
band branch, line branch, terms in the expansion of the Planck function in a Taylor series, 
and approximation formula for Gik , respectively; h, c stand for quantities pertaining to 
hot and cold layers; ' refers to upper level; " refers to lower level; D, Doppler profile; L, 
Lorentz profile. 
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APPROXIMATE CALCULATION OF TRANSPORT COEFFICIENTS IN MULTI- 

coMPONENT MIXTURES 

V. V. Ryabov UDC 533.1/2 

An efficient method is developed for calculating transport coefficients in dissoci- 
ated gas mixtures with a large number of components. 

For solution of problems of heat and mass exchange in the presence of hypersonic stream- 
line flow around obstacles [i], data on the various transport coefficients in mixtures of reac- 
ting gases is necessary. Application of the expressions for the coefficients of viscosity, 
thermal conductivity, thermal diffusion, and multicomponent mass diffusion derived from the 
kinetic theory of gases [2-4] can often be unwieldy because of the large amount of computer 
time used in the calculation. Significantly simpler expressions can be obtained with the help 
of the bifurcation approximation to the binary diffusion coefficient [5-7]. This approxima- 
tion is used in the present paper to obtain a relation for the diffusion current and expres- 
sions for the coefficients of viscosity, thermal conductivity, and thermal diffusion. 

Specifically, calculations were done for stably dissociated air at temperatures ranging 
from 2000 to 8000~ and pressures between 0.1,105 and l0 s Pa. Comparison of the results of 
our calculations for the transport coefficients with those of numerical calculations based 
on the kinetic theory of gases [2-3] indicates acceptable accuracy for our method. 

I, The Chapman--Enskog method for a quasineutral mixture gives the following expressions 
for the mass diffusion current~ heat current and viscous stress tensor [4]: 

N 

ji = PiVi = - -  m~mhD~hdh - -  D~ V 1~ T,  
9 = 

Translated from Inzhenerno-Fizicheskii Zhurna!, Vol. 44, No. 2, pp. 265-272, February, 
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where 

D~ 
q = ~ hhj~--3/vT-- 

k::1 [3 k = l  (Zk 

dk, 

zu : - -  -~- ~1 div V. 8u H- ~I def V, 

N 

di = VX~ + ( x i .  ~i) V In p; p = 9 ~ T; n = ,~-~ nk; 

N 
ni Pi ;  Z x~=-= ; a ~ = - - -  p ~ : n ~ m ~ ;  p : Ph. 
�9 n P k = l  

( l )  

(2) 

This method in principle allows one to obtain exact values for the coefficients of viscosity 
q(~), multicomponent mass diffusion Dik(~) (Dii = 0), thermal diffusion DT($), and the coef- 
ficient %'(~) (partial thermal conductivity). This procedure was followed in [2] for par- 
tially ionized air and in [3] for stably dissociated air. It was shown in [2, 3] that in the 
case of dissociation one can calculate the coefficients using the lowest order terms (~ = I, 
2) in the Sonine polynomial expansion of the distribution function for the first-order approx- 
imation to the Chapman--Enskog method [4]. 

We use the well-known result [4] relating the generalized multicomponent diffusion coef- 
ficients of the mixture Dij(1) to the binary mixture diffusion coefficients for different pairs 
of components~k(l ) . Then the following Stefan-Maxwell relation is obtained: 

) J  Vr . ( 3 )  
n2~u n2~u \ PJ P~ 

2. To obtain the exact solution of (3) we use the method of calculating binary diffusion 
coefficients developed in [5, 6], in which the approximate representation is used: 

D 
~u = , (4) 

Ffs 
where D(p, T) i s  a p a r a m e t e r  depend ing  on the  g i v e n  mu l t i componen t  sys t em as a who le ,  and 
Fi(T) refers to the i-th component. Since for a mixture consisting of N components there 
are N(N -- 1)/2 distinct binary diffusion coefficients, use of all N different parameters F i 
leads for N > 3 to an approximate value of~)ij according to (4), which must then be considered 

as a correlation relation. 

