

Visible Analyst®

Operation Manual

Version 7.6

 Systems Corporation

Information in this document is subject to change without notice and does not represent a commitment on the part of
Visible Systems Corporation. The software described in this document is furnished under a license agreement or
non-disclosure agreement. The software may be used or copied only in accordance with the terms of this agreement.
It is against the law to copy the software onto any medium except as specifically allowed in the license or non-
disclosure agreement.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or otherwise,
including photocopying, reprinting, or recording, for any purpose without the express written permission of Visible
Systems Corporation.

Copyright 2002 by Visible Systems Corporation.
All rights reserved.

Printed and bound in the United States of America.

This manual was prepared using Microsoft Word for Windows 2000. Information used in examples is fictitious and
for purposes of example only.

Visible Analyst
Version 7.6
Operation Manual

Visible Analyst is a registered trademark of Visible Systems Corporation.

Microsoft and Windows are registered trademarks of Microsoft Corporation.
Other product and company names are trademarks or registered trademarks of their respective owners.

Visible Systems Corporation
201 Spring Street
Lexington MA 02421
Technical Support: 781-890-2273
Fax: 781-890-8909
Internet: http://www.visible.com
E-mail: support@visible.com

iii

Table of Contents

INTRODUCTION..1

VISIBLE ANALYST ...1
Visible Analyst Diagramming Tool ...1
Visible Rules ..1
Visible Repository ..1

VISIBLE ANALYST TOOL SETS ..2
Strategic Planning...3
Visible Analyst Data Modeling Tool Set ...3
Visible Analyst Process Modeling Tool Set ...4
Visible Analyst Object Modeling Tool Set ..4
Local Area Networks ..4

GETTING STARTED..5

STARTING OUT...5
Send in the Warranty Registration Card! ...5

SYSTEM REQUIREMENTS ...5
Hardware Configuration..5
The Visible Analyst Database Manager ...6
Using a RAM Disk ...9

VISIBLE ANALYST INSTALLATION...9
Prior to Installing Visible Analyst ... 10
Using Powersoft PowerBuilder ... 11
Installation Procedure ... 11
Completion of Single User Installation .. 11
Other installation Information ... 12
Uninstalling Visible Analyst ... 12
The VAW.INI File.. 12
Using the Mouse... 13
Finding Help Whenever It’s Needed.. 14
Keyboard Shortcuts... 14
Recognizing Illegal Commands... 15
Don’t Forget To Save and Back Up... 15
Information About Your Copy of Visible Analyst.. 17
Visible Analyst Menu Functions ... 18

UNDERSTANDING PROJECT TREES... 33
Modifying a Project Tree .. 35
Inserting New Diagrams into a Project Tree .. 35
Copying Existing Diagrams Between Projects ... 38

iv

PRINTING YOUR WORK .. 40
Print Options .. 40
Selecting Pages for Printing.. 42
Printing .. 42

STRATEGIC PLANNING .. 45

PLANNING PHASE.. 45
PLANNING STATEMENTS ... 45

Object Links... 46
Statement Priority... 46
Statement Description... 46

DEFINING PLANNING STATEMENT TYPES.. 47
PLANNING WINDOW ... 48

Using the Planning Window ... 50
Building a Planning Outline.. 50
Control Bar Buttons.. 51
Adding a New Statement .. 52
Moving Statements... 53
Adding Additional Detail to a Planning Statement... 53

DRAWING DIAGRAMS... 55

THE DIAGRAMMING PROCESS .. 55
Before You Begin... 55

CREATING A NEW PROJECT... 56
Rules and Repository Considerations .. 57
ERD Notation .. 58
Selecting an Existing Project .. 58
The Uses of Different Diagram Types... 59
Creating a New Diagram .. 61
Opening an Existing Diagram for Editing ... 64

USING BOILERPLATES.. 64
Enabling and Disabling Boilerplate... 64
Using Boilerplate Diagram Keywords... 67
More Information about Keywords ... 67

A LOOK AT THE DOCUMENT WORKSPACE... 68
The Document Window.. 68
The View Menu ... 69
Window Menu ... 73

DRAWING DIAGRAMS... 74
Diagram Menu ... 75
Scrolling a Diagram.. 75
Drawing Modes.. 75
Selecting Diagram Objects ... 76

v

Drawing Symbols ... 79
Drawing Lines .. 91
Entering Text.. 103

EDITING A DIAGRAM — OTHER DIAGRAMMING FUNCTIONS......................... 111
Control Bar... 112
Object Browser... 113
The Edit Menu Functions.. 114
The Change Item Function .. 116
The Stylize Function ... 117
Changing the Size of a Symbol ... 118
Snap Symbols... 118
The Project History Function .. 118
The Erase Changes Function ... 119

USING CONSTRUCTS ... 119
Creating a Construct ... 120
Loading a Construct.. 120
Deleting a Construct ... 121

NESTED DECOMPOSITION .. 121
Nesting Considerations ... 122
The Nest Procedure... 122
Generating Process Decomposition Diagrams.. 123
Using Spawn with FDDs... 124

THE DIAGRAM VIEW FUNCTIONS... 127
Creating a New View.. 128
Creating a Process View ... 130
Creating or Printing a Global View ... 130
Modifying the Current View ... 130

LINKING MULTIPLE PAGE DIAGRAMS... 130
Page Link Considerations When Using Rules .. 131
Selecting Page Link Symbols for Data Flow Diagrams .. 131
Page Linking for Structure Chart Diagrams ... 133
Page Linking for FDDs ... 136

CLUSTER DIAGRAMS .. 136
SAVING YOUR WORK.. 137

Saving a New Diagram ... 138
EXAMPLE DIAGRAMS ... 138

THE VISIBLE RULES .. 145

VISIBLE RULES OVERVIEW.. 145
DATA FLOW DIAGRAMS ... 145

Structured Analysis Methods Overview... 145
Process Modeling Graphics... 147
Splitting Data Flows ... 149

vi

Analyzing Data Flow Diagrams ...152
FUNCTIONAL DECOMPOSITION DIAGRAMS..166

Business Planning Analysis Methods ...166
Analyzing FDDs ...169

STRUCTURE CHARTS...176
Structured Design Overview..176
Structure Chart Graphics ...177
Linking Structure Chart Pages Together...185
Analyzing Structure Charts..185
Analysis Statistics ...192

ENTITY RELATIONSHIP DIAGRAMS ..194
Data Modeling Overview...194
Data Modeling Graphics..194
Analysis for Entity Relationship Diagrams...195

CLASS DIAGRAMS ..212
Object Modeling Overview..212
Object Modeling Graphics...213
Analysis for Class Diagrams..214

STATE TRANSITION DIAGRAMS ..217
Dynamic Modeling Overview..217
Analysis for State Transition Diagrams..218

ENTITY LIFE HISTORY DIAGRAMS..220
Data Modeling Overview...220
Entity Life History Graphics..220
Analysis for Entity Life History Diagrams ...221

USE CASE DIAGRAMS ..224
Use Case Modeling Overview..224
Use Case Graphics ..224
Analysis for Use Case Diagrams..225

SEQUENCE DIAGRAMS ..227
Sequence Modeling Overview ...227
Sequence Graphics ..227
Analysis for Sequence Diagrams..227

COLLABORATION DIAGRAMS..229
Collaboration Modeling Overview...229
Collaboration Graphics..229
Analysis for Collaboration Diagrams ...229

ACTIVITY DIAGRAMS..230
Activity Modeling Overview ...230
Activity Graphics ..231
Analysis for Activity Diagrams..231

THE VISIBLE REPOSITORY...233

vii

AN ORGANIZED PRESENTATION OF PROJECT DATA... 233
REPOSITORY BASICS... 233

Accessing the Repository .. 233
Hyperlinks.. 235
Understanding the Repository Dialog Box... 235
The Repository Dialog Box Buttons .. 235
Repository Searches.. 238
Copying Data To and From DOS Files .. 240
Copying Data To and From the Windows Clipboard.. 241
Repository Object Menu ... 241
Enterprise Links.. 241
Read-Only Indicator ... 241
Understanding Repository Fields... 241
Planning Statement Links.. 259
External Links .. 259
Planning Statements.. 261
SQL View Support (IntelliViews) .. 261
Data Element Physical Information ... 276
Other Physical Characteristics Information.. 280
Extended Attributes .. 280
Other Repository Information ... 285

CLUSTERS.. 286
Creating Clusters .. 287
Modifying Clusters ... 287
Deleting Clusters .. 287

REPOSITORY REPORTS.. 287
Report Functions... 287
Predefined Reports.. 289
Repository Report Formats ... 290

REPORT QUERIES — CUSTOM REPORTS.. 292
Custom Report File Format ... 293
Custom Report Definition Syntax.. 293

SHELL CODE GENERATION.. 300
Overview.. 300
Code Generation Requirements ... 302
Processing and Storage Redefinition.. 303
The Code Generation Process.. 303
Code Generation Output ... 305
Configuration Options... 306
Parameter ... 311

SQL SCHEMA GENERATION ... 312
Generating a Schema for Part of a Project.. 316
Adding SQL Schema Generation Information for Entities and Relationships.............. 317

viii

Adding SQL Schema Generation Tablespace Information ..322
COMPARE MODEL AGAINST SCHEMA..327
DATA DESCRIPTION SPECIFICATION GENERATION...329
GENERATING STRUCTURE CHARTS FROM THE REPOSITORY329

Regenerating Existing Structure Charts..329

LOCAL AREA NETWORKS ..331

MULTI-USER ACCESS TO PROJECTS..331
LAN OPERATING CHARACTERISTICS ...331

LAN Visible Analyst Features and Capabilities..332
Novell NetWare Compatibility ..332
Preventing Editing Collisions ..333
Local Operation...333

RUNNING ON THE NETWORK...333
Defining Default Path Settings...333
Implementing Security ..334
Assigning Access Rights ...335
Creating Projects on the Network...337
Project-Level Security ...337

MESSAGING...339
REVIEWING PROJECT ACTIVITY..340
LAN HELP FUNCTION...340

VISIBLE ANALYST TOOLS ..343

GENERAL INFORMATION..343
BACKING UP A PROJECT ...344
RESTORING A PROJECT ...345
COPYING A PROJECT..346
DELETING A PROJECT..346

Deleting Projects with No Project Files..346
RENAMING OR MOVING A PROJECT ...346
REBUILDING A PROJECT ...347
EXPORTING REPOSITORY DATA..347

Relational Database Repository Exports...349
VSC-Format Repository Exports ...355

IMPORTING DATA INTO THE REPOSITORY..378
General Import Information ...378
The Import Procedure..383
Import Formats..384

ENTERPRISE MODELING ..401

ENTERPRISE MODELING OVERVIEW ..401
Divisions...401

ix

Enterprise Copy .. 406
Displaying Enterprise Links .. 413
Removing Enterprise Links... 413
Database Synchronization ... 413

ERROR MESSAGES... 415

INTRODUCTION.. 415

CUSTOMIZING AN SQL DIALECT ... 455

CUSTOMIZING THE TRIGGER WIZARD.. 457

INDEX .. 465

x

Introduction

1

Introduction

VISIBLE ANALYST
Visible Analyst is an easy-to-use Computer Aided Software Engineering (CASE) strategic
planning; analysis; design; and object, data, and process modeling tool. It is supplied as a
Microsoft Windows-based set of integrated tool sets that can be easily installed on most
IBM-compatible personal computers. Its powerful yet easy-to-master diagramming,
analyzing, and modeling capabilities enhance not only the productivity of software developers
but also the overall efficiency of software analysis, design, and modeling practices. In
addition, the software’s ease of use permits people outside the traditional software
development function to become involved in the development process. Even non-technical
managers and system end-users are able to use Visible Analyst to effectively communicate
system requirements and goals, proposed modifications, etc. The three main components of
Visible Analyst are summarized below.

Visible Analyst Diagramming Tool
The Visible Analyst diagramming tool is an easy-to-use, mouse-driven graphics package that
allows you to draw virtually any type of diagram. Standard symbol and line types and text
entry capabilities, combined with menu-selectable editing features, allow you to create and
update diagrams that are unstructured and unencumbered with any methodology or rules and
to organize them on a project basis.

Visible Rules
The Visible rules are built into Visible Analyst to give you guidance and to provide
consistency in carrying out your activities. The various methodologies supported by your tool
set(s) are codified in the rules. They are implemented in two different ways. Some are
applied as you draw items onto project diagrams. Violations of the methodologies are not
allowed and certain required actions are automatically taken. Other rules are applied on
request when you execute the Analyze function from the Diagram menu. Analysis also
displays some error and warning messages, suggesting further action for you to take.

Visible Repository
The Visible repository includes a database that acts as a central repository for all information
pertaining to a project. The Visible repository is tightly integrated with all process modeling,
data modeling, and object modeling tool sets, providing data repository support for diagrams
that are created under the guidance of one of the supported methodologies. All additions and
modifications to diagrams are automatically reflected in the repository with corresponding
repository entries. Fields of ample size are provided for each repository entry so that detailed
definitions may be created for all entries. Different object types have different repository
entry fields available. Wildcard and selective search facilities make navigation within the

Introduction

2

repository easy. Reports may be generated on virtually any section or subsection of the
repository.

VISIBLE ANALYST TOOL SETS
Visible Analyst consists of three tool sets as described below.
• The Visible Analyst data modeling tool set allows you to create entity relationship

diagrams (ERDs), with the requisite rules for disciplining data model creation and
including the repository to capture the information. Visible Analyst supports ERDs
based on data modeling notations defined by IDEF1X, Bachman, and Information
Engineering (IE).

• The Visible Analyst process modeling tool set allows you to create data flow diagrams
(DFDs), functional decomposition diagrams (FDDs), structure charts, and entity life
history (ELH) diagrams. There is a choice of four sets of methodology rules for data
flow diagrams: Yourdon, Gane & Sarson, SSADM, and Métrica. There are rules for the
Yourdon/Constantine method for doing structured design. The data flow diagrams and
structure charts share a common repository to capture all information from the diagrams.

• The Visible Analyst object modeling tool set allows you to create class, state transition,
use-case, sequence, collaboration, and activity diagrams for object model creation
including the repository to capture the information. Visible Analyst supports the UML
standard, giving you a bridge between traditional structured and relational techniques and
the newest object-oriented technologies, including use-case diagrams, sequence
diagrams, collaboration diagrams, and activity diagrams.

These tool sets work from a common repository. The integrated repository is accessible from
any modeling tool set, and items within it may be used by all where applicable. The analysis
function does some balancing of a data model against a process model according to criteria
that you configure. It is also possible to create a process view of your data model that shows
all entities affected by a certain process. A process model and a data model can be developed
in either order. Classes can be used on entity relationship diagrams and entities can be used
on class diagrams. The reporting function generates reports that cross the boundaries between
the tool sets.

