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Fig. 3 Variation of wnorm with joint � exibility parameter ÅFj for a) root
impulse and b) tip impulse.

disturbance structurally more critical than a control impulse of the
same magnitude.

Conclusions
The present study has investigated the problem of the elastic re-

sponse of a generic space vehicle with degraded joints. The stepped-
beam formulation based on elementary beam theory is employed for
extracting modal parameters of a normalized generic space vehicle.
Next, the modal superposition principle is used with a low damping
value for obtaining the elastic response of the vehicle to impulse
excitation.

The results for elastic displacement peaks are obtained for nor-
malized rotational joint � exibilities of different magnitudes acting
at different spanwise locations. The results show that locations of
the joint with � exibility play an important role in determining the
magnitude and location of the peak response. Further, it is found
that � rst mode frequency results for various values and locations
of joint � exibilities can possibly be uni� ed into a single linear ex-
pression, based on the normalized stiffness distribution of the space
vehicle. Finally, it is found that tip excitation is more critical than
root excitation.
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Introduction

I NCOMPRESSIBLE � ows around spinning bodies of revolution
were studied in detail years ago (see the reviews by Prandtl and

Tietjens1 and Lugt2). It was found that, in the case of potential
� ow, the lift generated on the body has an opposite direction to
the vector [X £ u1] (the Magnus effect), where X is an angular
rotation vector of the spinning body and u1 is a freestream � ow
velocity vector. In this � ow regime, three types of the � ow patterns
past a spinning circular cylinder can be identi� ed1;2 by the value
of the governing similarity parameter, which is the roll parameter
H D X D=2u1, where D is a diameter of a cylinder. The patterns
depend on the location of the points of separation and attachment.

In unsteady � ow of a viscous incompressible � uid, the � ow pat-
tern becomes a function of both the roll parameter and the Reynolds
number.2 At Re < 1:3 £ 105 and H < 0:5, the Magnus force can
become negative.3

In the case of free-molecule � ow, a different result was observed
in Refs. 4–6. The lift of the spinning body under the free-molecule
� ow conditions should be opposite to the vector of lift under the
continuum incompressible (potential) � ow conditions. The lift and
drag coef� cients C y and Cx , respectively, can be calculated using
the formulas6

C y. H / D .¼=2/¾t H ; Cx . H / D 0
(1)

Cy D Cy .0/ C Cy . H /; Cx D Cx .0/ C Cx . H /

where the parameter ¾t is the coef� cient of accommodation of the
tangential momentum. The lift and drag coef� cients C y.0/ and
Cx .0/ in the nonspinning-cylinder case have been calculated by
using the following expressions7:
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where M1 is the Mach number, S is the molecular speed ratio, ° is
a ratio of speci� c heats, m is a mass of molecule, k is Boltzmann’s
constant, T is temperature, and I0 and I1 are modi� ed Bessel func-
tions. Subscripts i and r refer to incident and re� ected molecules,
respectively. The Cartesian coordinate x is in the direction of the
freestream � ow velocity vector, and the coordinate y is in the direc-
tion of the vector [X £ u1].

Karr and Yen4 showed that the effect of spin on drag is of second
order in H , and the component of lift C y. H / has been found to be
proportional to H and is analogous to the Magnus effect with the
opposite sign.6 The expressions of the momentum characteristics
can be found in Ref. 6.
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In the present study, the aerodynamic coef� cients of a spinning
in� nite cylinder have been evaluated numerically for a range of the
two similarity parameters: Knudsen number K nD and spin rate H .
The analysis of the coef� cients of the spinning cylinder is based on
the numerical results that were obtained using Bird’s direct simula-
tion Monte Carlo (DSMC) technique.8;9 The results are compared
with free-molecule � ow data.6

DSMC Method
The DSMC method8 has been used in this study as a numerical

simulation technique for low-density gas � ows. The � ow parame-
ters are calculated using a two-dimensional DSMC code.9 Molec-
ular collisions in argon are modeled using the variable hard sphere
molecular model.8 The gas–surface interactions are assumed to be
fully diffusive with full energy and moment accommodation with
¾t D 1. The stagnation temperature is assumed to be equal to the
wall temperature. The code validation was tested8;10 in comparing
numerical results with experimental data10 for simple-shape bodies.

In the present calculations, one region is used, with a total of
2700 cells. The 29,800 molecules are unevenly distributed while
providing an overall average of 11 molecules per cell. By following
the recommendations of Refs. 8 and 9, reliable results are obtained
for an average of at least 10 molecules per cell in the most critical
region of the � ow. In all cases, the usual criterion8 for the time step
D tm has been realized: 2 £ 10¡7 · D tm · 1 £ 10¡6 s. Under these
conditions, aerodynamic coef� cients and gasdynamics parameters
have become insensitive to the time step. The location of the external
boundary with the upstream � ow conditions varies from 1:0D to
1:5D for different � ow conditions. Calculations were carried out
on a personal computer. The computing time of each variant was
estimated to be approximately 10–40 h.