An examination of the accuracy of the correlation given in [5, 6] for various complex 
mixtures supports the representation of,~)ij in the form (4). In [5, 6] the data on the 
kinetics in nitrogen--oxygen systems were taken from [8]j which was based on the Lennard- 
Jones potential. However, it is known [i, 3] that application of this potential for calcula- 
tion of the transport coefficients leads to significant errors at high temperatures. In the 
present paper we have used a repulsive interaction potential of the form 

c (5) (r) -- 8 
F 

The resulting expression for the effective scattering cross section takes the form 

o!(,~) = 4( /+1)  P s -p2 - -  A'(6) l-k--f- ) , (6) 
"~'~ ( s +  1) ! [2 l+  1 - - ( - -  1) ~1 

where the Al(5) integrals are evaluated in [4]. Below we study the five-component system (02, 
N2, NO, O, N), modeling air over the temperature range 2000 to 80OOQK and pressure range 
0.i.i05 to i.I05 Pa. The appropriate values of C, 6, Al(~) were taken from [9]. 

According to [4]~ the expression for the binary diffusion coefficient, with the help of 
(6), takes the following form: 

02/% J 
P~)U a V - O  { CuSu)2/si) ; ,(7) 

M F(3__~)A,(6u)< kT; ] , 
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0 = T/To; a =  2.268.10-~; To = 10ak. 
Assuming further that the approximate relation (4) is satisfied, after some simple transforma- 
tions we obtain 

9 

D , g ,  M_.M__0~ 
Y) i:= ~ D= P 

F, 0 2 2 (8) 
Fi (T) O ~~ 6~ 

0 
Values of F i, 2/6 i for air were found with the help of the method of least squares on the 

binary diffusion coefficient given by (7). The normalization constants were taken from data 
on molecular oxygen (g* = 0.1244.10 -4 kmole/m.sec; S* = 6,68). In Table 1 we show values for 
F ~ i and ~i in O-nN systems with the interaction potential (5) 

The ~ij (i) were calculated approximately for these systems with the help of the values 
o 

for F i and w i given in Table 2 and the results were compared with the exact values. The 
results for the quantity P~ij/M with (~ # 0) and without (~i = 0) taking into account the 
temperature dependence of F i are given in Table 2 for T = 4000~ Comparison with the results 

calculated from (7) indicates that the relative error in the value of 9~)ij/M is small. The 
mean relative error does not exceed 3%, while the maximum error in the individual values of 
the 9~)ij/M was 12%. The results also indicate that the temperature dependence of Fi(T) is 
weak over the range 2000 to 8000~ Ilence for these mixtures one can assume within an error 
of 3% that the F i are constant. We also note that our method leads to a mean absolute error 
in p ~ij/M which is over an order of magnitude smaller than that in the method based on equal 
diffusion coefficients; this is in qualitative agreement with the conclusions of [5]. Thus 
further use of the correlation relation (4) below is completely Justified. 

3. There remains to find an approximate relation for the mass diffusion current. Sub- 
stituting (4) into the Stefan--Maxwell relation (3), we find 

N 

9D \ Mi ~ M: M~ ~ M: I 
. i=l  1=1 

Here f o r  c o n v e n i e n c e  we w r i t e  the  " t o t a l  mass d i f f u s i o n  c u r r e n t "  J i  as the  sum o f  the  m o l e c u l a r  
diffusion and thermal diffusion currents: 

J~ = j~ + D~vln  T. (10) 

After some relatively straightforward algebraic steps [6] we arrive at the relation 

d,= V, ::, .= g (11) 

Below for convenience we introduce the new parameters: 

N N N 

Mixi E Z Mix' E ~' dFJ zi = - - ;  Px = xjFi, p~= -~i ' ~t3 = -'~ - ~  (12) 
~tfFi i=1 :=I ii=l Fi 

Substitution of (2) and (12) into (ii) leads to the following constitutive equation for 
the diffusion current 

( )] ----p~M FfVZ*+ (zi--ai)VF=+ ~t~vlnp +~ F~I dFidT Pa vT " 

N If" 

M:zj (13) 

pp=Ff[zi(l--~l--~(l :=IM ) ] "  