Visible Analyst is available in four editions:
• Visible Analyst Corporate is the most robust of all the Visible Analyst editions,

containing the superset of all Visible Analyst features in all editions. It is suitable for
large projects with multiple groups of users, with advanced database engineering
capabilities, multi-user access controls, and transition to object-oriented methods. It is
the flagship of Visible’s line of modeling tools.

• Visible Analyst DB Engineer is focused on the data modeling and database engineering
functionality of Visible Analyst and contains only the diagramming techniques, methods,
and capabilities that relate directly to data modeling and database design.

Introduction

3

• Visible Analyst Object Oriented gives you the ability to create class, use case,
interaction, and activity diagrams using a variety of notation styles. The object modeler
is tightly integrated with the data modeler so that classes can be used on entity
relationship diagrams, and entities can be used on class diagrams.

• Visible Analyst Standard represents a compatible feature set to the discontinued
EasyCASE Professional with Database Engineer. It automates all the traditional structure
methods and does standard database generation and reverse engineering via ODBC or
SQL.

All editions of Visible Analyst are available in two versions:
• A single-user version, licensed for use on a single workstation.
• A LAN version with true multi-user capabilities. The LAN version supports

simultaneous access to shared projects or groups of projects. It can be licensed for as
many nodes as you require.

Strategic Planning
Planning and requirements identification is often the initial phase in an enterprise-engineering
project. During the planning phase, you develop a comprehensive strategic business plan that
meets the identified mission and purpose of the organization. Visible Analyst not only allows
you to create these statements, but also to link them to other objects in your repository. This
allows you to track the software development process from the planning stages through
analysis, design, and implementation. Linking planning statements to model objects helps
you determine the significance of each object and ensures that each object is essential in
supporting the organization’s business plan. Strategic planning is available in the Corporate
Edition of Visible Analyst.

Visible Analyst Data Modeling Tool Set
The data modeling tool set gives you the ability to create several varieties of the entity
relationship diagrams originally developed by Peter Chen. All of the capabilities of the
diagramming tool are incorporated into this tool set. Rules for this type of data modeling are
intelligently applied to your diagrams. You can use three different notations to display
relationship cardinality: crowsfoot notation, double arrow notation, and Bachman notation.
Visible Analyst’s flexible symbol template and custom symbol generator give you control
over the other data modeling symbols you use. The analysis capabilities of the data modeling
tool set help you by detecting syntactical and some normalization errors, as well as by doing
key analysis and migration. The data modeler automatically draws views for you based on
information from the repository that you choose to include in those views. You even have the
ability to create views too large to edit in Visible Analyst; the repository maintains them, and
you can print them. Because large views can become cluttered and hard to understand,
Visible Analyst allows you to limit detail and still show an overall picture by creating cluster
diagrams. On these, a cluster of entities is represented by a single symbol, while still showing
relationships between entities in different clusters.

Introduction

4

Visible Analyst Process Modeling Tool Set
The process modeling tool set enables the rules of popular structured analysis and design
methodologies to be intelligently applied to your diagrams. Yourdon/DeMarco, Gane &
Sarson, SSADM, and Métrica methodologies are supported for structured analysis diagrams
(data flow diagrams). The Yourdon/Constantine structured design rules are supported for
structured design diagrams (structure charts). All of the capabilities of the diagramming tool
are incorporated in this tool set.

Rules are provided for creating and validating diagrams, including automatic process
numbering, level-to-level data flow balancing, decomposition of data by splitting data flows,
complexity ratings for structure charts, consistency and completeness checks, and much more.
Functional decomposition diagrams allow you to do high-level project planning. From your
FDDs, you can have Visible Analyst generate a set of data flow diagrams, from which you
can proceed with a detailed analysis. Diagrams in a project are automatically organized in a
tree structure. For DFDs, the tree structure is hierarchical, and this lends itself nicely to the
concept and process of top-down decomposition. A process decomposition diagram can be
generated for all or part of a process model. This unstructured diagram illustrates the top-
down decomposition of a process and all of its descendants.

Visible Analyst Object Modeling Tool Set
The object modeling tool set gives you the ability to create class, use case, interaction, and
activity diagrams using a variety of notation styles. All of the capabilities of the diagramming
tool are incorporated into this tool set. The analysis capabilities of the object modeling tool
set help you by detecting syntax and user errors. Information stored in the repository about
classes includes attributes, methods, and friends. The object modeler automatically draws
views for you based on information from the repository that you choose to include in those
views. You even have the ability to create views too large to edit in Visible Analyst; the
repository maintains them, and you can print them. The object modeler is tightly integrated
with the data modeler so that classes can be used on entity relationship diagrams, and entities
can be used on class diagrams.

Local Area Networks
The LAN version is compatible with Novell’s Advanced NetWare™ versions 1.0 and above.
Adding this capability to your Visible Analyst allows an unlimited number of users to have
access to Visible Analyst. For more detailed information on the LAN version of Visible
Analyst, refer to the manual chapter Local Area Networks.

There are two network versions of Visible Analyst available. The Visible Analyst Novell
LAN version uses the file and record locking mechanisms within Novell NetWare. The
Generic DOS LAN version supports networks other than Novell that perform standard DOS
file locking.

Getting Started

5

Chapter 1

Getting Started

STARTING OUT
Getting started with Visible Analyst is easy. All you need to do is verify your PC‘s
compatibility, install Visible Analyst onto your hard disk, and configure the hardware
configuration menu. All of this should take less than 10 minutes.

Send in the Warranty Registration Card!
Being a registered user has many benefits. You receive our newsletter about product updates,
creative application tips on all our products, reviews of complementary products, customer
CASE studies, and inside information about the software industry. Please take the time to fill
out and mail in the card. Thank you.

SYSTEM REQUIREMENTS

Hardware Configuration
Before you install Visible Analyst, verify that your PC components meet the hardware
configuration and random access memory (RAM) storage requirements.

To run Visible Analyst, you need a hardware configuration that supports Microsoft Windows
95/98/2000, Windows XP, or Windows NT 4.0. This can cover a range, from the minimum
processor and memory size absolutely necessary to the “fastest with the mostest.” Visible
Analyst runs anywhere in this range; but as with many other Windows applications, the
software runs faster and with less swapping to disk at the higher end of the range. Graphics
put a substantial load on the processor, so a faster processor improves performance. Another
factor that affects performance under Windows is the number of applications you have
running and the amount of system resources they consume. Sixteen megabytes of RAM, or
better still thirty-two or more, also improve performance. You can squeeze out a little more
performance by configuring some of your memory as a RAM disk (see below). The Visible
Analyst files consume approximately thirteen megabytes of hard disk space. This does not
include your project files.

Getting Started

6

 Note
2 If you are using one of the supported RDBMS engines (Centura SQLBase®,

SYBASE SQL Server®, or Oracle Server®) as your Visible Analyst database
manager, your hardware requirements may be different. Refer to the next section
for details.

The Visible Analyst Database Manager
Project information is stored in a relational database format using one of several database
engines, including Btrieve®, SQLBase, Microsoft or SYBASE SQLServer or OracleServer.
Each project you create can be stored in a different database format.

Btrieve
Visible Analyst has traditionally used the Btrieve record manager as its underlying database
engine. For the Windows version, this is implemented as a dynamic link library (DLL) named
VAWBTR32.DLL. By default, all database processing is performed on the workstation where
Visible Analyst is running.

If you have the LAN version of Visible Analyst, you have the option of using the client-server
version of Btrieve so that most of the database processing is handled by the file server. To
implement the client-server version of Btrieve, do the following:

Note
22 It is not necessary to use the client-server version of Btrieve to get all of the

multi-user capabilities of the LAN version of Visible Analyst. However, in some
circumstances it improves network performance.

• Install the client-server version of Btrieve on the file server. This is a separate product

that can be purchased directly from Pervasive Software (www.pervasive.com).
• Start the Micro Kernel Database Engine (MKDE) Setup program. Choose the MKDE

Interface component and change the following options:
Ø Local = No
Ø Requester = Yes

• Make sure that the requester component of Btrieve is available. This file is supplied by
Pervasive Software.

If you have a LAN version of Visible Analyst, you are running the client-server of Btrieve,
and you plan to access projects on your local hard disk, you must also run the local version of
Btrieve. This is because the client-server version cannot access files on your local drive. To
do this, follow the above steps; then change the Local setting to Yes.

If you installed Visible Analyst specifying a relational database engine for your repository
format and would like to create a Btrieve project, you can do this by selecting Btrieve at the
Repository dialog box when creating a new project. You can also convert a relational

Getting Started

7

database project to Btrieve and vice versa. To do this, select Rebuild from the Tools menu,
and check the database format you want the project to be rebuilt in. If you want to create or
convert a project to a relational format, you are asked to enter site-specific database
information in the Project Database Location Information dialog box.

Centura SQLBase
Centura SQLBase can be used as the Visible Analyst database engine, giving direct access to
its SQL Windows interface. The advantages of using a relational format include: the ability to
use third-party report writers to access information in your data, process and structure models;
extensibility of the repository; and the advantage of having all corporate data in one format

To create projects that use SQLBase as the database engine, you must have SQLBase installed
and included in your path during Visible Analyst installation. If you add this software after
the initial Visible Analyst installation, run the installation procedure again and the proper
VAW DLLs are installed. When you choose to create or convert a project to a relational
format you are asked to enter site-specific database information in the Project Database
Location Information dialog box (described below).

Note
22 The directory where SQLBase is installed must be included in your path and you

must have create database access rights in SQLBase. Centura recommends that
you have six to eight megabytes of RAM installed to run SQLBase.

SQLServer
SQLServer can be used as the Visible Analyst database engine. Versions 4.x, 6.x, 7.x, 2000,
and System 10/11 are supported. The advantage of creating a project using a relational format
is the ability to use third-party report writers to access information in your data, process,
object, and structure models.

When using Visible Analyst SQLServer, be aware of the following:
• The Visible Analyst SQLServer driver cannot create a database; you must create the

database that will be used by Visible Analyst beforehand.
• There is no automatic clearing of SQLServer log files. This must be done manually. Logs

should be purged frequently, especially when rebuilding a project.
• When rebuilding or creating new projects, SQL DDL commands are issued that are not

included in the SQLServer log files. A restore of the log files may not be complete.
• SQLServer requires space for each database created. The log files grow quickly. For

large projects with many concurrent users, approximate the space needed by adding the
size of the database and index and multiplying by 10. As an example, the LIB project

Getting Started

8

shipped with the product requires 8 MB of space to run properly. You can use the
“sp_space” command in ISQL to determine the space values.

• If you are running Visible Analyst under Windows NT, the 16-bit version of the drivers
must be accessible.

Oracle Server
Oracle Server can be used as the Visible Analyst database engine. To use Oracle 7.x or 8.x
Server as the database engine, you must have Oracle Server installed and the proper DLLs
included in your path during the Visible Analyst installation. If you performed a Typical
installation, these files were installed. If you performed a Custom installation and did not
elect to install these files, perform a Custom installation again and choose these files to install.
When you choose to create or convert a project to Oracle format, you are asked to enter site-
specific database information in the Project Database Location Information dialog box
(described below).

When using Oracle Server, be aware of the following:
• Visible Analyst Oracle Server driver cannot create a database, you must create the

database that will be used by Visible Analyst prior to creating a project.
• Visible Analyst uses the SQL*Net driver (ociw32.dll). This driver must be in your path.
• The LIB project shipped with Visible Analyst requires 2 MB of space in the database to

run if converted to an Oracle server format.

ODBC
ODBC (Open Database Connectivity Driver) can be used as the Visible Analyst database
engine. ODBC supports:
• Informix. This driver should be used to access Informix databases.
• DB2 5. This driver should be used to access DB2 5 databases.
• Access. This driver should be used to communicate with Access databases.
• ODBC Compliant. This driver should be used to create projects if the ODBC driver

supports ON DELETE CASCADE.
• ODBC Entry Compliant. This driver should be used to create projects if the ODBC

driver does not support ON DELETE CASCADE.

To use ODBC, you must have the ODBC driver manager installed, as well as the specific
driver you are using to access a database. If you add this software after the initial Visible
Analyst installation, run the installation again and the proper Visible Analyst DLLs will be
installed.

Connecting to an RDBMS Engine
If you choose to create or convert a project to a relational format, you are asked to enter site-
specific database information in the Project Database Location Information dialog box. The
dialog box prompts you for the following:

Getting Started

9

• Connect String defines where the DBMS is located. For local versions of the database
server this field should be left blank. For databases accessed across a network, use the
following syntax: for Oracle Server “protocol letter:servername” or the database alias, for
SQLBase “servername”, and for SQLServer “servername” as defined in the local
configuration. All users must use the same connect string to look at a database.

• Database is where the project files are located. If you are using SQL*Net SPX for
Netware or SQL*Net TCP/IP this entry should be left blank as these versions of Oracle
Server do not support multiple active databases. In the case of SQL*Net TCP/IP, the sid
or instance name should be specified in the connect string as follows “protocol
letter:servername:instance.” (If you enter any characters in the database field and then
decide you should leave it blank, make sure you delete the field using the DELETE key
or blanks are left in the field and your connection fails.)

• Schema or authorization ID is used to create and access the project tables for Visible
Analyst in a specific space within the specified database. You must have access rights to
the space you specify. If you leave this blank, the default schema assigned to your
database username is used, and all other users must log on as that schema name.

• Prefix is unique to Visible Analyst and is a prefix that must be attached to any tables
created within a project if your site stores multiple projects within the same schema. The
maximum length is six characters and the default is VA<ROOT>, where <ROOT> is the
project name.

• Username/Password is your user ID and password to access the database. You must
have the appropriate rights. The minimum rights needed to access Visible Analyst
projects are insert, update, and delete. The owner of a project also needs create rights to
the database.

Using a RAM Disk
There are two Visible Analyst files that you can load into a RAM disk that will somewhat
increase the speed at which the program operates. They are SCRULES.TBL and
SQLDIAL.TBL. The easiest way to do this is to have your AUTOEXEC.BAT file load them
there when your computer starts up. Visible Analyst searches your computer path. If it finds a
RAM disk, it looks there first for the above-named files.

VISIBLE ANALYST INSTALLATION
Installation can be accomplished in approximately 10 minutes by carefully following the
procedures that follow. If you have any questions or problems, please call the Visible Systems
technical support staff at:

%% 781-890-2273

Getting Started

10

In addition, you can visit our web site www.visible.com for a wealth of information regarding
product support and consulting services.

Another resource that you have available is the InfoAdvisors Discussion Group at
www.infoadvisors.com. The InfoAdvisors Discussion Groups are an open forum for users of
our products to exchange ideas, discuss modeling issues, and get solutions to problems. This
is a great resource for data analysts, data administrators, IRM analysts, quality assurance
analysts, and others dedicated to providing high quality information systems. Topics that are
included in our discussions include:

• Installation
• Upgrades
• Model Management
• Forward and Reverse Engineering
• Enterprise (Scaling) Issues
• Wish List (Enhancements)

If you belong to any other InfoAdvisors Discussion Groups, you can use your current login
name and password to access this board. If you don’t, you’ll need to register on their main
page. You can go directly to Visible Analyst at
www.infoadvisors.com/VisibleAnalystBoard.htm.

