band branch, line branch, terms in the expansion of the Planck function in a Taylor series,
and approximation formula for G4k, respectively; h, ¢ stand for quantities pertaining to
hot and cold layers; ' refers to upper level; " refers to lower level; D, Doppler profile; L,
Lorentz profile.
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APPROXIMATE CALCULATION OF TRANSPORT COEFFICIENTS IN MULTI-
COMPONENT MIXTURES

V. V. Ryabov UDc 533.1/2

An efficient method is developed for calculating transport coefficients in dissoci-
ated gas mixtures with a large number of components.

For solution of problems of heat and mass exchange in the presence of hypersonic stream-
line flow around obstacles [l], data on the various transport coefficients in mixtures of reac-
ting gases is necessary. Application of the expressions for the coefficients of viscosity,
thermal conductivity, thermal diffusion, and multicomponent mass diffusion derived from the
kinetic theory of gases [2-4] can often be unwieldy because of the large amount of computer
time used in the calculation. Significantly simpler expressions can be obtained with the help
of the bifurcation appreximation to the binary diffusion coefficient [5-7]. This approxima-
tion is used in the present paper to obtain a relation for the diffusion current and expres-
sions for the coefficients of viscosity, thermal conductivity, and thermal diffusion.

Specifically, calculations were done for stably dissociated air at temperatures ranging
from 2000 to 8000°K and pressures between 0.1¢10° and 10° Pa. Comparison of the results of
our calculations for the transport coefficients with those of numerical calculations based
on the kinetic theory of gases [2-3] indicates acceptable accuracy for our method.

1. The Chapman—Enskog method for a quasineutral mixture gives the following expressions
for the mass diffusion current, heat current and viscous stress tensor [4]:

i = iV = 2 mymDady — DT v 10 T,

Translated from Inzhenerno~-Fizicheskii Zhurnal, Vol. 44, No. 2, pp. 265-272, February,
1983. Original article submitted December 7, 1981.
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This method in principle allows one to obtain exact values for the coefficients of viscosity
n(g), multicomponent mass diffusion Dy} (§) (Dii = 0), thermal diffusion DE(E), and the coef-
ficient A'(£) (partial thermal conductivity). This procedure was followed in [2] for par-
tially ionized air and in [3] for stably dissociated air. It was shown in [2, 3] that in the
case of dissociation one can calculate the coefficients using the lowest order terms (£ = 1,
2) in the Sonine polynomial expansion of the distribution function for the first-order approx-—
imation to the Chapman—Enskog method. [4].

We use the well-known result [4] relating the generalized multicomponent diffusion coef-
ficients of the mixture DlJ(l) to the binary mixture diffusion coefficients for different pairs
of components D7k (l). Then the follow1ng Stefan~Maxwell relatlon is obtained:

§ n;t n;n; DT
2 My -—V)_«d—-vlnTz i ( ~—‘>. (3) |
yre D ; = P \ 0; Pi

2. To obtain the exact solution of (3) we use the method of calculating binary diffusion
coefficients developed in [5, 6], in which the approximate representation is used:

. D }

FiF; '
where D(p, T) is a parameter depending on the given multicomponent system as a whole, and
F; (T) refers to the i-th component. Since for a mixture consisting of N components there
are N{(N — 1)/2 distinct binary diffusion coefficients, use of all N different parameters Fj

leads for N > 3 to an approximate value of'P;j according to (4), which must then be considered
as a correlation relation.

D=

(4)

An examination of the accuracy of the correlation given in [5, 6] for various complex
mixtures supports the representation of@;.: in the form (4). In [3, 6] the data on the
kinetics in nitrogen—oxygen systems were taken from [8], which was based on the Lennard-
Jones potential. However, it is kmown [1, 3] that application of this potential for calcula-
tion of the transport coefficients leads to significant errors at high temperatures. 1In the
present paper we have used a repulsive interaction potential of the form

Cc

The resulting expression for the effective scattering cross section takes the form

(L) _ 4+ 1) ( 2___) A (6 (CG )2/‘5’ .
S = T T —(— s+2—5 )40 (5r (6)

where the AZ(G) integrals are evaluated in [4]. Below we study the five-component system (02,
N2, NO, O, N), modeling air over the temperature range 2000 to 8000°K and pressure range
0. 1‘105 to 1¢10° Pa. The appropriate values of G, §, AL(8) were taken from [9].

According to [4], the expression for the binary diffusion coefficient, with the help of
(6), takes the following form:

9218

2 C;:0; /85 ’
F 3 = A 6; ij l]) .
(35 ) e (%

P2 _ay® %
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0 =T/Ts; a=2.268-10"3; Ty = 104
Assuming further that the approximate relation (4) is satisfied, after some simple transforma-
tions we obtain

M 05
D=2 D=gto T,
j F; g 0
FU 2 2 ®)
T)= i, oy .
= ST e

Values of F;, 2/8; for air were found with the help of the method of least squares on the
binary diffusion coefficient given by (7). The normalization constants were taken from data

on molecular oxygen (g* = 0.1244¢107° kmole/mesec; 8* = 6.68). In Table 1 we show values for
F; and w; in 0N systems with the interaction potential (5).