This expression replaces the more general relation for multir diffusion (i) and gives 
precisely the "total mass diffusion current" $i of the i-th component in terms of gradients 
of the basic gasdynamical quantities of the system as a whole and gradients of the i-th 
component only. This functional dependence, obtained in [5] in the case Vp = 0, is an im- 
portant consequence of the conservation equations and also the correlation relation (4). 
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TABLE i. Parameters for Approximate Calculation of Binary Dif- 
fusion Coefficients of Dissociated Air 

Parameter o.. N2 NO O N 

o 

0)i 

1,0 

0 

0,9683 

--0,0114 

0,9952 

--0,0904 

0,6152 

0,07t7 

0,6474 

0, (]633 

TABLE 2. Approximate and Exact Values of 9~ij/M.105 kmole/m. 
sec for Air at T = 4000~ 

Approxi- Approxi- , Approxi- Approxi- 
Interacting Exact mate Interacting �9 Exact mate mate 

mate , # molecules (7) wi = 0) I (wi 0~ molecules (7) ' (w i = 01 (wi~0)  

0 2 - - 0 2  
O2--N2 
O~ NO 
02 --O 
O2--N 
N~.--N~ 
N2--NO 
N2--O 

0,2663 
0,2892 
0,3341 
0,5202 
0,4940 
0,3036 
0,3388 
0,5167 

0,2988 
0,3118 
0,3269 
0,4548 
0,4355 
0,3254 
0,3404 
0,4747 

0,2988 
0,o086 
0,3003 
0,4857 
0,4615 
0,3187 
0,3101 
0,5016 

N 2 - - N  
NO--NO 
NO--O 
NO--N 
0--0 
O--N 
N--N 

0,5022 0,4545 
0,3265 0,3560 
0,4516 0,4965 
0,4761 0,4754 
0,7092 0,6923 
0,6678 0,6630 
0, 6032 0,6348 

0,4766 
0,3017 
0,4880 
0,4637 
0,7895 
0,7502 
0,7!28 

Application of (13) allows significant reduction in the calculation time for gasdynamical sys- 
tems and hence allows one to make use of certain special features of algorithms used earlier. 

It was noted above that in several cases of interest (for example in dissociated air) 
one can put to a good approximation dFi/dT = 0 (or F i = F~). This leads to some simplifica- 
tion in (13) : 

j ~ + D f  v l n T = -  pD p lM [P2VZl + (z~ - -  ai) VPz @ VpV lnp]. (14) 

4. Another approximation method of calculating transport coefficients is the approach 
used in [i0, ii] for the coefficients of viscosity and thermal conductivity. Use of the 
correlation dependence (4) allows further simplification of the procedure for calculating the 
coefficients of viscosity, thermal conductivity, and thermal diffusion in multicomponent non- 
ionized gas mixtures. 

4,1. Viscosity. The following expression for the coefficient of viscosity qm (i) in a 
gas mixture was derived in [4]: 

N 

Z x~ 
~}m= N M 

~=l x i  + E  xh - - b i ~  
~h k=l PY)i~ Mi 

h=r i 

Mi @ Mh 5 Mi 

(i5) 

where 
(~(2,2) 

5 M i p . ~ u  , A* ~oih 
6 M ' ( 1 6 )  

Expression (15) represents the formulation of the Wilke method of calculating the coefficient 
of viscosity. The above result was obtained using the Lennard~Jones interaction potential, 
and bik = 6/5 A*ik = 1.385. However, it was noted above that this interaction model leads 
to poor results at high temperatures. Therefore, it is necessary to refine the value of the 
parameter bik. This was carried out for dissociated air and it was found that within an 
error of 5% one can put bik = b = 1.473. This value will be used in the calculations below. 

With the help of (4) and (16), the coefficient of viscosity can be written in a different 

form: 
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9Dp2 
Nm ~ piMb (17) 

Calculations using (17) for stably dissociated air at p = O.l,105 and I.i05 Pa are displayed 
in Table 3. The air composition was calculated according to the method of [12]. Comparison 
with results based on the more rigorous kinetic theory [2, 3] indicated good agreement of 
the approximate approach (within around 3%) over the entire temperature range T = 2000-8000~ 

4.2. Heat Conductivity. An approximation formula similar to (15) is known for the coef- 
O! 

ficient %m in a mixture of monatomic gases. In [ii] the following expression is suggested: 

N 
0'= E xi%~ 15 R %m N ; %o __ q,. 