Prior to Installing Visible Analyst
If you are installing an updated version of Visible Analyst, the installation procedure copies
the new version directly over the old version. You should not delete the old version; the
installation program does this for you, if you want it to. Your project data files and any
symbol set modifications you made are not affected by this installation procedure.

Near the beginning of the installation procedure, you are prompted for the install-to path. You
may simply press ENTER to install to \VA; while we recommend this path, you may specify a
different path. If you specify a different path, you need not include VA in the specification; if
you do not, it will be assumed. For example, typing \CASE is equivalent to typing
\CASE\VA.

It is always good practice to maintain up-to-date backups of your files. If you have an
existing version of Visible Analyst on your computer, we recommend that you back up your
projects prior to installing a new version. You should do this using the Backup function of
Visible Analyst, rather than a DOS-based backup, because it is easier to restore projects to
Visible Analyst using the internal procedure should you ever need to.

If you are installing to a LAN:
• Visible Analyst must be installed onto a file server.
• You must be able to refer to the install-to drive with a letter designation (for example, F:).

Getting Started

11

• If you are installing to a Novell server, the procedure assumes that you are familiar with
NetWare. Specifically, you should be fluent with its security system and know how to set
search paths.

• It is recommended that the system supervisor perform the installation; however, as long
as the above points are satisfied, any user can do it.

Note

2 Check the README.DOC file for additional information about Visible Analyst.

Using Powersoft PowerBuilder
The directory where PowerBuilder is installed must be included in your path because Visible
Analyst must execute PowerBuilder programs to transfer data.

Installation Procedure
To install Visible Analyst:
1. Place the Visible Analyst installation media into the appropriate drive.
2. With Windows running, select Run from the Windows Start menu.
3. Type <drive>\SETUP, where <drive> is the letter of the drive you are using, and click

OK or press ENTER. This starts the installation process.
4. In the dialog box, type your name and company information. If Visible Analyst has

previously been installed, you cannot change this information.
5. Type the serial number of your copy of Visible Analyst. If you are running the demo

version, type DEMO.
6. Type the drive and directory where you want the Visible Analyst program files to be

placed.
7. Select the type of installation: typical, custom, or minimum.
8. Next, type the drive and directory where you want the Visible Analyst data files to be

placed. By selecting separate directories for programs and data, you can assign different
access rights. Refer to Local Area Networks for more information Then select the
Windows group in which you want the Visible Analyst icon to reside.

9. Visible Analyst asks you if you want it to install a sample project onto your disk, so that
you can see how things are done in the product and practice the techniques.

10. Click OK or press ENTER. The installation program copies and expands the necessary
files to your hard disk. When the installation is complete, a message to that effect is
displayed on your screen. You are asked if you wish to review updates.

Completion of Single User Installation
When the installation procedure is completed, Visible Analyst resides in the selected path of
your install-to drive. For information on starting Visible Analyst, refer to Basic Operating
Principles in the section that follows.

Getting Started

12

Other installation Information
Your CONFIG.SYS file (a DOS file found in your root directory) must support at least 20
files. That is, it must contain a statement such as FILES=20. (More than 20 files may, of
course, be specified.)

It is recommended that you specify at least 32 buffers in your CONFIG.SYS file
(BUFFERS=32). This can significantly speed up the operation of file-intensive programs such
as Visible Analyst. However, this is not a requirement as Visible Analyst operates with any
number of buffers specified (or no specification at all). If you are using a disk cache, follow
the cache directions for the number of buffers.

If you made changes to your CONFIG.SYS file, you must reboot your system to incorporate
the changes before running Visible Analyst.

Visible Analyst does not make alterations to your WIN.INI, AUTOEXEC.BAT or
CONFIG.SYS files when it installs.

Uninstalling Visible Analyst
If you should ever need to uninstall Visible Analyst from your hard disk, perhaps to move it
to another machine, you need only follow these steps:
• Select Uninstall from the Visible Analyst program group.
• At the Confirm File Deletion dialog box, click Yes.

Additional Installation Considerations for LAN
There are additional steps that must to be performed when installing the LAN version of
Visible Analyst. Refer to Local Area Networks, for specific instructions.

Security in Single-User Visible Analyst
Visible Analyst is shipped with a default supervisor name of SUPERVISOR. To log on as a
supervisor for the first time, use this user ID. No password is necessary. Thereafter, you may
change this user ID as you wish and add any password you like. Make sure you keep a record
of your passwords and user ID, as they are encrypted within Visible Analyst and can’t be
looked up if you forget them. Security is off by default.

The VAW.INI File
There is a file in your \VA directory named VAW.INI. It holds the default values for
numerous Visible Analyst settings. If you are using the LAN version of Visible Analyst, you
also have a file named VAW#.INI, where # is user number of your node on the network.
Visible Analyst copies the contents of VAW.INI into VAW#.INI when it creates it and
thereafter doesn’t use the original any more. The single-user version always uses the original
version of the file. The only reasons for you to edit this file are:

Getting Started

13

• To establish default paths for network users.
• To define a minimum line length.
• To add user-defined attributes to the repository.

A FEW WORDS ABOUT ERROR MESSAGES
There are many messages displayed as the result of an activity you do that doesn’t conform to
the rules of a methodology, as a result of some other occurrence (missing or corrupted files,
etc.), or even because of some error made by Visible Analyst. You, as the user, need to know
what happened, why it happened, and how to fix it. Where you turn for advice depends on the
kind of activity performed when the error occurred. Below is a list of the types of activities
that cause errors and where you can turn for an explanation:
• If you are running one of the project analysis functions (Analyze, Key Analysis, Key

Synchronization, or Model Balancing), errors supplied at the end of the process relate to
the sometimes complex rules of the methodologies that underlay the operation of Visible
Analyst. An explanation of these errors can be found in The Visible Rules chapter. In this
chapter, error messages are organized by the diagram type of the diagrams being
checked.

• Messages produced by import, export and shell code or DDS generation are generally
simple, direct and self-explanatory. However, if you find a message that baffles you,
please call Visible Systems technical support number for an explanation.

• Other messages, such as those that are displayed when you attempt some illegal drawing
operation, are listed alphabetically, with explanations, in Appendix A.

• All error messages are described in the online help system.

BASIC OPERATING PRINCIPLES
Before you begin using any of the capabilities supplied with Visible Analyst, take about 20
minutes to become familiar with the following basic operating principles that apply to all of
the Visible Analyst tool sets. By understanding these basics, you’ll get off to a good start and
become more effective with Visible Analyst in a shorter period of time.

Accessing Visible Analyst
You access Visible Analyst in the normal Windows fashion, by double-clicking on the Visible
Analyst icon.

Using the Mouse
Although Windows does not absolutely require it, we recommend the use of a mouse with
Visible Analyst. The mouse is used to perform a variety of functions in Visible Analyst. The
standard Windows functionality for the mouse is implemented here. The specific ways the
mouse is used to perform various tasks are discussed throughout this manual as those tasks are
introduced.

Getting Started

14

In general, the left mouse button is used to select objects and confirm actions, while the right
mouse button displays an object menu listing actions that are valid for the current object.

Notes
2 Unless stated to the contrary, instructions to click a mouse button refer to the left

button. Instructions for the right button are explicitly mentioned.
2 Left-handed mouse users: if you use a mouse with the buttons reversed, you should

reverse references to left and right mouse buttons in this text.

Finding Help Whenever It’s Needed
Visible Analyst includes an extensive help system that displays information and instructions
about the use of the program. The help screens are accessible by pressing the F1 key on your
keyboard from anywhere in Visible Analyst or by using the Help menu.

Context-Sensitive Help
The Visible Analyst Help system has context-sensitive help for all menus and dialog boxes.
You can access it in either of the standard Windows ways.
• First, you can highlight a menu item and press F1 to display the Help topic for the menu

item you specified. Once a menu has opened, you cannot select a menu item for the
purpose of getting Help by simply clicking on it with the mouse. If you try to do this, the
function is executed before you have the opportunity to request Help for it. You should
use either the keyboard arrow keys to highlight the item and press F1 or use the mouse to
drag the highlight to the desired item and press F1 before you release the mouse button.

• Second, you can press SHIFT+F1 and Visible Analyst changes into Help mode and the
cursor changes as shown in Figure 1-1. Use the mouse to select any menu item. When
you do, the cursor changes back to the standard cursor, indicating that Visible Analyst is
no longer in Help mode, and the help topic for the menu item you selected displays.

 Figure 1-1 Help Cursor

Keyboard Shortcuts
Many menu functions can be accessed with keyboard shortcuts in the standard Windows
manner. The shortcut key is shown on the menu next to the command. To use the Edit menu

Getting Started

15

functions Cut, Copy and Paste from edit boxes, you must use the keyboard shortcuts. The
following table lists all keyboard shortcuts used in Visible Analyst.

Table 1-1 Visible Analyst Keyboard Shortcuts
CTRL+A Analyze
CTRL+C Copy to Clipboard
CTRL+D Define Repository Object
CTRL+E Connect Selected Symbols
CTRL+F Find Diagram Object
CTRL+L Line, Add to Diagram
CTRL+N New Diagram
CTRL+O Open Diagram
CTRL+P Print Diagram(s)
CTRL+Q Query Report
CTRL+R Report
CTRL+S Save
CTRL+T Text, Add to Diagram
CTRL+U Clear (Deselect) Diagram Object or Block
CTRL+V Paste from Clipboard
CTRL+X Cut to Clipboard
CTRL+T Snap Symbols to Horizontal or Vertical Row
SHIFT+F10 Display Repository Object Menu for Field Options
CTRL+Z Undo (Erase Partially Drawn Line or Undo Moved Line)
ALT+R Delete Project with No Project Files
DEL Delete Object from Diagram
F1 Help, Context Sensitive
SHIFT+F1 Enter Help Mode to Get Help on Menu Item

Recognizing Illegal Commands
An extensive array of message boxes is displayed by Visible Analyst to alert you to illegal
actions and procedures and to notify you of other irregularities that may occur.

Don’t Forget To Save and Back Up
As with any software program, it is good practice to save your work at regular intervals while
working on a project and to back up your files each time you make significant changes. While
a computer and its programs can be very helpful, it can also be extremely insensitive if a
power outage or another unscheduled event should occur.

To avoid the frustration that goes along with lost work, always remember to save and back up
your work. The function to Save the diagram on which you are working can be found on the

Getting Started

16

File menu. The Backup function, as well as the Restore function, can be found on the Tools
menu. These functions are described in more detail later.

THE VISIBLE ANALYST WORKSPACE
Whenever you access Visible Analyst, the workspace is presented as shown in Figure 1-2.
The workspace is the starting point for all functions, and it has five major sections:
• The menu bar at the top gives you access to all of the menus in Visible Analyst

containing all of the functions of the tool.
• The control bar below the menu bar gives you quick access to commonly used Visible

Analyst functions.
• The document area in the center of the screen contains the documents you have open,

whether maximized and ready to edit or minimized to an icon.
• The help bar at the bottom of the screen displays the current menu item, the name of the

current object, the current zoom level, and current project.
• The object browser displays a list of the objects in the repository in a resizable window.

The control bar, the help bar, and the object browser can be toggled off (or on again) from the
Options menu if you don’t want them visible.

Getting Started

17

 Figure 1-2 Visible Analyst Workspace

Information About Your Copy of Visible Analyst
Information about your copy of Visible Analyst can be accessed using the About Visible
Analyst selection from the Help menu. This screen shows you:
• The version of Visible Analyst you are running.
• The serial number of your copy.
• The network under which you are operating (LAN version only).
• The number of network nodes (users) that can concurrently use your copy of Visible

Analyst (LAN version only).
• Your user name (the name you used to log in to Visible Analyst if you are using a single

user version and Security was turned on from the Options menu, or your network login
name for the LAN version).

• Your user number (LAN version only).
• The capabilities of the tool in the configuration that you purchased. Capabilities available

but not included in your configuration are shown in gray.

Control Bar

Project Root

Object Browser

View
Tool Bar

Standard
Tool Bar Diagram

Tool Bar Font
Tool Bar

Help Bar

Document Workspace

Getting Started

18

Visible Analyst Menu Functions
The functions available on Visible Analyst menus provide the starting point for all Visible
Analyst operations. A list of these functions, with a description for each, is referenced below.

Table 1-2 Menu Functions
Menu Command Description

File New Project Select New Project to create a new project. A dialog box
displays allowing you to specify information about the new
project.

 Select Project Select Select Project to open an existing project. A dialog
box displays a list of the project from which to choose.

 Project History Select Project History to display a box that provides a
descriptive overview of the current project. The following
descriptive information is included:
• Project name or root
• The name of the project manager
• A short description of the project
• The rules methodology that applies to the project
• Repository enabled or disabled for the project
• Who created the project (if security has been enabled)
• DOS path where project files are stored
• List of diagrams in the project
• List of dates showing when each diagram was last edited

 Current
Activity

Select Current Activity to display the users who are
currently using Visible Analyst and give some information
about what each is doing (LAN version only).

 Modify User
List

In the LAN version of Visible Analyst, select Modify User
List to display a submenu that allows you to add or delete
user IDs of users who are allowed access to the current
project. You can also define users who may change project
information or just view it.

 Strategic
Planning

Select Strategic Planning to open the Planning Statement
hierarchy window. Use this window to create new planning
statements and parent-child relationships between statements.

Getting Started

19

Table 1-2 Menu Functions
Menu Command Description

 New Diagram Select New Diagram to create a new diagram. To add new
diagrams to an existing tree file of data flow diagrams, select
a point in the project tree where the new diagram is entered.
To add diagrams to an existing tree file of non-data flow
diagrams, the New Diagram command automatically places
them in alphabetical order among existing diagrams.

 Open Diagram Select Open Diagram to open an existing diagram. A dialog
box displays a list of the diagrams from which you can
choose. To open a diagram in Read-Only mode, right-click
on a diagram displayed in the list, then select Open Read
Only from the menu displayed.

 View of Data
Model

Select View of Data Model to create a view of a data model.
Select the type of view you want to create: global, new,
process, or cluster diagram. For a cluster diagram, you also
select the method to create the diagram: global, made from
the current view, or a custom cluster diagram.

 Draw
VIRTUAL
Chart

VIRTUAL Chart generates a structure chart from a virtual
diagram in the repository created from data imported from
the Hypersoft Application Browser. Refer to Hypersoft’s
Application Browser for more information.

 Close Select Close to close the active document. If the active
document is a diagram, you are prompted to save the
changes.

 Save Select Save to save work done on the active diagram.

 Save With New
Name

Select Save With New Name to save the current diagram
under a new name.