Results
Subsonic Rare� ed-Gas-Flow Regime

At subsonic � ow conditions, the speed ratio S becomes small,
and the aerodynamic coef� cients become very sensitive to the ratio
magnitude.7 In the present Note, the transition � ow regime has been
studied numerically at M1 D 0:15, ° D 5

3
(argon gas), and H D 1,

3, and 6.
The lift and drag coef� cients are shown in Figs. 1 and 2, respec-

tively. In the transition � ow regime (K nD > 0:03), both the incident
and re� ected molecules signi� cantly in� uence the lift. The incident
molecules dominate when K n D < 0:1, and the re� ected molecules
dominate when K nD > 0:1. Under these conditions, the lift coef� -

Fig. 1 Lift coef� cient Cy of a spinning cylinder vs Knudsen number
KnD at M 1 = 0.15 and different spin rates: � lled symbols, H = 6; open
symbols, H = 3; and crossed symbols, H = 1.

Fig. 2 Drag coef� cient Cx of a spinning cylinder vs Knudsen number
KnD at M 1 = 0.15 and different spin rates: � lled symbols, H = 6; open
symbols, H = 3; and crossed symbols, H = 1.

cient changes sign for the cylinder spinning in a counterclockwise
direction, and the drag coef� cient becomes a function of the spin
rate. The values of C y;r and Cx at K nD > 3 are near the magnitudes
of the lift C y; f m and drag Cx ; f m coef� cients calculated from Eqs. (1)
for the free-molecule � ow.

The � ow� eld patterns near a spinning cylinder at near-free-
molecule (K nD D 3:18) and near-continuum (K nD D 0:032) � ow
regimes were studied by Riabov.11 The character of the � ow is ab-
solutely different in these cases. The zone of circulating � ow is much
wider in the continuum � ow regime, and its width is comparable to
the radius of a cylinder. In the near-free-molecule � ow regime, the
asymmetry of the � ow in the upper and lower regions is signi� cant.
The major disturbances of the � ow parameters are concentrated in
the vicinity of the spinning surface. In the opposite case of the near-
continuum � ow regime, the spinning effect signi� cantly changes
the � ow pattern in the area far from the surface. These differences
in � ow patterns dominate the character of molecule–surface inter-
actions.

Supersonic Rare� ed-Gas-Flow Regime
At supersonic � ow conditions, the speed ratio S becomes large,

and the aerodynamic coef� cients become less sensitive to the ratio
magnitude.7 In the present study, the transition � ow regime has
been investigated numerically at M1 D 10, ° D 5

3
(argon gas), and

H D 0.03 and 0.1.
The lift and drag coef� cients are shown in Figs. 3 and 4, respec-

tively. For the lift coef� cient, the in� uence of re� ected molecules is
dominant in the transition � ow regime (K nD > 0:03). The incident-
molecule input becomes signi� cant at Knudsen number K nD < 0:1.
Under the considered � ow conditions, the lift coef� cient has a pos-
itive sign (which is opposite to the sign under the continuum � ow
regime) for the cylinder spinning in a counterclockwise direction.
The drag coef� cient is insensitive to the spin rate. Furthermore,
the incident part of the drag coef� cient Cx;i predominates the mag-
nitude of the total drag coef� cient Cx . The values of C y and Cx

at K nD > 4 are near the magnitudes of the lift Cy; f m and drag
Cx; f m coef� cients calculated from Eqs. (1) for the free-molecule
� ow.

The � ow characteristics are different in these cases.11 For a small
spin rate, H D 0:1, the zone of circulating � ow is located in the
vicinity of the surface, and it does not affect signi� cantly the � ow
zone located far from the surface.

In the case of near-continuum � ow, the spinning effect slightly
changes the � ow pattern in the area far from the surface.11 The � ow
pattern becomes asymmetrical in this case. These differences in � ow
patterns dominate the character of molecule–surface interactions,
and they characterize the differences in the performance parameters
under signi� cantly distinct � ow conditions (Figs. 3 and 4).
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Fig. 3 Lift coef� cient Cy of a spinning cylinder vs Knudsen number
KnD at M1 = 10 and different spin rates: � lled symbols, H = 0.1, and
open symbols, H = 0.03.

Fig. 4 Drag coef� cient Cx of a spinning cylinder vs Knudsen number
KnD at M1 = 10 and different spin rates: � lled symbols, H = 0.1, and
open symbols, H = 0.03.

Conclusions
The aerodynamic coef� cients of a spinning in� nite cylinder have

been evaluated numerically for a range of two similarity parameters:
Knudsen number and roll parameter. It has been found that the lift
force on a spinning cylinder at subsonic upstream conditions has
different signs in the continuum and free-molecule � ow regimes.
The location of the sign change is in the transitional � ow regime
near K nD » 0:1. The major factor of in� uence is the magnitude of
momentum of the re� ected and incident molecules, which depends
on the value of the Knudsen number. The spinning parameter signif-
icantly in� uences the � ow pattern around the cylinder as well as the
force magnitude. At the supersonic upstream � ow conditions, the lift
coef� cient has a positive sign in the transitional and free-molecular
regimes (which is opposite to the sign under the continuum � ow
regime) for the cylinder spinning in a counterclockwise direction.
The supersonic drag coef� cient is insensitive to the spin rate, and
the incident component dominates the magnitude of the total drag
coef� cient.
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