The 3013(1) were calculated approximately for these systems with the help of the values
for F1 and wi given in Table 2 and the results were compared with the exact values. The
results for the quantity p251 /M with (w # 0) and without (w; = 0) taking into account the
temperature dependence of Fj are given in Table 2 for T = 4000°K. Comparison with the results
calculated from (7) indicates that the relative error in the value of pﬁDi~/M is small. The
mean relative error does not exceed 3%, while the maximum error in the individual values of
the pzﬁij/M was 127%. The results also indicate that the temperature dependence of F4(T) is
weak over the range 2000 to 8000°K. Hence for these mixtures one can assume within an error
of 3% that the F; are constant. We also note that our method leads to a mean absolute error
in p £14/M which is over an order of magnitude smaller than that in the method based on equal
diffusion coefficients; this is in qualitative agreement with the conclusions of [5]. Thus
further use of the correlation relation (4) below is completely justified.

3. There remains to find an approximate relation for the mass diffusion current. Sub-
stituting (4) into the StefanMaxwell relation (3), we find

N N
di: M2 <aiFi Y JJF] . Fi‘li 3 a]F]). (9)

oD M; a M; M; f-% M;
s =
Here for convenience we write the "total mass diffusion current' J; as the sum of the molecular
diffusion and thermal diffusion currents:
Jy=ji+DiymnT. (10)
After some relatively straightforward algebraic steps [6] we arrive at the relation

—1M M 3LF Y oF; 11
Zl F, oD M; o M; 1

Below for convenience we introduce the new parameters:

N N
M;x; — “1 M;x; W
Zs = ;W= X'F', 9 = > Mg =
PR, 1 ,;{ iy P }-J F; 3 ”;1‘ F?

Substitution of (2) and (12) into (11) leads to the following constitutive equation for
the diffusion current

dF;
ar (12)

=B

pD 1 dFl A
J, = ) —a; ] oM = T
i A [uzvz + (@ —a) v+ ppving + ( FT AT ls)V
N [ 4
" (13)
N Myz;

This expression replaces the more general relation for multicomponent diffusion (1) and gives
precisely the "total mass diffusion current" J; of the i-th component in terms of gradients
of the basic gasdynamical quantities of the system as a whole and gradients of the i-th
component only. This functional dependence, obtained in [5] in the case Vp = 0, is an im-
portant consequence of the conservation equations and also the correlation relation (4).
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TABLE 1. Parameters for Approximate Calculation of Binary Dif-
fusion Coefficients of Dissociated Air

Parameter 0, N, NO \ o) 1 N
F? 1,0 0,9683 0,9952 0,6152 0,6474
@; 0 —0,0114 —0,0904 0,0717 | 10,0633

TABLE 2. Approximate and Exact Values of pQDij/M-lO5 kmole/me
sec for Air at T = 4000°K

. \ :_| Approxi- Approxi- | Approxi-
Interacting | pyact | APPTOXL"| iare Interacting . | Exact |mate mate

molecules mate ales | (T) - i
(1) l(wi - 0y (w; =0y | molecul (M (wy = 0) |(w; =0)
0,—0, 0,2663 | 0,2988 | 0,2988 Ny —N 0,5022 0,4545 | 0,4766
0;—N, 0,2892 | 0,3118 | 0,3086 NO—NO 0,3265 | 0,3560 | 0,3017
0,—NO 0,3341 0,3262 | 0,3003 NO—O 0,4516 0,4965 | 0,4880
0,—0 0,5202 | 0,4548 | 0,4857 NO—N 0,4761 0,4754 | 0,4637
0;—N 0,4940 | 0,4355 | 0,4615 0—-0 0,7092 | 0,6923 | 0,789%
Ng—Nj 0,3036 | 0,3254 1 0,3187 O—N 0,6678 | 0,6630 | 0,7502
Ny—NO 0,3388 | 0,3404 | 0,310l N—N 0,6032 | 0,6348 | 0,7128
Ny—O 0,5167 | 0,4747 | 0,5016

Application of (13) allows significant reduction in the calculation time for gasdynamical sys-
tems and hence allows one to make use of certain special features of algorithms used earlier.

It was noted above that in several cases of interest (for example in dissociated air)
one can put to a good approximation dF{/dT = 0 (or F; = F;). This leads to some simplifica-
tion in (13):

pl/)w [ev2; + (21 — ) Vi + 1pV In p]. (14)

ji+DiyinT =—
My _
4. Another approximation method of calculating transport coefficients is the approach
used in [10, 11] for the coefficients of viscosity and thermal conductivity. Use of the
correlation dependence (4) allows further simplification of the procedure for calculating the
coefficients of viscosity, thermal conductivity, and thermal diffusion in multicomponent non-
ionized gas mixtures.