 Erase Changes Select Erase Changes to undo all editing changes that have
been made to the current diagram since it was last saved.

 Nest Select Nest to display a submenu to select one of the
following:
• Explode any process symbol in a diagram in order to

create a lower level diagram that represents the detailed
functional aspects of the process being exploded. This
only applies when the diagram type is set to data flow.

Getting Started

20

Table 1-2 Menu Functions
Menu Command Description

only applies when the diagram type is set to data flow.
When rules are disabled, symbols other than processes
may be decomposed. If the symbol has already been
exploded, this allows you to move from the diagram
containing the parent symbol to the child diagram. The
parent diagram remains open.

• Move to the parent diagram of the current diagram.
• Detach a child diagram from its parent (break the

parent/child link).
• Automatically generate a decomposition diagram.

 Spawn Select Spawn to generate a set of leveled data flow diagrams
from a low level function and its tree of processes on a
functional decomposition diagram. It appears on the File
menu only when an FDD is the current diagram.

 Page Select Page to create a multiple page diagram. This is
generally only useful for structure charts, although you can
use it for DFDs as well. It is not available for other diagram
types. For data flow diagrams, the Analyze function does
not apply the rules across the page connections. For
structure chart diagrams, the rules are applied across multi-
page charts created with the Page function. A submenu
allows you to connect or disconnect two diagrams.

 Print Select Print to print the current diagram, to select diagrams to
add to the print queue, or to print the current project tree. If
you select print queue, you can (1) view its contents to see
how many project diagrams are currently entered into the
queue; (2) add or delete project diagrams from the queue;
and (3) print all diagrams that are listed in the queue.

 Print Setup Select Print Setup to change the printer you configured for
Windows. Click the Setup button to change settings for the
printer driver.

 Recent
Diagrams

Select Recent Diagrams to display a list of the eight most
recently opened diagrams.

 Recent Projects Select Recent Projects to display a list of the most recently
opened projects.

Getting Started

21

Table 1-2 Menu Functions
Menu Command Description

 Exit Select Exit to end the Visible Analyst session and return to

Windows.

Edit Undo Select Undo to erase a partially drawn line or restore a
moved line to its original position.

 Cut Select Cut to remove the selected object or block and place it
in the Windows Clipboard.

 Copy Select Copy to copy the selected object or block into the
Windows Clipboard.

 Paste Select Paste to copy what is in the Windows Clipboard and
place it on the current diagram.

 Clear Select Clear to deselect the current object or block on the
current diagram.

 Select All Select Select All to select all objects on the current diagram.

 Delete Select Delete to remove the selected object or block without
placing it in the Windows Clipboard. You are asked to
confirm your deletion.

 Copy To Select Copy To to store the current object or block as a
Windows metafile or JPEG file.

 Find Select Find to search for an object on the current diagram. If
the object is found, it is selected and brought into focus.

 New Statement Select New Statement to create a new planning statement. If
an existing statement is selected, the new statement is a child
of it. Otherwise, it is inserted at the top of the hierarchy.

 Promote Select Promote to move the selected planning statement one
level higher than its present position.

 Demote Select Demote to move the selected planning statement down
one level lower than its present position.

Getting Started

22

Table 1-2 Menu Functions
Menu Command Description

 Move Up Select Move Up to move the selected planning statement up
one position.

 Move Down Select Move Down to move the selected planning statement
down one position.

View Zoom Select Zoom to reduce the display size of the diagram so that
a larger portion may be viewed on the screen. The zoom
level is expressed in terms of zoom percentage that is
selected from the menu. Diagrams can be edited and printed
in zoom mode. The zoom level is also displayed on the help
bar.

 Show Level When the current document is the planning statement
hierarchy, select Show Level to select how much of the tree
is displayed. Level 1 shows only the top-level nodes; Show
All displays all nodes. You can change individual branches
by clicking the + to the left of each planning statement.

 Filter Select Filter to choose a particular branch of the planning
hierarchy to display. This is useful for projects that contain a
very large number of planning statements.

 Grid Select Grid to turn the diagram grid on and off. The grid is
useful for positioning objects on a diagram. It does not
appear on printed diagrams.

 Ruler Select Ruler to display or inhibit the screen ruler throughout
the vertical and horizontal extremes of the diagram. The
ruler is useful for positioning objects on a diagram. It does
not appear on printed diagrams.

 Show Line
Names

Select Show Line Names to display or inhibit the names of
lines on a diagram.

 Show Symbol
Names

Select Show Symbol Names to display or inhibit the names
of symbols on a diagram.

 Show
Discriminators

Select Show Discriminators to turn on and off the display of
discriminators on entity relationship or class diagrams.

Getting Started

23

Table 1-2 Menu Functions
Menu Command Description

 Show Statement
Type

Select Show Statement Type to display or hide statement
types in the planning window.

 Show Priority Select Show Priority to display or hide the priority of a
statement in the planning window.

 Class Select Class to choose the type of information displayed on a
class diagram.

 Entity Display
Options

Entity Display Options allows you to select display options
for the entity attributes displayed on the data model diagram.
• Select Entity Level to display only entity names within

entity symbols on an ERD.
• Select Primary Key Level to display entity names and

attributes composing the primary key within entity
symbols on an ERD. Refer to Entity Attributes
Displayed on Data Model Diagrams in The Visible
Rules for more information.

• Select Attribute Level to display entity names and all
attribute names within entity symbols on an ERD.

• Select IDEF1X Notation to turn on IDEF1X notation for
the current entity relationship diagram. If there are no
diagrams open, this acts as a default.

• Select Name Inside Box to display the name of an
IDEF1X entity inside the entity box. It is disabled if
IDEF1X is not the current notation for an entity
relationship diagram.

• Select Expand Associators to display a foreign key that
is represented by an associator element with the names
of the elements that comprise the primary key in the
form associator.(column one, column two, …).

 Physical

Schema
Select Physical Schema to display the physical name and
properties of an entity to be used during SQL generation.

 Events Select Events to select change the information that is
displayed for events on an activity diagram.

 Messages Select Messages to select change the information that is
displayed for messages on a sequence or collaboration
diagram.

Getting Started

24

Table 1-2 Menu Functions
Menu Command Description

Options Auto Label
Symbols

Auto Label Symbols automatically labels symbols as they
are drawn. This function can be toggled between On and Off
to enable or disable it. When On, you are prompted to enter
a label each time a symbol is drawn on your project diagram.

 Auto Label
Lines

The Auto Label Lines function automatically labels lines as
they are drawn. This function can be toggled between On
and Off to enable or disable it. When On, you are prompted
to enter a label each time a line is drawn on a diagram.

 Line Settings The Line Settings function allows you to specify default
settings for the diagram type, line type, terminator type,
terminator end type, and line orientation.

 Text Settings Text Settings allows you to specify a default font and format
for each label or caption entered onto a diagram. You can
specify that one particular typeface and format be used for
all symbols, another for all process/data store numbers,
another for all lines and data flows, another for all
paragraphs, etc.

 Security Security can be used to prevent unauthorized access to a
single-user version of Visible Analyst. When enabled, a user
must enter a valid user ID and optionally a password to gain
access to Visible Analyst. User IDs may be added by the
supervisor or a system manager via the Users function on the
Tools menu. To enable security, be sure you are defined as
the supervisor. Select this function in the menu and enter the
supervisor user ID and, optionally, a password via your
keyboard; then press ENTER.

 Colors Colors allows you to assign colors to different screen objects,
to enhance the appearance and clarity of your diagrams.

 Auto Connect Auto Connect allows lines to be drawn between symbols
without worrying about attaching them exactly to the border
of the symbol. With the Auto Connect selection checked, if
you start a line within one symbol and conclude it within
another, Visible Analyst draws the line using the currently
selected line and terminator types and automatically attaches
the line to the border of each symbol. Note that, for FDDs,
following this procedure draws a two-segment elbow line

Getting Started

25

Table 1-2 Menu Functions
Menu Command Description

following this procedure draws a two-segment elbow line
connector as is usual for that diagram type. When Auto
Connect is checked, it also affects moving lines. If you drag
the endpoint of a line to within another symbol, Visible
Analyst attaches the line to the border of that symbol.

 Auto Position
Text

Auto Position Text allows you to turn Auto Position Text
either On or Off. When on, after manually positioning a line
label, moving the line results in automatic repositioning of
the text based on the text position algorithm built into Visible
Analyst. When off, after manually positioning a line label,
moving the line results in the text item moving relative to
where it was placed. The only time the latter would not
occur is if a line is radically moved on the diagram or the line
is moved to a location where the text does not fit. In this
case, the text is repositioned using the text position
algorithm.

 Include
Connections

Include Connections causes lines connected to a symbol to
remain connected and move when you move a symbol or to
be deleted when you delete a symbol.

 Grid Settings Grid Settings allows you to specify the grid settings for
placing objects on a diagram both horizontally and vertically.

 Interaction
Diagrams

Select Interaction Diagrams to select change the way objects
and messages are created on sequence and collaboration
diagrams.

 Classic User
Interface

Classic User Interface changes the method by which
component items are added to the repository. If checked, a
free-form composition field is used. If not checked,
attributes are added with a name, type, and reference value.
This setting only affects some repository entries, such as
entities, data flows, data stores, and data structures.

 Control Bar Control Bar allows you to customize the control bar, the row
of buttons above the diagram workspace that gives you quick
access to commonly used functions.

Getting Started

26

Table 1-2 Menu Functions
Menu Command Description

 Help Bar Help Bar turns the display of the help bar on and off. The
help bar displays the current menu item, the name of the
current object, the current zoom level, and the current
project.

 Object Browser Object Browser turns the display of the object browser on
and off. The browser displays a list of all objects in the
repository. When no diagrams are open, or the current
window is the diagram list, all objects are displayed. When a
diagram is open, only objects valid for that diagram are
displayed. If an object appears on that diagram, it is
displayed in bold.

 ERD Balancing
Rules

All Fundamental Elements Must be Used on a DFD: If you
choose Yes, Visible Analyst tries to balance ERDs against
DFDs in the same project; and it lets you know which entity
attributes (data elements) have not been used on any DFD. If
you choose No, it does not perform this check.

Each Entity Must Correspond to a Data Store: There is
some correlation between the entities appearing on ERDs and
data stores appearing on DFDs in a project. You can make
this a one-to-one correlation by choosing Yes. Visible
Analyst then enforces this correlation in its balancing
analysis and in other ways.

 SQL Dialect for
Schema
Generation

SQL DDL (Data Definition Language) syntax can be
generated for all entities in the repository for a
project.

Dialects include:

Access 97 Paradox 7x, 8x
ANSI 92 Progress 7x, 8x, Native 7x, 8x
CA Datacom 8x SYBASE SQL Anywhere 5x
Centura SQL Base 5x SYBASE SQL Server 4x, 10x
DB2/2 2x, 5x, 6x, 7x Teradata SQL V2 2.1.0
DBASE IV Unify 2000
Informix 7x Oracle 7x, 8x
Indres 6x User Defined
InterBase 4x, 5x Vax RDB 6x

Getting Started

27

Table 1-2 Menu Functions
Menu Command Description

MS SQL Server 4x, 6x, Watcom 3x
 7x, 2000 xdb 1x
Netware 1x XML

Each dialect supports a different subset of some theoretically
complete SQL. If the SQL dialect you use is not yet
supported by Visible Analyst, you can either pick the
supported dialect that is closest, or you can choose User-
Defined SQL and customize it to meet your needs.

 DDS Name
Translation

This selection allows you to tailor how object names are
generated during AS400 DDS generation and how they are
mapped to Visible Analyst object names during DDS import.
There are three mapping schemes available:
• Logical to Alias. A Visible Analyst object name is

mapped to the ALIAS() field.
• Logical to Colhdr. A Visible Analyst object name is

mapped to the COLHDR() field.
• Logical to Text. A Visible Analyst object name is

mapped to the TEXT() field.

These mappings only occur if the object name cannot fit in
the DDS record/element name field (column positions 19-
28). If Logical to TEXT is not selected, the TEXT() field
contains the Visible Analyst description.

 Code
Generation
Options

This selection allows you to make choices about how shell
code generation is done from your project.

 Define User
Attributes

Define User Attributes allows you to add, modify, or delete
fields associated with repository entries.

 Define User
Objects

Define User Objects allows you to define site-specific
objects in the repository. These new objects can then be
linked to standard repository objects and reference other
standard objects within the composition field of the user-
defined object.

Getting Started

28

Table 1-2 Menu Functions
Menu Command Description

 Planning
Statement
Types

Select Planning Statement Types to define additional site-
specific statement types in the repository. Visible Analyst is
shipped with a predefined set of types such as Mission, Goal,
and System Requirement; but you can add new types and
define how they can be used.

Repository Define Select Define to go directly to the data repository for the
current project. A repository dialog box is displayed to
execute repository functions. If no diagram object is
selected, the dialog box is empty. The Visible Analyst
repository dialog box allows you to add and change
descriptive information about all objects that appear in
methodology-based projects.

 Divisions Select Division to create, modify, or delete divisions and add
users to divisions. Divisions are used to restrict access to
repository objects and to transfer data information between
an enterprise and satellite project.

 Key Analysis The analyze function identifies errors in the primary and
foreign key specifications you entered in the repository of
your project for the entities in your ERDs.

 Key
Synchronization

This function begins the analysis synchronization function to
review all of the primary and foreign keys you specified in
the repository of your project. It then generates foreign keys
in various entries, as necessary, to properly represent
relationships between entities.

 Model
Balancing

This function balances a data model against a process model
according to the rules you previously selected.

 Syntax Check This function analyzes a class of diagrams according to the
rules of a methodology.

 Generate
Database
Schema

This function generates a database statement file schema for
your project that can be used to create the tables in your
database.

Getting Started

29

Table 1-2 Menu Functions
Menu Command Description

 Compare Model
Against Schema

This command compares the current model against an
existing database schema and shows the differences between
them.

 Generate DDS This command begins the generation of a DDS description of
your project.

 Generate Code This command begins the process of shell code generation
for your project.

 Reports Select Reports to display the repository reports dialog box
for the current project if the repository was enabled when the
project was created. The dialog box allows you to set report
formats and generate a variety of reports based upon the
current project repository and other project information.

 Reports Query Select Report Query to bring up the custom reports dialog
box for the current project if the repository was enabled
when the project was created. The dialog box allows you to
generate custom reports based upon the current project
repository and other project information.

Diagram Symbols Select Symbols to display the symbol submenu add symbols
to a diagram. The cursor changes to the symbol cursor.

 Lines Select Lines to add lines to a diagram. The cursor changes to
the lines cursor.

 Text Select Text to add or change diagram text. The cursor
changes to the text cursor.

 Construct Select Construct to create, load, or delete constructs.
Constructs can be subsections of any diagram.

 Change Item Select Change Item to change the label and/or process or data
store number of a symbol, line or caption, as well as its
appearance.