,=1 x~+ 1.065b MiM ~ i ~  9~xJiJ 4 M, (18) 

/" -----1 

The factor 1.065 was chosen from the best fit to the experimental data [ii]. In order to 
obtain an expression suitable for later calculations, we substitute (4) into (18), and 
finally we have 

N 
�9 15 pD ~k" xdF~ 

~~ $ R ~ &Ff (19) 
plMb ~=l 1.065 0,065 

Pl 
In t he  c a l c u l a t i o n  of  t he  t h e r m a l  c o n d u c t i v i t y  f o r  nonmonatomic- gases  i t  i s  n e c e s s a r y  to  i n -  
c lude  contribution of the internal degrees of freedom of the molecules Xin: 

~" = %'~ + %in" (20)  

An expression for the corresponding correction, which was first introduced in [4], is, using 

(4), 

E Xi 
; k i n _  - p R  XiCin,i _ pD N 

M xj F,- qn/" (21) 
i=I ~ i=l 

]=! 

The results of the calculations for the thermal conductivity of stably dissociated air at 
p = 0.1.105 and 1,105 Pa from (19)-(21) are shown in Table 3, where the corresponding data 
from [3] is also shown. Comparison of these results indicates that the approximation formulas 
developed in this section are highly accurate. 

4.3. Thermal Diffusion. There have been only a small number of papers devoted to approx- 
imate calculations of the thermal diffusion coefficient in multicomponent systems. From a 
detailed analysis of the exact expression for DT(2) Bartlett~ Kendall, and Rindal [6] sug- 

�9 1 
gested the use of the simple expression 

DT=ct pD p~(Zi--~O. (22) 
plM 

The v a l u e  of  t he  c o n s t a n t  cc was chosen  to  be --0.5;  t h i s  i s  used  in  s u b s e q u e n t  c a l c u l a t i o n s .  

The t h e r m a l  d i f f u s i o n  c o e f f i c i e n t  was c a l c u l a t e d  u s i n g  (22) f o r  s t a b l y  d i s s o c i a t e d  a i r  
with p = 0.i-i0 ~ Pa. The air composition in this case was taken from [12]. The results are 
shown in Table 4, along with data taken from [3] for comparison. In spite of notable discrep- 
ancies, there is qualitative agreement and it is expected that the quantitative disagreement 
will not greatly influence gasdynamical calculations. Apparently a more exact approximate 
method for calculating D T has not yet been worked out. 

1 
In summary, the method considered here allows the efficient calculation of the transport 

coefficients in complex mixtures with an accuracy that is acceptable for pratical work. 

NOTATION 

p, density; V, velocity; m, mass of a molecule; xi, ~i, molar and mass concentrations of 
the i-th component; p, pressure; T, temperature; M, molecular weight. 
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METHOD OF ANALYZING AND GENERALIZING EXPERIMENTAL DATA ON THE 

FREE MOTION OF TOLUENE 

G. I. Isaev UDC 536.24 

An equation describing the heat transfer in the free motion of toluene about a 
horizontal tube and at supercritical pressures is proposed. 

The results of analyses of experimental data by various authors show that the laws of 
convective heat transfer in free convection at supercritical pressures of the heat carrier 
differ from the laws of heat transfer in the subcritical region of states of the material. 
In a series of works, the influence of individual factors on the heat-transfer coefficient 
has been noted [I, 2]. Therefore, generalization of experimental data at supercritical pres- 
sures of different heat carriers by means of a single critical equation with free convection 
is very difficult. The basic difficulties are associated with taking account of the influence 
of change in physical properties of the given fluid on the heat-transfer coefficient. The 
means of taking account of this phenomenon adopted by individual researchers have been dif- 
ferent. Many have taken the well-known relations obtained for the Nusselt number (Nuo) and 
added corrections that take account of the variability of the physical properties. 

At present, there exist a series of critical relations for calculating the heat-transfer 
coefficient with free convection at supercritical pressures. One was proposed in [3] on the 
basis of the results of investigating the heat transfer of carbon dioxide with free convection 
in horizontal tubes, in the form 

Nu = 0.152 Ra 1/~ (PrJPr  f) ~ (1) 
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