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CALCULATION OF THE TRANSPORT COEFFICIENTS IN MULTICOMPONENT 

GAS MIXTURES 

I. V. Lebedev and V. V. Ryabov UDC 517.9:533.7 

An approximate method is discussed for calculating the transport coefficients in 
multicomponent gas mixtures. 

It is well known that the numerical integration of the equations of gasdynamics for mul- 
ticomponent mixture with transport coefficients calculated rigorously using kinetic theory is 
beset with serious difficulties. This is because i) the mass diffusion flux of the i-th com- 
ponent and the heat flux depend on the fluxes of all the other components and their gradients; 
2) for an N-component mixture it is necessary to compute the set of ~ij integrals, where i, 
j = i, ..., N; 3) in order to calculate the transport coefficients ratios of determinants of 
orders N and N + I are required. Hence with increase in the number of components, the number 
of computational operations and the memory required progressively increase. 

These difficulties have stimulated the development of various approximate methods of cal- 
culating transport coefficients. A widely used approximate relation for the thermal conduc- 
tivity and viscosity is based on the fact that the nondiagonal elements in the determinants 
are much smaller than the diagonal elements, and thus perturbation theory can be used, It 
should be noted that satisfactory results from first- and second-order perturbation theory 
can be achieved only by introducing an additional empirical parameter fitted to experimental 
data [I]. 

In the simplest method of calculating the mass-exchange coefficients, the diffusion co- 
efficients are set equal to each other and the coefficient of thermal diffusion is ignored 
even where this leads to serious error. 

The bifurcation method [2, 3] is used widely in engineering calculations. The use of 
different diffusion coefficients for the different components leads to only a slight compli- 
cation of the algebra and a somewhat increased execution time for the calculations. The 
main advantage of this method is that the resulting expression for the mass diffusion flux 
of the i-th component involves only variables and their gradients characterizing the system 
as a whole and the i-th component, but not any of the other components. In addition, in the 
calculation of the mass diffusion flux, it is sufficient to use only N quantities dependent 
on the molecular properties of the components. The error in the coefficients can be as large 
as 10% for the systems studied in [2]. 

In the approximation method used in [4], the mass diffusion flux of the i-th component 
is directly proportional to the concentration gradient of the i-th component only. In [4], 
approximate expressions were given for the constants of proportionality between these quan- 
tities (the effective diffusion coefficients) and it was shown that in several cases involv- 
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ing boundary layers, they could be approximated accurately by functions only of the binary 
diffusion constants and the values of the concentration on the wall and on the outer edge of 
the boundary layer. 

We present an approximation method for the transport coefficients of a multicomponent 
gas mixture based on isolating the dominant term in a double polynomial expansion of the cor- 
rection to the first-order Chapman--Enskog theory. Quantities calculated with the approximate 
relations for the thermal conductivity, viscosity, and diffusion coefficients obtained here 
are compared with those calculated using the standard methods. 

In order to obtain a closed system of gasdynamic equations for a mixture of N nonreact- 
ing gases in the absence of external forces, the diffusion velocity of the i-th component V ~, 
the stress tensor Prk, and heat flux q must be expressed in terms of the hydrodynamic quanti- 
ties: u, the average velocity of the mixture; T, the temperature of the mixture; and nj (j = 
I, ..., N), the concentrations of the components. The solution of this problem in the hydro- 
dynamic approximation has been worked out using the Chapman--Enskog method [i]. 

We will look for a solution of the system of kinetic equations for the distribution func- 
tion of each component in the mixture in the form of an asymptotic series in a small parame- 
ter (we choose the Knudsen number). Using for the zeroth approximation a local Maxwellian 
distribution function fi ~ we obtain for the first-order correction ~t~ [i]: 

flo) [(  rnic'2 5 ) , _ _  rn' ( , , 1 ) Ou~ n ida] 
2kT 2 cr Ox'r + - k - f - e r e ,  ~ o'26rl Ox---T§ c~ = -  

. i=l  

nin/,j [q:"~]. (1) 

where c i and m i are respectively the velocity and particle mass of the i-th component, n = 

N 

Z n, , k i s  the  Boltzmann c o n s t a n t ,  6rZ i s  the  Kronecker  d e l t a ,  and the  i n t e g r a l s  l,j[qD ~i~] 
i = 1  

are given in [I]. 