 Stylize Select Stylize to add enhancements (bold lines, relief, etc.) to
a symbol, or to change the size of any symbol.

Getting Started

30

Table 1-2 Menu Functions
Menu Command Description

 Connect Select Connect to connect a function or process with
subsidiary functions or processes, or two diagram objects.

 Snap Symbols The Snap Symbols function causes subsequent symbols
enclosed in a block to be aligned in a strictly horizontal or
strictly vertical row.

 Snap Lines Snap Lines causes lines enclosed in a block to be drawn in a
strictly horizontal or strictly vertical plane. Lines drawn
between symbols are connected to the center points of the
symbols.

 Analyze Select Analyze to analyze a diagram or an entire project
according to the rules of a methodology.

 Split Data Flow Select Split Data Flow to divide data flows into component
subflows. This function is used for data flow diagrams only,
and only with the rules enabled.

 Regenerate
Chart

Select Regenerate Chart to redraw the open structure chart
diagram, updating it with any information in the repository
that might not already be on the diagram.

 Modify View Select Modify View to modify an existing view of a data or
object model by adding and deleting entities and
relationships.

 Settings Settings allows you to change the size, orientation, and scale
of an existing diagram. If you initially selected the easel
format, you cannot decrease the page size to standard once
your diagram has been created and saved if the content of the
diagram would prevent it from fitting on a standard diagram.
The same principle applies when changing from a multi-page
diagram to one of the smaller sizes.

Tools Backup Select Backup to back up a project to a floppy disk or to a
hard disk.

 Restore Select Restore to restore a project from a floppy disk or from
a hard disk.

Getting Started

31

Table 1-2 Menu Functions
Menu Command Description

 Copy Project Select Copy Project to copy a project.

 Delete Project Select Delete Project to delete a project.

 Rename/Move Select Rename/Move to rename or move a project to a
different subdirectory. You can move it with or without
changing its name.

 Export Select Export to export repository information.

 Import Select Import to import repository information.

 Rebuild Select Rebuild to rebuild projects that have become
corrupted.

 Enterprise Copy Select Enterprise Copy to copy a division between an
enterprise project and a satellite project.

 Enterprise Tag
Maintenance

Select Enterprise Tag Maintenance to remove the link
between an Enterprise project and a Satellite project.

 Copy Diagram Select Copy Diagram to copy a diagram or a branch (data
flow diagram and all of its children/grandchildren). This
command allows you to copy similar methodology diagrams
and branches from one project to another. All data
repository information associated with the diagram(s) is also
copied into the new project.

 Delete Diagram Select Delete Diagram to delete a diagram, or a branch (a
data flow diagram and all of its children/grandchildren).

 Users Select Users to define user security information, including
User Type (System Manager, Project Manager, or User).

For single user and generic DOS network version of Visible
Analyst, you can define user names and passwords to secure
Visible Analyst access to only those users that you have
defined. Thereafter, anyone logged in as supervisor or
system manager can select any user from the list box and
view or change that user ID.

Getting Started

32

Table 1-2 Menu Functions
Menu Command Description

 Prototyper Select Prototyper to start the Visible Prototyper. If you
purchased this tool, you can work with the prototyping and
simulation capabilities.

Window Tile Select Tile to arrange open diagram windows as tiled
windows.

 Cascade Cascade arranges open diagram windows as cascaded
windows.

 Arrange Icons If you have minimized diagrams to icons, this function
arranges those icons on your application workspace.

 Open Diagrams The name of every diagram you have open appears on this
menu. You can move among them by selecting them here.

Help Contents Use Contents to display areas of help or to access the Index
search function.

 Glossary Glossary contains definitions of key terms used in Visible
Analyst.

 Menu Functions Menu Functions allows you to find information about the
menus in Visible Analyst.

 Analysis Errors Analysis Errors contains an explanation of analysis error
messages.

 Miscellaneous
Errors

Miscellaneous Errors contains an explanation of
miscellaneous error messages.

 Visible on the
Web

Visible on the Web takes you to the Visible Systems
Corporation web site.

 InfoAdvisors
Discussion
Group

InfoAdvisors Discussion Group takes you to the
InfoAdvisors discussion group on the Web.

 About Visible
Analyst

About Visible Analyst contains information about your
version of Visible Analyst.

Getting Started

33

UNDERSTANDING PROJECT TREES
Visible Analyst organizes diagrams on a project basis. Before working in Visible Analyst, you
must select a project name where the work is to be kept. Every subsequent function performed
by Visible Analyst addresses the selected project, with the exception of New Project, Select
Project, Print, Restore, and Copy Diagram. The selected project remains the current project
until a different project is selected.

Within each project, diagrams are automatically stored in a tree structure referred to as the
project tree or tree file (see Figure 1-3). There are separate tree files within a project, one for
the project’s data flow diagrams and others for structure chart, entity relationship, functional
decomposition, class, state transition, and unstructured diagrams. The tree file for data flow
diagrams is arranged in a hierarchical structure, and makes use of indentation to depict
relationships between diagrams on different levels, child/parent relationships, etc. This type of
tree file organization complements the concept and process of top-down functional
decomposition.

Getting Started

34

 Figure 1-3 A Typical DFD Project Tree

Structure chart, entity relationship, class, state transition, and unstructured tree files do not
represent diagrams with a hierarchical structure. They are not based on the concept of top-
down decomposition, and the tree file has a flat structure that lists all of the project structure
charts, entity relationship and unstructured diagrams in alphabetical order.

Each project is associated with a project root designator for the project. You can change the
currently selected project selection using Select Project on the File menu.

Every process modeling project must begin with a top-level data flow diagram, from which
subsequent levels of data flow diagrams can be decomposed. The remaining levels of data
flow diagrams in the project are structured below the top level diagram.
• You can store an unlimited number of projects in Visible Analyst.
• Each project is designated by a project root and has its own project trees for data flow

and other types of diagrams.
• Each diagram in a project can have only one parent, but may have up to 40 children.

Getting Started

35

Note
2 This information applies to both data flow diagrams and to other diagram types.

However, as structure chart, functional decomposition, entity relationship, class,
state transition, and unstructured diagram trees do not have hierarchical
branches or nested relationships, all references to parent and child diagrams, and
to the copying, adding, deleting, etc., of branches and child diagrams refer only
to data flow diagrams.

For a more detailed description of project trees, including instructions on how to rearrange
stored diagrams and copy diagrams from one project to another, refer to Modifying a Project
Tree, below.

Modifying a Project Tree
Visible Analyst gives you the capability to restructure a project tree. You can rearrange
project data flow diagrams, as well as add or delete them at any level. You may also copy a
diagram or branch from one project tree to another, inserting the diagram at any level in the
receiving tree structure. All repository information associated with diagrams remains attached
to the diagrams when they are moved with the Copy Diagram function. However, whenever
you rearrange or add a diagram or branch to the tree, you may have to recreate nest
relationships to maintain the integrity of any parent/child relationships that are impacted by
the modification. This is explained in the following pages.

Inserting New Diagrams into a Project Tree
The New Diagram function at the File menu allows you to create and insert new diagrams
into the project tree of an existing project. The dialog box asks you to pick an existing
diagram in the project tree.
• If you want the new diagram to become the hierarchical parent of the diagram you select,

check Insert Level. When the inserted diagram is saved, it bumps all subsidiary levels of
the tree down one level.

• Otherwise, the new diagram becomes the hierarchical child of the diagram you choose.

Any nest relationship that existed between the diagram that had occupied the insert position
and its parent are removed. However, the new diagram being inserted is nested from its new
parent diagram. There is no nest relationship between the inserted diagram and the diagram
that had occupied its new position (the diagram that was bumped down one level); however,
you can establish a nest relationship between them using the Nest function described in the
Drawing Diagrams chapter.

Getting Started

36

If you did not make a context diagram when you created the first DFD of a Yourdon-rules
project, you can check Insert Level and Context Diagram and select the top-level diagram in
the tree. Your new diagram then becomes the project context diagram.

Figure 1-4 illustrates an example of the before and after results of inserting a new diagram
into a project tree. In the example, diagram 8 is inserted at the position that diagram 2 had
occupied. Notice that the branch of the tree containing diagrams 2, 3, and 4 is therefore
bumped down one level. The nest relationship between the old parent and child is broken, and
a nest relationship between the old parent and new child must be established manually so
proper data flow balancing can be done. All other nest relationships remains undisturbed.

 Figure 1-4 Inserting a New Diagram into the Tree

Getting Started

37

Deleting Diagrams from a Project Tree
Deleting a diagram from the project tree is accomplished using Delete Diagram on the Tools
menu. Upon selecting Delete Diagram, you must select a diagram from the tree and indicate
whether to delete the diagram only, or to delete it and all of its children. If you delete the
diagram only, it has the same effect as removing a diagram level from the tree and bumping
the children up one level. Any nest relationships that existed between the diagram being
deleted and its children are removed, and there is no nest relationship to the diagram(s) that
takes the place of the deleted diagram. You must establish any desired relationship using the
Nest function.

You can also delete boilerplate diagrams with Delete Diagram.

Figure 1-5 is an example of the result of deleting a diagram from a project tree. Notice the tree
structure before diagram 2 is deleted, then notice how the children of diagram 2 are bumped
up one level after the diagram is deleted from the tree. There are no nest relationships between
diagram 8 and diagrams 3 and 4, although any nest relationship between diagrams 1 and 8 is
maintained.

 Figure 1-5 Deleting a Diagram from the Tree

Getting Started

38

Copying Existing Diagrams Between Projects
This section describes how to copy an existing diagram from one project to another (or from
one level in a project to another) using the Copy Diagram function on the Tools menu. Upon
selecting Copy Diagram, you must first define which project root you want to copy from.
Then you must select the diagram or diagrams you want to copy. You can copy diagrams
from more than one diagram type at one time. Make selections for all of the diagram types
you want to copy and then click OK to copy them.

For non-DFDs, the standard Windows multiple selection techniques can be used. Click on
individual diagrams in any sequence to select; click on a diagram a second time to deselect it.

Because of their hierarchical nature, DFDs work slightly differently. There is a check box in
the Copy Diagram dialog box named Mark Branch. If this is checked and you click on a
diagram, all of its descendant diagram branches are selected. If Mark Branch is not checked,
only the diagram name you click on is selected. Note that if you deselect a diagram and there
are superior diagrams in the branch selected, all of its children and grandchildren, etc.,
deselect. You cannot skip levels within a project branch when selecting diagrams, as this
would disrupt nest relationships in potentially unintended ways. If you select diagrams to
copy in different branches of the project, the top diagrams of all of the branches you select
become sibling diagrams (on the same level) in the Copy Diagram destination.

You must also indicate the project to which you want to copy the diagram(s) and, for DFDs,
destination parent diagram.

For DFDs, nest relationships are not automatically set up between any diagram(s) copied and
the parent diagram being copied to. You must establish any desired nest relationships via the
Nest function described in the Drawing Diagrams chapter. When this is done, all processes
(on data flow diagrams) are renumbered according to their new locations in the project tree.
Figure 1-6 is an example of how a diagram labeled 4 is copied into a project tree with diagram
2 the parent diagram copied to.

Getting Started

39

 Figure 1-6 Copying a Diagram into a Different Tree

Notes

2 If rules are enabled for the project into which diagrams are being copied, Visible
Analyst performs a check to assure that no diagram labels are duplicated as a
result of the copy. You are prompted to enter a new label for any diagram that
has a duplicate name to another diagram that already exists in the destination
project. Also note that if an object label in the diagram being copied conflicts
with an object label in the project being copied to, Visible Analyst does not copy
the duplicate object.

You cannot copy both boilerplate diagrams and diagrams in other diagram types in a single
execution of the Copy Diagram function. If you select both boilerplate diagrams and diagrams
in other diagram types, only one group is copied. If Boilerplate appears as the diagram type
when you click OK, the boilerplate diagrams are copied. Otherwise, the rest of the diagrams
are copied.

If the projects involved in a copy operation have repository entries, then the repository entries
associated with the diagram(s) being copied from the source project are copied into the

Getting Started

40

repository of the destination project. These repository entries include the entries for all objects
on the diagrams being copied, as well as any derivative entries associated with the Alias and
Composition fields of these objects. (This assumes that they are copied into a project using
the same methodology rules, and that there are no conflicting labels).

In summary, the following repository functions are performed when copying a diagram
between projects:
• Visible Analyst copies all repository information that is necessary to recreate the entries

in the destination project.
• If the destination project has a repository entry with the same label and same entry type

as an entry being copied, then Visible Analyst assumes that it is the same entry. It does
not overwrite any existing fields that are already defined in the destination project. It does
copy only those entries that are not currently defined in the destination project.

• New repository entries are created in the destination project for all aliases that are
included in the entries being copied.

• New repository entries are created in the destination project for all composition items that
are included in the entries being copied.

PRINTING YOUR WORK
Printing diagrams can be accomplished from the File menu.

Print Options
When you print, you have the following options:
• You can select the target printer and access its properties. You can:
Ø Select a paper source.
Ø Select a number of other options depending on the target printer.

• You can print the diagram in the active window. By using the Print Range options, you
can determine how much of the diagram to print. All prints the entire diagram; Selection
prints the current selection; and Pages indicates only certain pages of a multi-page
diagram are to be selected. Type page numbers separated by commas, or a range of pages
separated by a hyphen, or click the Select Pages button to graphically choose the pages.

• You can view the Visible Analyst print queue, where you can add or delete diagrams. If
no diagram is open, you can print the diagrams in the queue.

• You can print a snapshot of the tree structure for any diagram type in the current project.
• If you have chosen to print a global view of a data model or a very large decomposition

diagram or cluster diagram, Visible Analyst enters a special item into the print queue that
is easily identifiable. These special items segment themselves and print over several
pages. A key to the segmentation page is printed to aid in reassembling the pages of the
view print for display. If you interrupt the printing of the queue when it contains one or
more of these special items and then redisplay the print queue, you see identifiers to the
individual diagrams in the queue.

Getting Started

41

• If you are printing one or more easel (11 x 15) or multi-page diagrams, you might want to
take advantage of scaling the diagram so that it fits on a single page. When Scale To Page
is checked, the size of everything on the diagram is reduced so that it fits on whatever
page size you selected for the diagram.

• If you choose this option for an easel diagram and your diagram is set to use portrait
orientation, the diagram objects appear quite small and there is considerable white space
at the bottom. In this case, you should also change your page orientation to landscape.
Note that for multi-page diagrams, the scaling option causes things to become quite tiny
(unless you are printing to a single page on a large plotter). Note further that the only part
of a multi-page diagram that is scaled and printed is the part that you have actually used,
not the entire 180 x 176 inch area that is possible to use.

• You can choose to scale a diagram a specific amount by entering a value in the Scaling
Percentage field. Unless you check Override Diagram Scaling, this value is combined
with the scaling for each diagram. For example, if the scaling factor for a diagram is 50%
and you set the scaling percentage to 50%, the diagram is actually be printed at 25% of its
actual size.