4.1. Viscosity. The following expression for the coefficient of viscesity ng (1) in a
gas mixture was derived in [4]:

‘ N
N — \ X .
m Py X ﬁ Xn M b
= -— — Ui
N: h:! 0D M; (15)
#1
; 3 M, =
bﬂl==-——gﬁ£~—— 14+ =2 A5,
M; + M, 5 M;
where
5 M; 0Dy R o1
L T | ()

Fxpression (15) represents the formulation of the Wilke method of calculating the coefficient
of viscosity. The above result was obtained using the Lennard-Jones interaction potential,
and by, = 6/5 A*jp = 1.385. However, it was noted above that this interaction model leads

to poor results at high temperatures. Therefore, it is necessary to refine the value of the
parameter bik. This was carried out for dissociated air and it was found that within an
error of 5% one can put bix = b = 1.473. This value will be used in the calculations below.

With the help of (4) and (16), the coefficient of viscosity can be written in a different
form:
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o wyMb (17)

Calculations using (17) for stably dissociated air at p = 0.1*10° and 1+10° Pa are displayed
in Table 3. The air composition was calculated according to the method of [12]. Comparison
with results based on the more rigorous kinetic theory [2, 3] indicated good agreement of

the approximate approach (within around 3%) over the entire temperature range T = 2000-8000°K.

4.2.°'Heat Conductivity. An approximation formula similar to (15) is known for the coef-
ficient A, 1in a mixture of monatomic gases. 1In [11] the following expression is suggested:

N 0
) il =B R,

) 1M,
= x,—{-1065b -~ V *’ (18)

l]

0’
}‘m

1+L

=1
The factor 1.065 was chosen from the best fit to the experimental data [1l]. In order to
obtain an expression suitable for later calculations, we substitute (4) inte (18), and
finally we have

2 o 18 p oD N\ 5ilF
1 = 1.06b — =-*.0,065
Wy

In the calculation of the thermal conductivity for nonmonatomic gases it is necessary to in-
clude contribution of the internal degrees of freedom of the molecules Ajip:

N = Ady 4 Aige (20)
An expression for the corresponding correction, which was first introduced in [4], is, using
(4),
_—__Q___ ’CClnl ZpDRiic .
Ain: M ;g] X Y P F, i (21)
Dy

=1
The results of the calculations for the thermal conductivity of stably dissociated air at

= 0.1+10° and 1+10° Pa from (19)-(21) are shown in Table 3, where the corresponding data
from [3] is also shown. Comparison of these results indicates that the approximation formulas
developed in this section are highly accurate.

4.3. Thermal Diffusion. There have been only a small number of papers devoted to approx-
imate calculations of the thermal diffusion coefficient in multicomponent systems. From a
detailed analysis of the exact expression for DT(Z), Bartlett, Kendall, and Rindal [6] sug-
gested the use of the simple expre551on

D ' -
DlT = (4 4 Ko (Zi-—- oci). 3 (22)

wM

The value of the constant c¢ was chosen to be -0.5; this is used in subsequent calculatioms.

The thermal diffusion coefficient was calculated using (22) for stably dissociated air
with p = 0.1+10° Pa. The air composition in this case was taken from [12]. The results are
shown in Table 4, along with data taken from [3] for comparison. In spite of notable discrep-
ancies, there is qualitative agreement and it is expected that the quantitative disagreement
will not greatly influence gasdynamical calculations. Apparently a more exact approximate
method for calculating Di has not yet been worked out.

In summary, the method considered here allows the efficient calculation of the transport
coefficients in complex mixtures with an accuracy that is acceptable for pratical work.

NOTATION

o, density; V, velocity; m, mass of a molecule; xj, 04i, molar and mass concentrations of
the i-th component; p, pressure; T, temperaturej M, molecular weight.
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METHOD OF ANALYZING AND GENERALIZING EXPERIMENTAL DATA ON THE
FREE MOTION OF TOLUENE

G. I. Isaev UDC 536.24

An equation describing the heat transfer in the free motion of toluene about a
horizontal tube and at supercritical pressures is proposed.

The results of analyses of experimental data by various authors show that the laws of
convective heat transfer in free convection at supercritical pressures of the heat carrier
differ from the laws of heat transfer in the subcritical region of states of the material,

In a series of works, the influence of individual factors on the heat-transfer coefficient

has been noted [1, 2]. Therefore, generalization of experimental data at supercritical pres-
sures of different heat carriers by means of a single critical equation with free convection
is very difficult. The basic difficulties are associated with taking account of the influence
of change in physical properties of the given fluid on the heat-tramnsfer coefficient. The
means of taking account of this phenomenon adopted by individual researchers have been dif-
ferent., Many have taken the well-known relations obtained for the Nusselt number (Nuo) and
added corrections that take account of the variability of the physical properties.

At present, there exist a series of critical relations for calculating the heat-transfer
coefficient with free comvection at supercritical pressures. One was proposed in [3] on the
basis of the results of investigating the heat transfer of carbon dioxide with free convection
in horizontal tubes, in the form

Nu = 0,152 Ra'/® (Pr/Pr;)°*%. (1)

M. Azizbekov Azerbaidzhan Institute of Petroleum and Chemistry, Baku. Translated from
Inzhenerno~Fizicheskii Zhurnal, Vol. 44, No. 2, pp. 272-274, February, 1983. Original article
submitted December 30, 1981.
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