The set of thermodynamic diffusion forces d~ =-- ax r + = , where 
n mn axr 

N N 

m :  E m~ndn, p =nkT, arenot linearly independent since ~ d~=0. In analogy with [5], we 

i = l  i = 1  

transform the set of vectors d i (i = I ..... N) to the set D(P)(p = 0, i, .... N -- I): 

N--1 

n d~r = E mi D(v)r~(p) 
n~ In 

p = o  

(2) 

In (2) we use for the matrix elements of the linear transformation the Waldman--Truben- 

P 

bacher polynomials p~v) ~hmi , which satisfy the following recurrence relations [5]: 
h=g 

p~o)=l, Pl~) -- (mi-- < m > )/( < m~ > -- < m > 2), 

N 

< rn k > = ~ m~+ln,l ~n. 
i = l  

N 

Since ~ di= 0 , we have D(~ = 0, and the other N- 1 vectors D(P) (p = i ..... N- i) are 
i=I 

linearly independent. 
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Following [i], we seek the general solution of (i) as the sum of a particular solution 
and the general solution of the homogeneous integral equation. The N + 4 arbitrary constants 
in the general solution are chosen so that ~I I) does not contribute to ni, u, T. The general 
solution of (I), using (2), can then be written in the form 

N - I  

(Pl~) -- nl A m l - ~  9 1 n k T - m  c: OXr n-1 m~ Bi( i ~ 1 - m  c:cz-- 3' c~2C)rz) Ou~+ E A~(p) m~ c ~ r D ~ p ) ' p = ~  ~z (3) 

Integral equations for the functions Ai(P ), A i, and B i, satisfying the condition that ~I) 
does not contribute to ni, u, and T, are obtained by substituting (3) into (I) and equating 
the coefficients of the gradients of like quantities: 

N 

~(o).. .to(p) ~ n~n~lij [mc,A(P)], p 1, N 1, 
- -  l i  "~iL'r~i ~ ~ " " " ' -- 

i = l  

�9 N 

f~o~ ~ 2 - ~  ~ c, = "" nm- l~lImc~A], 
i=1 

(4) 

flo) ml ( ~ ~ 1 Cr Cl -- 3 \ 

N 

]=1 n~ ]u | C26rl) B 1 �9 

Following [5], we look for solutions of the integral equations in the form of double poly- 
nomial expansions: 

N--I 2 ( p )  n ( s ) o ( q ~  .-., A[__ 
A ~r = a, 0 r~ ola/2)~, p = I, i, 

s=0 q=O 

L~ Z �9 -so<q) ~- tsqUiO(])i. 

s=0 q=0 

In (5) L i stands for A i and B i, Isq for asq and bsq, and j = 3/2 and 5/2. 

Sonine polynomials and 1]if)= 2 ~hm~ 
~ = 0  

(5) 

The S (q) are the 
(j)i 

are the Wa!dman--Trubenbacher polynomials, which satisfy 

N 
~ ~ ~ m i ni/n. the recurrence relations [5]: IJI 0) I, Ill I) (m i m)/(mZ--m~), ~ ~ ~ 

The series for Ai(P ), A i, and B i are replaced by their first nonvanishing terms a(P)p0, a0~ , 
and boo, respectively. We multiply (4) by PIP), SI~12)~ , and I, respectively, and integrate 

with respect to velocity and sum over components. We note that the above terms are the only 
ones in (5) which these operations leave nonvanishing. In addition, the term a01S((~)2)~ is the 

only one in the expansion (5) that contributes to the thermal conductivity. Similarly only 
the terms ap(~)p~ p) (p---- 1 ..... N--I) and boo contribute to the diffusion coefficients and vis- 
cosity, respectively. We refer to terms with a(p% ), a01 , and boo as dominating in (5) and we 
use variational methods to find them. Note that the dominant terms can always be separated 
out from the solution in the form (3) and (5). We obtain the results: 

a •  3m 
pO = 8nR<p) , p = 1 . . . . .  N--1,  

5~ 15~ 
b o o  ~ - -  , a O l ~  - -  16kTG 16R 

(6) 
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The coefficients in relations (5) are functions of the fliJ integrals given in [i]: 