• You can print the diagram in color or in black and white. If the target printer does not
support color, any colors used on the diagram are dithered.

• If you are printing from the queue, you can either remove all items from the queue when
the print job has completed, or retain the list for a future print job. Retaining the queue is
useful if you plan to print a set of diagrams repeatedly.

• You can use the printer defaults for page size and orientation instead of the settings
stored with each diagram. This allows you to print a set of diagrams with the same page
characteristics, without having to change the settings for each diagram in the queue. You
can change settings for the printer driver, such as page orientation (portrait or landscape),
print to file, etc., by clicking the Setup button in the Print dialog box.

• You can choose the number of copies of each diagram to print.
• When printing multi-page diagrams, you can choose to have the page number printed in

the upper left hand corner of each page.
• Neither the grid nor the ruler is included in the printed copy of a diagram, even if you

have it displayed on the screen.

The procedure for printing is very straightforward. Choose Print from the File menu. At the
dialog box, choose from among the options described above and click one of the available
buttons.
• If you choose Modify Queue, the dialog box expands to show the current print queue. If

you want to delete diagrams from the queue, select them by clicking on them and clicking
Delete. If you want to add diagrams to the queue, click Add. Another dialog box displays,
showing you a list of all of the diagrams for the current diagram type in the active project.
As above, click on the diagrams you want to print and click the Add button. You can also
choose different diagram types and different projects from which to add diagrams to the
queue. When you are finished selecting diagrams, click OK to return to the print queue

Getting Started

42

display. You can then print the diagrams in the queue (if there are no diagrams open),
adjust the printer setup, continue the add and delete process or cancel.

• You can print a layout page that details how the separate pages of a multi-page diagram
should be assembled.

Selecting Pages for Printing
When printing a multi-page diagram, you can use the Select Pages button on the Print dialog
box to display a reduced view of the current diagram. The diagram is divided into the pages
that can be selected. When you select pages, you have the following options:
• To select a page, either click with the left mouse button to select a single page, or press

the left mouse button and drag the mouse to select a rectangular area.
• To deselect a page, click a second time with the left mouse button. You can also change

the drag mode by selecting Clear or by clicking the right mouse button. Now when you
click and drag the mouse, pages are de-selected.

• To select all pages, click Select All.
• To reverse your selections (select those pages that are not selected and de-select those

pages that are), click Invert.
• To deselect all pages, click Clear.
• When you have completed your selections, click OK. The Pages field on the Print dialog

is filled with your choices.

Printing
Choose Print from the File menu. At the dialog box (refer to Figure 1-7), select from the
available print options as described above. If there are multiple diagrams open in Visible
Analyst, you can only print the currently active one.

Getting Started

43

 Figure 1-7 The Print Dialog Box

Note that if there are multiple diagrams open in Visible Analyst, you can only print the
currently active one.

Getting Started

44

Strategic Planning

45

Chapter 2

Strategic Planning

Planning and requirements identification is often the initial phase in an enterprise-engineering
project. During the planning phase, you develop a comprehensive strategic business plan that
meets the identified mission and purpose of the organization. Visible Analyst not only allows
you to create these statements, but also allows you to link them to other objects in your
repository. This allows you to track the software development process from the planning
stages through analysis, design, and implementation. Linking planning statements to model
objects helps you determine the significance of each object and ensures that each object is
essential in supporting the organization’s business plan.

PLANNING PHASE
The Planning phase allows senior-level management to capture and document the business
vision it has for the organization. Once this business vision is captured, management can
communicate the vision effectively to the people who will implement it.

During the Planning phase, management develops a comprehensive strategic business plan
through formal or informal planning sessions.

When the Planning phase is complete, participants have a dynamic plan that meets the
identified mission and purpose of the organization. This plan is captured in a set of planning
statements that forms the foundation for the project.

Planning session participants use the following standard strategic planning techniques to
produce a business plan:
• External and internal assessment
• Goal analysis
• Strategy and objective formulation

PLANNING STATEMENTS
As the product of the Planning phase, planning statements communicate the business vision
and rules that govern the organization. Written in business language, the planning statements
provide the framework to ensure that the data model developed in subsequent phases meets
the information requirements of the business.

Each planning statement is assigned a statement type. Many predefined statement types come
with Visible Analyst:

Strategic Planning

46

• Vision • Critical Success Factor
• Assumption • Objective
• Mission • Policy
• Strength • Tactic
• Weakness • Task
• Opportunity • Business Event
• Threat • System Event
• Goal • System Requirement
• Strategy • System Design Objective
• Issue for Resolution

Your organization may use different terms for these types. You may add different statement
types using the Planning Statement Types function on the Options menu (as described later in
this chapter).

Statements support each other in a hierarchical relationship according to their types
(objectives support the mission, policies support objectives, etc.). You form this hierarchical
structure in the Planning Outline window.

Object Links
Planning statements are integrated into the analysis and design phase by links to the model
objects (entities, attributes, processes, classes, etc.) that are created to support them.

Linking planning statements to model objects helps you determine the significance of each
object you add to the model. This ensures that each model object is essential in supporting the
organization’s business plan.

For example, an organization’s business plan includes the following strategy: “When an order
is received, it is immediately processed and invoiced.” This planning statement would be
linked to the entities ORDER and INVOICE, since those entities support this strategy. These
entities can also be linked to other planning statements, and this strategy can also be linked to
other model objects.

Statement Priority
You can assign a priority level to each statement. The priority level conveys the importance
of the statement to the business plan.

Statement Description
You can display the planning statement description. When this option is selected, a window
opens below the statement hierarchy window that displays the description of the selected
planning statement. If you want to change the description, simply click on the window (or

Strategic Planning

47

press the Tab key) and begin typing. If you do not have rights to modify the object, or if it is
being edited by another user, you will not be able to change the description. Once the focus is
set back to the statement hierarchy, changes that you made are saved.

To change the size of the description window, move the cursor over the hierarchy/description
border. When the cursor changes to a vertical splitter , press the left mouse button and
drag the mouse until you reach the desired window size.

DEFINING PLANNING STATEMENT TYPES
You can define your own statement types, customizing Visible Analyst to your specific
strategic planning needs. This feature not only allows you to create new types, but define
how these types are related to other planning statements and linked to other objects in your
repository.

To create a planning statement type:

Select Planning 1 Select Planning Statement Types from the Options
Statement Types: menu. The Planning Statement Types dialog box appears.

Select New or 2 Click either New Project Defaults or Current Project.
Existing Project:

• New Project Defaults. Choose this option to modify
the list of statement types added to all new projects.

• Current Project. Choose this option to modify the list
of statement types defined for the current project. If
this option is selected, types can either be added or
removed, but the definition of existing types cannot
be changed. If a statement type is being used, it
cannot be removed.

Set Type Name: 3 This is the name of the new statement type being created.

Whenever you define a planning statement, this name
appears in the list of available statement types.

Set Composite Type: 4 If you choose this option by clicking your left mouse

button on the check box labeled Composite Type, you
allow any newly defined planning statements of this type
to contain other planning statements. This allows a
hierarchical relationship to be created between statements
according to their types (Objectives support the Mission,
Policies support Objectives, etc.). For every item created
as a child of another statement, a location reference for

Strategic Planning

48

this entry is created in the Locations field of the
repository. See the Composition section of the
Repository chapter for information on a related topic. If
Composite Type is not checked, planning statements of
this type are at the lowest level in the hierarchy.

Set the Link Option: 5 This option allows you to establish a link or series of links

between planning statements of this type and other
repository objects and user-defined objects. To choose
this option, click the left mouse button on the check box.

Set the Link 6 This list box describes the cardinality between any linked
Cardinality: objects. The default setting is 1:1. This means that only

One planning statement object can be linked to one
repository object. There are four cardinalities allowed.
The entry to the left of the colon always refers to the
planning statement. The entry to the right always refers
to the linked repository object.

Set the Link To: 7 This field describes the repository types that can be

Linked to the planning statement. The default is All.
You can click the drop-down arrow for a list of options.

Save the Object: 8 Click Add to save the planning statement type.

Notes
2 If you modify the New Project Defaults list, you must create a new project in

order to implement newly defined planning statement types. They ARE NOT
valid with the currently selected project unless you select Add to Current Project
or you choose the Current Project option in Step 2.

2 If using a network version of Visible Analyst, every planning statement type is
accessible with any subsequently created project. If you create a Requirement
type, anyone with access to Visible Analyst also has that Requirement type in
any project they may create.

PLANNING WINDOW
Planning statements are captured and refined in Visible Analyst through the Strategic
Planning window. This window allows you to add statements to and delete statements from
your repository, as well as to edit and to organize them. In addition, the planning windows let
you link planning statements to other modeling objects such as entities, attributes and classes
created during later phases of the software development process.

Strategic Planning

49

To open the Strategic Planning Outline window:

Open the Window: 1 Choose Strategic Planning from the File menu, or

Click the Strategic Planning icon on the control bar.
Planning is only available in the Corporate Edition of
Visible Analyst. If this option is grayed out, it means
your version of Visible Analyst does not have it.

 Figure 2-1 Strategic Planning Outline Window

The Planning Outline window provides a hierarchical view of planning statements defined in
the project repository.

Use the Planning Outline window to:
• Add, edit, and delete statements.
• Move and copy statements to other positions within the outline.
• Link statements to other repository objects.
• Assign priorities to statements.

Each planning statement defined in the repository is shown in a tree-link fashion in the
planning window. For each statement, the following information can be displayed.

Strategic Planning

50

Statement Icon – A symbol showing if any levels are collapsed beneath the statement.

• A plus symbol (+) means that one or more levels are collapsed beneath the
statement.

• A minus symbol (-) means that all levels beneath the statement have already
been expanded.

• No symbol means that there are no levels below the statement.
Statement Title – The title of the statement.
Statement Type – The type of statement. Statement type is shown in parentheses () after
the title.
Statement Priority – The priority level assigned to the statement. The Statement priority is
shown in curly brackets { } after the title and type.
Statement Description – A description of the selected planning statement shown in a
window below the statement hierarchy window.

The Planning Outline window displays planning statement titles in a tree arrangement similar
to the directory tree in Windows Explorer. Like Explorer, you can expand and collapse
branches of the outline to vary the level of detail displayed in the window.

The tree is hierarchical. Statements may have child (hierarchically subordinate) statements,
that in turn may have their own child statements if the statement type allows it. You may
expand all hierarchy branches or collapse one or more of them to show only parent statement
branches.

You can change the appearance of the statement window by using commands on the View
menu, by right-clicking on the window to display the Property menu, or by clicking on the
appropriate buttons on the control bar.

Using the Planning Window
The Planning window provides a view of the titles of statements visible in a single branch or
the entire repository. Because only the titles are displayed, you can easily rearrange the
statements to reflect their hierarchical relationships to one another. This window does not
provide detailed information about each statement. (That is the function of the Define dialog
box. See the Repository chapter of this manual.)

Use either the Planning window or the Define dialog box to add planning statements. Only
the planning window allows you to organize statements hierarchically. If you use the Define
dialog box, the new statement is added at the end of the hierarchy on the first level.

Building a Planning Outline
You begin building a planning outline either by adding statements to the Planning Outline
window or by rearranging existing statements into the appropriate hierarchical order.

Strategic Planning

51

Planning statements are usually arranged from the top down (following strategic management
principles). This means that strategic statements, such as the mission statement, are placed in
the highest level of the outline. Operational statements, such as policies, are placed in the
lower levels.

New statements appear as a child of the currently selected statement; otherwise, they appear at
the top of the outline. You can use the mouse or the control bar buttons to select, move or
copy statements to other locations in the outline.

Control Bar Buttons
The control bar for the Strategic Planning Outline window is shown below.

 Figure 2-2 Strategic Planning Outline Window Control Bar

 Insert a new planning statement.

 Promote the selected planning statement one level higher than its present position.

 Demote the selected planning statement down one level lower than its present
 position.

 Move the selected planning statement up one position

 Move the selected planning statement down one position.

Show Level – Select how much of the tree is displayed. Level 1 shows only the top-
level nodes, while Show All displays all nodes. You can change individual branches
by clicking on the + to the left of the planning statement.

 Click on Filter to choose a particular branch of the planning hierarchy to display.
 This is useful for projects that contain a very large number of planning statements.

 Display statement types

 Display statement priority.

 Display the statement description.

Strategic Planning

52

In addition to the control bar, options for changing the statement hierarchy are available on
the Edit and View menus, as well as by right-clicking on the planning window to display the
Properties menu.

Adding a New Statement
To add a new planning statement to the hierarchy:

Select the Parent: 1 Click on the planning statement to which you would like

to add a child statement. If no statement is selected, the
new statement will be added to the top of the hierarchy.

Open the New Statement 2 Click the New Statement icon on the control bar, or
Dialog Box: right-click the parent and select New from the Properties

menu, to display the Add Planning Statement dialog box.

 Figure 2-3 Add Planning Statement Dialog Box

Define the Statement: 3 Enter a name for the statement. Statement names must be
 unique.

4 Select the statement type from the list.

Strategic Planning

53

5 Set the priority. This is an option field that can contain

any value that you like. Generally, a numeric value is
used to set the relative priority against other statements.

6 Describe the statement.

Save the Statement: 7 Click OK. The statement is added to the hierarchy.

Moving Statements
There are several ways that the hierarchy can be modified. The Move Up and Move Down
options on the control bar, the Edit menu, and the Properties menu move the selected
statement up or down one position. In addition, you can use the mouse by holding down the
left button and dragging the statement to its new position. While you are moving the mouse,
an insertion marker appears showing you where the statement will be placed.

Adding Additional Detail to a Planning Statement
Like all objects that are stored in the repository, planning statements can have more
information associated with them, such as a short description, notes, and especially links to
other objects. To modify a statement’s complete definition, click on the desired statement and
select Define from the Repository menu, right-click on the item and select Define from the
Properties menu, or double-click on the item. For detailed information on the Define dialog
box, see The Visible Repository chapter of this manual.

Strategic Planning

54

Drawing Diagrams

55

Chapter 3

Drawing Diagrams

THE DIAGRAMMING PROCESS
In its most simplified terms, Visible Analyst diagramming is a three-step process consisting of
adding symbols to a diagram, adding lines to a diagram, and entering text. The sequence in
which you perform the process is entirely up to you. For example, you may choose to position
all of the diagram symbols before positioning any lines. Then you could position text to label
each symbol and line; or you could enable the Auto Label function and be prompted to label
each symbol or line as it is positioned. You can also perform editing functions on any
diagram, allowing you to stylize, reposition, or relabel any object as you develop the diagram;
or you can return to the diagram during a subsequent work session to perform edits.

Detailed procedures that can help you perform the diagramming and editing processes are
provided in this chapter. These procedures provide all of the information you need to draw
symbols and lines and label them. Editing procedures are also described that allow you to
stylize, copy, move, or delete any symbol, line, or text entry.

