrone [13] and Borzenko et al. [14] studied the rotational relaxation in expansion of a molecular gas into a 
vacuum. A significant decrease of the gas density downstream leads to a decrease in the number of molecular 
collisions. The departure of the gas rotational energy from the equilibrium value was observed.  

Lebed and Riabov [15] and Riabov [16] studied another cause for the rotational energy departure. At the 
decrease of kinetic temperature Tt, the Messy adiabatic parameter [17], which describes energy transfer between 
highly excited rotational levels unable to relax, becomes larger than unity. Adiabatic collision conditions [17] should 
be taken into account in this case. As Tt decreases, the relaxation time �R will increase due to the significant decrease 
of the rotational transfer probabilities. 
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FIGURE 3.  Left: The rotational relaxation parameters p�R (Tt) in nitrogen expanding into a vacuum. Experimental data from [9], 
[10]. Right: The rotational TR and translational Tt temperatures in the underexpanded jets of nitrogen. Experimental data from 
[13], [14]. 
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Using the technique of Lebed and Riabov [15], the rotational-translational relaxation times were calculated for 
nitrogen at stagnation temperature T0 = 290 K [see Fig. 3 (left)] under the conditions of aerodynamic experiments in 
the underexpanded jets [13], [14], [16]. The relaxation times calculated by Parker [7] are shown in Fig. 3 (left) as the 
solid line. The calculations based on the classical-mechanics concept [7] do not show a tendency of increasing p�R 
with the decrease of Tt under adiabatic rotational energy exchange conditions. At temperatures Tt > 273 K, 
numerical results correlate well with experimental data [9], [10]. 

In the expansion of nitrogen, starting at a stagnation temperature T0 = 300 K, the maximum population of 
molecules occurs at rotational levels j* from 6 to 4. Following Refs. [15], [17], the results of calculating p�R for j* = 
6, 5, and 4 are shown in Fig. 3 (left) (empty triangles, circles, and squares, correspondingly). These values of p�R 
increase with decrease of Tt. At Tt > 100 K, the adiabatic condition breaks down, and the parameter p�R could be 
calculated by the Parker's classical-mechanics model [7]. 

For qualitative estimations, it is possible to replace the energy relaxation time by the relaxation time of the level 
j*. This approximation method correctly represents the nature of the R-T nonequilibrium process, i.e., an increase of 
p�R with decreasing Tt. Figure 3 (right) shows the distributions of rotational temperature TR along the axis of 
nitrogen jet. The result of using the classical mechanics concept [7] is shown there by the solid line. The curves 
marked by empty triangles, circles, and squares were obtained in terms of the quantum concept [15] for values of 
p�R at j* = 6, 5, and 4, correspondingly. In the calculation it was assumed that the main R-T relaxation parameter was 
K* = �*u*r*/(p�R)* = 2730, p0r* = 240 torr·mm and T0 = 290 K. 

The experimental data for TR along the axis of a nitrogen jet, obtained by Marrone [13] (filled squares) and 
Borzenko et al. [14] (triangles), are upper and lower bounds on the distribution of rotational energy along the flow. 
Numerical results, based on the quantum concept of rotational energy exchange, correlate well with the experimental 
data [14]. The data contradicts the classical model predictions [7] of the TR distributions along the jet axis. 

The experimental and computational results demonstrate the necessity of considering the quantum concept in 
describing R-T relaxation in the underexpanded jets. This concept was used by Gochberg and Haas [18] in 
evaluating various rotational relaxation models in expanding low-density nitrogen flows. 

 

TRANSPORT COEFFICIENTS IN NON-EQUILIBRIUM DIATOMIC GASES 

The analytical formulas for various transport coefficients were found by Lebed and Riabov (see Eqs. (21-29) in 
[6]): the coefficients of shear viscosity corresponding to rotationally inelastic and elastic collisions, � and �0; the 
corresponding values of the thermal conductivity, � and �0; and the self-diffusion coefficient of the elastically 
colliding molecules, D0. 

The simplest approximations for the thermal conductivity coefficient � were analyzed by Ferziger and Kaper [1], 
Mason and Monchick [8], and Lebed and Riabov [5], [6]. The first approximation [8] was based on the diffusive 
transfer, but it disregarded the relaxation of the rotational energy. The relaxation was taken into account partially in 
the next, second, approximation for the thermal conductivity coefficient �2 (see Eqs. (30-32) in [6]). 
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FIGURE 4. Viscosity (left) and conductivity coefficients (right) in nitrogen. Experimental data from [19]. 

 
The solid and dashed lines in Fig. 4 (left) show � and �0, correspondingly, as given by Eqs. (21-29) from [6], 

while the filled triangles indicate the experimental data of Vargaftik [19]. The difference between � and �0 is 
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evaluated as 5% in the low-temperature regime. At temperature T > 1000 K these values correlate well with each 
other. The parameter �D0/�0 is approximately constant and equals to 1.20. 