N E nin] 
R= 

i , l = t  

m,mj [_55_ (m~--m,m,)f~I) ' I ) -  10 (m~--mimj)  fill,2) + 2(m~_mdnj)f]}},3)  + 8mimjf~,2,],  
(mi + mj) 3 

(7) 
N 

E niny mj 0 ( 2 , 2 )  

G = ~ (mi + m j) --u , 
i , i = l  

N 

R~R)= E n,n~ mimj (plv) p}p))2fll],,) 
n ~ (m~ + mj) 

i , / = I  

The calculated values of the coefficients A i(p), A i, and B i are used to get the quanti- 
ties V i, q, and Prs: 

q _ 

N--j S plY) [ - -  - -  01np] V~ = - -  3kT �9 Om l m l 
i ~  ~ o~, ~ + (m ~ -  < >) Ox, J, 

D= 1 l=O 

5 kT ( OUT OU~ 2 8~s Ouz 
P'~ = - 7-s --6-- ~ o ~  + o ~  T o~, ] ' 

N - - I  p -- -- 

75 kT OkT 15 (kT)~ E Z oslml [ Om h -- m k OIn p ] 
32 < >) o , ,  �9 

p = l  k, l=O 

And the system of gasdynamic equations is now closed. 

Using the usual expressions for the quantities given in (8) 

(8) 

N 

E 0 (ln kT), Vir_ ~ Dudir=_ D r 

1=1 

N N 

E E Ox, P Dr d*r + 2 " 
i = 1  f ~ l  

( Our Ou~ 2 Out I 
P~ = - - 0  \ Ox~ -~ 6~ , Ox~ 3 axz ] 

we obtain the diffusion coefficients Dij , the thermodiffusion coefficient Di T, the thermal 
conductivity X', and the viscosity ~: 

N--1 p(mp(p) 
3kT %~ ~ j D T D u -- 
8n ~--. R(p) , ~ = 0 ,  

p :  i 

75 k2T 5 kT 

32 R 16 G 

(9) 

Note that in (5) if we use only the dominant terms, then Di T = 0. Hence, a nonzero thermo- 
diffusion coefficient in expansion (5) can only be obtained if we take into account addi- 
tional "interference" terms. 

Use of the transformation (2) allowed us to express V i and q in terms of the gradients 
of average quantities only: p, T, ~k, k = i, ..., N -- i, where the coefficients of these 
gradients depended onlyon quantities characterizing the i-th component and the system as a 
whole. As was shown in [2], these properties of (8) simplify considerably the numerical in- 
tegration of the system of gasdynamic equations. Also the transport coefficients (9) are 
given in compact analytical form, and it is not required to calculate the ratio of deter- 
minants of orders N + 1 and N. However, unlike the bifurcation approximation, in the calcu- 
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lation of the kinetic coefficients (9), as in the calculation of the transport coefficients 
using traditional kinetic theory, one must use the entire set of ~ij integrals. 

To test the accuracy of (9), the results using these relations were compared to those 
calculated in [6] using traditional formulas obtained with the Chapmarr-Enskog method. The 
diffusion coefficients were compared for the three-component systems N2-O2--NO and N-O-NO, 
and the viscosity and thermodiffusion coefficients were compared for the same three-component 
systems and the five-component system N=-O2--NO--N-O for different concentrations. It was found 
that the errors in the diffusion coefficients did not exceed 3%, except for the diffusion co- 
efficients with NO as one of the components, where the error was as large as 9%. The error 
in the viscosities did not exceed 2.5%, and the error in the thermodiffusion coefficients was 
less than 6%. We note that in a two-component system (N = 2), Dij given by (9) agrees with 
the result obtained using the Chapman--Enskog method [I]. 

Attempts to separate out one or several dominant "interference" terms in expansion (3), 
which would give a nonzero value for the thermodiffusion coefficient, were not successful. 
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