Note that all of the diagramming procedures are supplemented by helpful information when
using rules and repository functions. Other information explaining the use of nesting
functions, creating and loading constructs, etc., is also provided to help you understand the
complete Visible Analyst diagramming process. Finally, although some explanations discuss
only data flow diagramming, they are valid for all diagram types unless otherwise noted.

Before You Begin
Although the Visible Analyst diagramming procedure is easy to learn, you should understand
the basic operating principles, project trees, and the menu selections presented in Getting
Started before proceeding any further. If you understand the basic Visible Analyst operating
principles and the menus, you can interactively follow along and perform all of the procedures
presented in this chapter.

Before using Visible Analyst, you should also be aware of a few basic operation aspects and
important decisions you should make prior to creating a new project and drawing the first
diagram. These operation aspects are listed below and described in the following paragraphs.
• Rules and repository considerations.
• Changing diagram types (data flow, functional decomposition, structure chart, entity

relationship, entity life history, class, state transition, use case, activity, sequence,
collaboration, unstructured or boilerplate).

• Enabling and disabling boilerplates.

Drawing Diagrams

56

• Using boilerplate keywords.
• Selecting a page size.
• Selecting a project.

CREATING A NEW PROJECT

Identify the Project: 1 At the File menu, first select New Project. The Create
 New Project dialog box appears.

 Figure 3-1 Create New Project Dialog Box

2 Type a project name up to 200 characters long (if you are

creating a project on a drive that does not support long
file names, you are limited to 4 characters). Then type a
short description. Identify the path where the project is to
reside. The default location is in a subdirectory beneath
Visible Analyst with the same name as the project root.

Drawing Diagrams

57

Rules and Repository Considerations

Rules Considerations
Rules are applied to diagrams on a project-wide basis; that is, all diagrams in a particular
project must have the same rules. You must therefore be sure that the desired Rules are
selected prior to drawing the first diagram for any new project. This is true even for Visible
Analyst programs sold without data flow diagramming capability; so if you ever want to do
data flow diagramming for the project, enable rules by selecting the data flow methodology
that you would want to use at that time. You cannot go back and change your selection for a
project once the project has been created.

You can select Yourdon/DeMarco, Gane & Sarson, SSADM, or Métrica methodology for
data flow diagrams. Yourdon/Constantine methodology is used by default for all structure
charts if the structure chart diagramming mode is selected. Refer to The Visible Rules section
of this manual for detailed information about applying rules to a project.

To make your rules selection for any new project:

Select a Methodology 3 Select Yourdon/DeMarco, Gane & Sarson, SSADM,
While Creating a New or Métrica as a methodology for your project.
Project:
 4 Continue by defining the repository function for your new

 project, as described below.

Data Repository Considerations
Rules are a prerequisite for the Visible Analyst repository; for example, Yourdon/DeMarco,
Gane & Sarson, SSADM, or Métrica methodology must be enabled before you can enable the
data repository function. Like rules, the repository function is also applied to diagrams on a
project-wide basis, where all diagrams in a particular project share the same repository.
Therefore, you must be sure that the repository rules you want to use are enabled prior to
drawing the first diagram for a new project. If a project is created using one set of rules, you
cannot go back later and change the repository rules for that project. Specific instructions for
using the capabilities of the repository are provided in The Visible Repository manual section.

To enable/disable the data repository selection for any new project:

Select the 5 Select the database engine to be used for the repository.
Repository Prior to
Creating a New Project: 6 Continue by defining the ERD notation for the project, as

 described below.

Drawing Diagrams

58

ERD Notation

Relationship Cardinality Notation
A relationship’s cardinality shows how many instances of one entity type relate to how many
instances of the entity type at the other end of the relationship. To show a relationship
cardinality of “Many,” a line terminator must be used. Visible Analyst gives you a choice of
four:
• Crowsfoot Notation - a three-way fork.
• Arrow Notation - a double arrowhead.
• Bachman Notation - a single arrowhead.
• IDEF1X

IDEF1X Notation
Click this check box to select IDEF1X as the default notation for your entity relationship
diagrams. Features include entity notation (independent entities, dependent entities), category
notation, cardinality notation, and group attributes. If you select IDEF1X as the relationship
cardinality when creating the project, you would then select Crowsfoot, Arrow or Bachman as
an alternate cardinality notation.

Choose a Cardinality 7 Select one of the three choices presented.
Notation:
 8 Continue by defining the number of names for

 relationships, as described below.

Number of Names for Relationships
Relationships are inherently bi-directional. However, you may not want to save relationship
names in both directions. You may save two names for each relationship or just one.

Choose the Number 9 Select one of the two choices presented.
of Relationship Names
to Use: 10 Click OK to create the project.

Selecting an Existing Project
Once projects have been created and saved, you can easily load different projects into Visible
Analyst by choosing Select Project from the File menu and selecting the desired project from
the list. When an existing project is selected and loaded into Visible Analyst for access, all of
the original project parameters stored for the project are automatically restored.

Drawing Diagrams

59

The Uses of Different Diagram Types
The different diagram types are discussed in detail in the Drawing Diagrams section of this
manual. The paragraphs that follow are summaries to make the diagramming processes
clearer.

Functional decomposition diagrams (FDDs) give you the ability to do high-level planning of
business functions diagrammatically while concurrently populating the repository. You can
enter business functions onto diagrams and break them down into successively finer
gradations. At some point, one that is entirely up to you, you can decompose business
functions (hereinafter called simply functions) into processes semantically equal to those that
appear on DFDs. The processes can themselves be decomposed into smaller parts (still lower-
level processes) on FDDs.

Data flow diagrams (DFDs) represent the functional tasks of your project analysis. For
example, a data flow diagram might represent a particular functional area of a department
within your company. That data flow diagram might also be an integral part of a project that
consists of multiple data flow diagrams that represent multiple levels of department functions
and tasks.

Note
2 A functional decomposition diagram is very different from a process

decomposition diagram. The former is a full diagramming methodology for
doing business planning. The latter is simply an unstructured diagram laying out
the hierarchy of processes that are descendants of an indicated process.

Structure charts (SCs) are a graphical representation of the top-down design of a project,
showing the program modules that carry out the system functions defined in a data flow
diagram. They also show the hierarchical relationship between these modules and how they
invoke one another. The Entity Life History (ELH) diagram is a component of both the
SSADM and Métrica methodologies and is similar to a structure chart. The ELH shows how
events in a system affect data entities.

Entity relationship diagrams (ERDs) graphically describe the data and the relationships
among data items in your project. You can draw entities (or, more properly, entity types) and
the relationships between them, including relationship names in both directions. Later, the
data elements (also called attributes) composing these entities can be added to the repository
and, with the Key Synchronization function, key information can be generated for
relationships. Later, if you choose, you can balance your data model against your process
model to further enrich the information stored in your project.

Class diagrams (CLDs) graphically describe the object model that contains classes (an object
is an instance of a class) and the relationships between classes in your project. You can draw

Drawing Diagrams

60

classes that contain information about attributes and member functions and relationships to
indicate association, inheritance, and aggregation.

State transition diagrams (STDs) are graphical representations of the dynamic model that
contain states and events that cause a change in state. State transition diagrams can be linked
to classes through use of the Nest function. An activity diagram is a special form of state
diagram where states represent performance of activities or subactivities, and transitions are
triggered by completion of activities or subactivities.

Use case diagrams show the relationship between a user and a computer system. A use case
diagram captures some user-visible function.

Sequence diagrams are one type of iteration diagram that describe how objects collaborate in
some behavior. Collaboration diagrams are another type of iteration diagram that show
interaction organized around the objects in the interaction and their links to each other.

Unstructured diagrams are not linked to the repository. They are simply free-standing
diagrams. They can be put to any use you want. Cluster diagrams and views, generated from
ERDs, and process decomposition diagrams, generated from DFDs, are unstructured
diagrams.

 Note

2 You can define defaults for the line types (straight line, dashed line, arc, etc.)
and terminator types (solid arrowhead, open arrowhead, no terminator, etc.) that
can be drawn on unstructured diagrams. They can be made the same as those
used for any other diagram type. You can make this setting by selecting Line
Settings from the Options menu. From the top box, you can choose the line and
terminator values that are accessible when the diagram type is set to
unstructured. However, the line values set for a particular diagram are those in
effect at the time the diagram was created, so you should set this before you
begin the new diagram creation process.

Boilerplate diagrams do not represent project designs, but instead represent standard text and
graphics that are available for insertion into other diagrams. For example, a boilerplate
diagram might be a corporate logo or standard heading that is to be included in your diagrams.
You may create many boilerplate diagrams, and each is saved in a special Visible Analyst file
that is specifically set aside for all boilerplates. You can then select any one boilerplate for
inclusion in subsequently created diagrams if you also enable a boilerplate when you create a
diagram, as described below. It is important to understand that rules and data repository
capabilities do not apply to boilerplate diagrams.

Drawing Diagrams

61

Unstructured Diagrams
When you create a project, you can have unstructured diagrams coexisting with methodology
diagrams in the project. The methodology-based diagrams are linked to the repository.

Creating a New Diagram
Visible Analyst allows you to work with many different diagram types, so the first step in
creating any new diagram is to:

Open the Dialog Box: 1 Select New Diagram from the File menu. The New
 Diagram dialog box appears.

 Figure 3-2 New Diagram Dialog Box

Set the Diagram Type: 2 Set the desired diagram type.

Note
2 Once you begin drawing your new diagram, you cannot go back and change that

diagram to another type.

Drawing Diagrams

62

Selecting a Drawing Method
If you are creating an entity relationship, class, or unstructured diagram, choose the method
by which to draw the diagram. Standard is the normal manual process where you control how
objects are added to the diagram. The view method automatically creates a diagram based on
the type of view selected. Refer to The View Functions later in this chapter for more
information.

Select the Drawing 3 Set the desired drawing method.
Method:

4 If you are creating a class diagram using one of the view
methods, and you want entities to be included as classes,
select Include Entities. Once an entity is added to a class
diagram, it is converted to a class in the repository, with
an entity subtype. It can be used freely on both entity
relationship diagrams and class diagrams.

Selecting a Page Size
When choosing the page settings for a diagram, either when creating a new diagram (New
Diagram from the File menu), or changing an existing one (Settings from the Diagram menu),
the following options are available.

Workspace
• Standard defines a single page drawing area. The dimensions of the page are determined

by the page size, scaling factor, and orientation. Prior to version 6.1, standard defined a
9 x 11 inch drawing area.

• Multi-page defines a 180 x 176 inch drawing area. On a multi-page diagram workspace
the places where the diagram breaks over pages when printed are indicated. These marks
are determined by the page size, scaling factor, and orientation, and do not print on your
diagram. While it is permissible to use this multi-page size for any diagram type, it may
not always be the wisest thing to do. Remember that one of the principles of analysis is to
break things up into small sections that take up no more than one standard page to make
the concepts more manageable and easier to understand.

Orientation
Portrait indicates the page is taller than it is wide; Landscape indicates the page is wider than
it is tall.

Page Size
Choose one of the available paper sizes for your printer. The size you choose affects the size
of the diagram workspace. If you have chosen the standard workspace, a diagram is printed on
a single piece of paper. If you chose multi-page, the number of printed pages depends on the
page size selected.

Drawing Diagrams

63

Scaling (%)
Scaling determines the size of objects on a diagram when the diagram is printed. If you
choose a scaling factor that is less than 100 percent, you have a larger workspace for each
page when editing the diagram; however when the diagram is printed, the objects are smaller.
If the scaling factor is greater than 100 percent, the workspace is smaller; and, when the
diagram is printed, the objects are larger. Scaling affects the page breaks on a multi-page
diagram. You can choose a scaling percentage between 10 and 400.

Note
2 In some cases, the combination of workspace, page size, and scaling factor

selections can result in an invalid page size. This can occur if the page size is
very large and the scaling factor is very small, or the objects on a diagram do not
fit within the boundaries of the new page size. If this happens, the scaling factor
is reset to a value that results in a valid setting.

You may select a page size according to your diagram requirements. At a later time you can
change the diagram size from the Diagram menu. However, be aware that if you initially
select the multi-page format, you cannot go back and decrease the page size to standard once
your diagram has been created and saved if the content of the diagram would prevent it from
fitting on a standard diagram.

Set the Diagram 5 Select a Workspace, Page Size, Orientation, and Scaling
Page Size: (%) that corresponds to the size you want.

6 Continue by defining the Boilerplate you want to appear
on the diagram, if any. If you are creating a boilerplate
diagram, you cannot include another boilerplate diagram
in it. Boilerplates are described in detail later in this
chapter.

Tree Position of the New Diagram (DFDs Only)
If this is the first diagram of a project, it is at the top of the tree. If you have chosen the
Yourdon/DeMarco methodology, you can also check the box identifying this as a context
diagram. Note that when you select a position in the tree, you are selecting the parent of the
new diagram. If you check the box labeled “Insert Level,” the selected existing diagram
becomes a child of the new diagram. If you choose the top level diagram of a
Yourdon/DeMarco project and you have not yet identified a diagram as a context diagram,
you can insert a level above the existing top-level diagram and make it a context diagram by
checking that box.

Note
2 All of the warnings given in the discussion about inserting diagrams into the tree

apply here. Actual parent/child relationships are created only with the Nest

Drawing Diagrams

64

function. Diagram insertions simply position diagrams so that they can be
nested.

Select the Tree Position: 7 Select the position in the project tree hierarchy where you
 want the new diagram to be (data flow diagrams only).

Create the New Diagram: 8 Click the OK button or press ENTER. An empty
 diagram window appears, waiting for your input.

Opening an Existing Diagram for Editing
Normally when you access Visible Analyst, the current project is the one that was last
selected. In some instances, however, such as when you delete a project and then exit the
program, Visible Analyst has no current project the next time it starts. In this case and
whenever you want to work in a different project, you must choose a project before you can
open the diagram you want to edit.

Once a project is selected, choose Open Diagram from the File menu, select the diagram type
and pick the diagram you want to edit from the Diagram box. The diagram you choose opens
in a window for you to edit.

USING BOILERPLATES

Enabling and Disabling Boilerplate
When creating a new diagram, the Boilerplate box allows you to select any existing
boilerplate drawing for inclusion in the new diagram that you are about to draw. There are
three important things to remember about this:
• If the diagram type is set to Boilerplate, Visible Analyst does not allow you to enable a

boilerplate for the new diagram because you cannot include an existing boilerplate in a
new boilerplate diagram.

• If a boilerplate is enabled and the diagram type is set to something other than Boilerplate,
Visible Analyst automatically draws the selected boilerplate into the new diagram
window when a new diagram is created. The added boilerplate is always displayed as part
of the diagram whenever it is accessed. Once a boilerplate is enabled, a new diagram is
created, and the diagram is saved, the boilerplate cannot be removed as one unit from the
existing diagram; however, the individual parts making up the boilerplate can be
removed.