The solid line in Fig. 4 (right) shows �, as given by Eqs. (21-29) from [6]. The dashed line corresponds to the 
Mason and Monchick's second approximation [8], �2. The filled squares indicate the experimental data of Vargaftik 
[19]. The present analysis shows that the correlation between the exact solution, the Mason and Monchick's second 
approximation [8], and experimental data [19] is acceptable. In both cases of � and �, the small discrepancy between 
the theoretical values and experimental data (see Fig. 4) can be eliminated by a proper choice of the molecular 
potential and collision parameters [5] at T < 1000 K.  

The closed system of the gas-dynamic equations (see Eq. (42-46) from [6]), which contains the coefficients �0, 
�0, D0, p�R1(T), and p�R, could be used in various applications at any value of the Knudsen number, KnR. 

 

ROTATIONAL RELAXATION IN VISCOUS GAS FLOWS NEAR A SPHERE 

The combined effect of the rotational-translational relaxation and the viscosity and thermal conductivity 
processes is studied here by solving the full system of the Navier-Stokes equations and the relaxation equation (see 
Eq. (42-46) from [6]) with the implicit numerical technique described by Riabov [20] in detail. 

The gas flow of molecular nitrogen was assumed to be undisturbed on the outer boundary of the computational 
region located at the distance of radius of the sphere, R, from the spherical surface. At the body surface the slip, 
temperature and rotational energy jump conditions [20] were used. 
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a) Kn�,R = 0.08 (Re0,R = 16.86), M� = 9, T0 = 298 K, tw = 0.3 b) Kn�,R = 0.017 (Re0,R =57.4), M� =18.8, T0 =1600 K, tw =0.19 
 
FIGURE 5. Comparison of numerical solutions of the Navier-Stokes equations and experimental data [21, 22] for 
nonequilibrium rotational TR, translational Tt, and equilibrium overall T temperatures on the stagnation stream line near a sphere.  

 
The distribution of the nonequilibrium rotational (TR, squares) and translational (Tt, triangles) temperatures are 

shown in Fig. 5a for rarefied upstream flow at Knudsen number Kn�,R = 0.08 (or Reynolds number Re0,R = 16.86), 
Mach number M� = 9, stagnation temperature T0 = 298 K, and temperature factor tw = Tw/ T0 = 0.3. In the viscous 
shock layer near a sphere, a significant difference between the translational and rotational temperatures can be 
observed. The shock-layer becomes thicker under the nonequilibrium flow conditions than in the case of equilibrium 
flow at TR = Tt [see empty squares in Fig. 5a]. The numerical results for TR, correlate well with the experimental data 
of Tirumalesa [21] (marked by filled squares in Fig. 5a), obtained in wind tunnels by the electron-beam diagnostics. 
A discrepancy of the results at the spherical surface can be explained by the strong influence of secondary electrons 
in the experiments [21] as well as by a chosen approximation of the slip and temperature jump conditions [20] in 
calculations. 

In the viscous shock layer near a sphere under the continuum flow conditions at Kn�,R = 0.017 (Re0,R =57.4), M�  

= 18.8, T0 =1600 K, tw = 0.19, a significant difference between the translational and rotational temperatures still can 
be observed (see Fig. 5b). The shock-layer thickness becomes thicker under the nonequilibrium flow conditions than 
in the case of “equilibrium” flow at TR = Tt (see circles in Fig. 5b). The numerical results for TR correlate well with 
the experimental data of Ahouse and Bogdonoff [22], obtained in wind tunnels by the electron-beam diagnostics. 
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CONCLUSIONS 

The nonequilibrium gasdynamic equations have been derived for rotational-translational processes in diatomic 
gases in the general case of the arbitrary energy exchange ratio, which is characterized by parameter KnR. The 
analytical form of the energy and momentum parameters is found in this case based on the Parker’s molecular 
collision model. The calculations of relaxation time, viscosity, thermal conductivity, and diffusion coefficients were 
carried out by using the Monte-Carlo simulation technique in the temperature range 200 � T � 10,000 K for 
nitrogen. The results are applied for the conditions of ultrasound, shock-wave, and underexpanded jet experiments. 

The calculations show that the rotational relaxation time, �R1, obtained by using the Chapman-Enskog iteration 
method, is 2 or 2.5 times as large as the time �R2, which is found directly from the relaxation equation by calculating 
the increased rate of the internal energy of molecules. The difference is apparently due to the adiabatic nature of the 
energy exchange between the highly excited rotational states of the molecules. The quantity p�R1(T) has been used 
for interpreting the experimental data on the scattering and absorption of ultrasound. The quantity p�R2(T) has been 
used for interpreting the data of experiments in shock tubes. The available experimental data, both on ultrasound and 
on shock waves, differ from one another by 200-300%, which is approximately equal to the difference between 
p�R1(T) and p�R2(T).  

The computational results demonstrate the necessity of applying the quantum concept (that includes adiabatic 
collision conditions for highly excited rotational levels unable to relax at the sharp decrease of kinetic energy) in the 
analysis of the rotational-translational relaxation at Tt < 100K in the underexpanded jets of nitrogen. 

The nonequilibrium viscous gas flow near a sphere has been studied. The full system of the Navier-Stokes 
equations and the relaxation equation, based on �-approximation technique, has been solved by the implicit 
numerical technique. The numerical and experimental data are well correlated. 
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