• If disabled, no boilerplate is included in your new diagram. As described below, a
boilerplate can be added to an existing diagram using a Construct.

Drawing Diagrams

65

 Figure 3-3 Blank Boilerplate Diagram With Key Words

Drawing Diagrams

66

 Figure 3-4 Data Flow Diagram With Keywords in Use

Drawing Diagrams

67

Using Boilerplate Diagram Keywords
Keywords are available for use in boilerplate diagrams. If any of the keywords are present in a
boilerplate that is loaded into a diagram, they are automatically replaced by information such
as when the diagram was created, when it was last edited, etc. You may place the keywords
anywhere within a boilerplate and they are automatically translated when the boilerplate is
loaded into any diagram. They are also updated each time the diagram is accessed by Visible
Analyst. All keywords must be placed on the diagrams as separate text entries in order to
function properly. The following keywords may be used:
• $CDATE - Identifies the date that the diagram was created.
• $CTIME - Identifies the time that the diagram was created.
• $CUSER - Identifies the user who created the diagram.
• $DIAGRAM1 - Identifies the diagram label.
• $EDATE - Identifies the date that the diagram was last edited.
• $ETIME - Identifies the time that the diagram was last edited.
• $EUSER - Identifies the user who last edited the diagram.
• $PARENT - Identifies the parent diagram label (data flow diagrams only).
• $PROJECT - Identifies the diagram project root.

More Information about Keywords
Boilerplate keywords may not be embedded within text; instead, they must be separate text
entries. For example, the text entry “Last edit: $EDATE” does not produce the desired result.
Instead, “Last edit:” and “$EDATE” must be separate text entries.
• The font that you use for the keyword is the font that is used for the text that replaces it.
• Keywords are case insensitive.
• A boilerplate can be added to existing diagrams by using Constructs. To do this:

1 Create a new diagram with the desired boilerplate enabled.
2 From the new diagram, save a construct that contains the entire boilerplate and

nothing else.
3 Load the construct into existing diagrams. The keywords for create date, time, and

user take on the values of the diagram from which the construct is created, not the
diagram to which they are added. All other keywords are updated appropriately.

1 These keywords are continuously updated as necessary: $DIAGRAM, $EDATE, $ETIME,
$EUSER, $PARENT, and $PROJECT.

Drawing Diagrams

68

A LOOK AT THE DOCUMENT WORKSPACE
Whenever you create a new diagram or edit an existing diagram, the diagram or application
workspace is displayed as shown in Figure 3-5. The document workspace is the starting point
for creating, editing, and reviewing all of your diagrams. The center of the document
workspace provides the area into which you draw each diagram. When the first diagram is
opened during a work session, it is opened maximized and fills the entire application
workspace. You can also expand the application workspace to fill your entire screen. This
makes a maximized diagram even bigger. You can also, however, shrink it to a window or
minimize it to an icon, if you wish.

 Figure 3-5 The Document Workspace

The Document Window
Document windows are sizable in the standard Windows manner. If you have a maximized
document open and you open a second document of the same or a different diagram type, both
are displayed as windows; neither is maximized. You can later choose to maximize either
document. You can control how your individual windows appear and how your windows are
arranged from the View and Window menus, as described below. Note that Visible Analyst

Control Bar

Project Root

Object Browser

View
Tool Bar

Standard
Tool Bar Diagram

Tool Bar Font
Tool Bar

Help Bar

Document Workspace

Drawing Diagrams

69

appends the diagram type to the name of that diagram in the title bar of the document
window.

The Help Bar
At the bottom of the workspace is a line that gives a brief description of the menu function
currently highlighted; and displays the current zoom level, the current project, the current
object, and whether the diagram was opened as Read Only (RO). The help bar can be toggled
on and off from the Options menu.

The Object Browser
At the left side of the workspace is the object browser. The object browser displays a list of
all the objects in the repository. It can be toggled on or off from the Options menu. When
there are no documents open, or the current window is the diagram list, all objects are
displayed. When a diagram is open, only those objects that are valid for that diagram type
are displayed. If an object appears on the diagram, it is displayed in bold.

The Control Bar
At the top of the workspace is the control bar, explained later in this chapter. Control bar
options are selected from Customize Control Bar dialog box displayed when you select
Control Bar from the Options menu.

The View Menu

Zoom
Selecting Zoom from the View menu allows you to reduce the display size of a diagram, so
that a larger portion may be viewed within the workspace. Select the zoom level (expressed in
percentage of object sizes compared with those in the 100% level) you wish to use. All
diagram editing functions can be used in the zoom mode, although the on-screen resolution of
text entries in some font styles may deteriorate at the smaller display-size zoom levels. These
and other View menu functions are illustrated in Figure 3-6.

Drawing Diagrams

70

 Figure 3-6 The View Menu

Grid and Ruler
A diagram can be displayed with ruler lines along the top and left sides of the window to aid
you in the regular placement of items on the diagram. A grid can also be placed on the
diagram. The two features can be used simultaneously. Neither prints on a diagram.

Symbols and Lines Without Labels
In order to be referenced in the repository, every methodology symbol or line (except
invocation lines and data and control connections on structure charts) must carry a text label.
However, there are times when a diagram structure is clearer with these labels absent. You
can toggle the display of symbol and line labels on and off from the View menu. If you
choose to print a diagram with labels turned off, the labels do not appear on the printed
diagram.

Note
2 Turning line or symbol labels off is not the same as not labeling them. A line or

symbol that has never been labeled does not exist as far as the repository is
concerned, except in the case of supertype/inheritance relationships.

Drawing Diagrams

71

Entity Attributes Displayed on Data Model Diagrams
When viewing a diagram in a data model, the level of detail can be set to show only the entity
names, the entity name and attributes that are part of the primary key, or all attributes. When
changing the detail level, entity symbols are automatically resized and the relationships are
reconnected properly.

To use this feature:

Open the View Menu: 1 Open the View menu.

Select the Detail Level: 2 Select Entity Display Options, then select the level of

detail you to see on the diagram and other entity options.
• Select Entity Level to show only the entity names.
• Select Primary Key Level to show the entity name as

well as its primary key attributes.
• Select Attribute Level to show all attributes, key and

non-key, of the entity.
• Select IDEF1X Notation to use IDEF1X modeling

notation.
• Select Name Inside Box to display the entity name

inside the entity symbol.
• Select Expand Associators to display the elements

from the parent entity that make up the foreign key
when displaying foreign keys on an entity
relationship diagram.

Physical Schema Displayed on Data Model Diagrams
When viewing a diagram in a data model, you can either show the logical model, or the
physical model that is created when SQL Schema Generation is performed. The attributes
displayed for each table are controlled by the current entity view level. When changing the
detail level, entity symbols are automatically resized and the relationships are reconnected
properly.

To use this feature:

Open the Dialog Box: 1 Open the View menu and select Physical Schema.

Select the Display 2 Select the display options to be used.
Options:

• Check Display Physical Schema if you want physical
names to be displayed instead of logical names.
Physical names are translated logical names that the

Drawing Diagrams

72

target SQL RDBMS can understand. The translation
process may change characters or truncate the names
depending the limits of the current SQL dialect.
When you select Display Physical Schema, the other
options are available.

• Check Display Data Type if you want an attribute’s
data type to be shown. If the data type has not been
determined or is not valid for the current SQL dialect,
it is marked as undefined.

• Check Display Null Option if you want an attribute’s
null specification to be shown. If the attribute is part
of a primary, alternate, or mandatory foreign key, it
cannot be null.

• Check Expand Domains if you want attributes that
reference a domain to display the data type of the
domain. Otherwise, the domain name is displayed
instead of the data type. If the current SQL dialect
does not support domains (or user-defined data
types), domains are always expanded.

• Check Use Alias Name if you want an attribute’s
alias name to be used in place of its actual name. You
may want to do this if you have long logical names
and your target RDBMS supports only short names.
If more than one alias is defined, the first item in the
list is used.

If the SQL dialect is changed, the physical attributes are
reloaded based on the capabilities of the new dialect.

Class Attributes Displayed on Object Model Diagrams
When viewing a diagram in an object model, the level of detail can be set to show only the
class names, the class name and attributes, or methods. When changing the detail level, class
symbols are automatically resized and the relationships are reconnected properly.

To use this feature:

Open the Dialog Box: 1 Open the View menu and select Class.

Select the Notation: 2 Select the notation to be used for the class diagram.

Select the Detail Level: 3 Select the items that you want to see on the diagram.

Drawing Diagrams

73

• If you want attributes displayed, check the type of
attributes to include. Public attributes have global
visibility. Private attributes can only be used by
member functions. Protected attributes are accessible
to member functions of derived classes. In addition to
the attribute name, you can choose to include its type,
initial value, and visibility.

• If you want methods displayed, check the type of
methods to include. Public methods have global
visibility. Private methods can only be used by other
members of the class. Protected methods are
accessible to member functions of derived classes. In
addition to the method name, you can choose to
include its argument list, whether it is a virtual
(abstract) function, and its visibility.

• If you want relationships displayed, check the
relationship options to include.

Events
Select Events to display setting options for events.
• Select Display Guard Condition to display guard conditions on the diagram.
• Select Display Action Expression to display action expressions on the diagram.

Messages
Select Messages to display setting options for messages.
• Select Display Message Arguments to display message arguments on the diagram.
• Select Display Argument Types to display argument types on the diagram.
• Select Display Guard Condition to display guard conditions on the diagram.

Note

2 Please refer to the Strategic Planning chapter for a description of the View
menu when Strategic Planning is the open document.

Window Menu

Diagram Window Arranging
When you open more than one diagram, you can have them arranged either in cascade (each
slightly below and to the right of the previous) or tiled (arranged and sized so that they are all

Drawing Diagrams

74

visible and fill the workspace). (Refer to Figure 3-7.) You select the arrangement you want
from the Window menu. You can also size and arrange them manually.

 Figure 3-7 Window Functions Illustrated

For each diagram window, you can display it maximized or minimized to an icon. The
Window menu lets you arrange your diagrams neatly in your application workspace as well.

Move Between Diagrams
To go from one open diagram to another, you can move the cursor to within another diagram
window and click. You can also select the name of the diagram you want to move to from the
Window menu. This latter method works even if a diagram is minimized to an icon. The
currently active diagram name is marked with a check.

DRAWING DIAGRAMS
The process of drawing a diagram consists of entering symbols, lines, and text and arranging
them on the diagram. These processes are explained in this section.

Drawing Diagrams

75

Diagram Menu
By selecting appropriate functions from the Diagram menu (Figure 3-8), you can draw objects
(such as symbols and lines) into a new diagram, choose editing functions (such as Stylize,
Change Item), analyze your diagrams, etc. Descriptions and procedures for most of the
functions are provided in the following pages, and a summary of descriptions is included at
the end of the chapter.

 Figure 3-8 Diagram Menu and Symbols Submenu

Scrolling a Diagram
There are three ways to scroll a diagram; that is, to move the displayed area of the diagram
within its window. You can use standard Windows scroll bars. You can also hold down the
CTRL key while pressing the right mouse button and bump the edge of the diagram in the
direction that you want to scroll. In addition, you can use the arrow, PAGE UP, and PAGE
DOWN keys or the mouse wheel to scroll a diagram window.

Drawing Modes
When you are entering or changing objects on a diagram, you can be in one of five different
modes. They are editing mode, symbol entry mode, line entry mode, couple entry mode and
text entry mode. Each mode has a different cursor to alert you to which mode you are in.
There are several methods to change drawing mode, which is reflected in a change in the

Drawing Diagrams

76

cursor. Those methods are explained in the sections that follow. The easiest way is to click on
the object you want to add on the control bar.

Selecting Diagram Objects
Diagram editing in Visible Analyst is centered on the concept of the current or selected
object. To make some change to or get information about an object on a diagram, click on it
with the mouse. If the object is a line, click on one of its end points or handles. The object
changes color. There are then a number of operations that you can perform on the object. The
details of these operations are discussed in different areas of this manual. Clicking the left
mouse button elsewhere on the diagram or choosing Clear from the Edit menu deselects the
current object.

When a symbol or line is selected, the text label(s) it has is highlighted too. If you click on a
selected object’s label, just the label is selected. If you double-click on an object, its
repository entry appears for you to inspect or to make changes. If you click on an object with
the right mouse button, or if you click the right mouse button on an object when it is already
selected, the Object menu appears. On this menu are listed all of the operations you can
perform on the object. You can select the task you want to perform from the Object menu.
The selections available on the Object menu vary somewhat because different objects have
different operations that can be performed upon them. An Object menu for a symbol is shown
in Figure 3-9.

 Figure 3-9 Object Menu for a Symbol

There is another way to select individual objects. If you press the TAB key while an object is
selected, each of its labels is selected in turn. If you keep pressing TAB, other objects on the
diagram are selected in their turn.

Drawing Diagrams

77

Selecting Blocks
You can also select a block. To do this, you must draw a rectangle that encloses all of the
objects you want in the block. Point the cursor at one corner of the area you want to enclose
and hold down the left mouse button. A dashed rectangle draws as you move the cursor.
When the bounding rectangle encloses all of the objects you want in the block, release the
button. Everything completely within the block is selected.

There is another, more detailed way to select items into a block. If you press and hold the
SHIFT key while you click on diagram objects, they become parts of the selected block. If
you change your mind, SHIFT-click an item selected into the block to deselect it. If two
symbols are selected into a block, any line connecting them is automatically selected into the
block. (If you don’t want the connecting line in the block, SHIFT-click on either end of it to
deselect it.) Note that you can use the SHIFT-click method to remove objects within a block
created by the method described in the previous paragraph.

Note
2 It is important to be aware of what mode Visible Analyst is in. An object

becomes the selected current object either when it is first added to a diagram or
when you click on it when Visible Analyst is in editing mode (when the editing
arrow cursor is displayed). When the item has been selected in either of these
manners, clicking the right mouse button brings up the Object menu. If you click
on an object when Visible Analyst displays the symbol, line, couple or caption
text cursor, a symbol, line, couple or free-form caption is entered (or attempted)
at that position on the diagram.

Moving Objects on a Diagram
You can move a selected object, including a block, to a new position on the diagram by
pointing to it, holding down the left button and dragging it to where you want it to be. When
you release the mouse button, the object redraws in its new position. If the object is a symbol
and Include Connections was enabled from the Options menu, when you drag the symbol to
its new diagram position, all lines connected to the symbol remain connected and stretch or
“rubber band” to accommodate the move. Note that, in the case of multi-segment lines, only
the last segment of the line rubber bands with the object being moved. If the resulting position
of the line is not pleasing to you, you can adjust it as described in the next section. If you
move a symbol and its attached lines in such a way that the line would have to retrace its steps
(draw over itself) in order to adjust itself to its new position, Visible Analyst redraws the line
more suitably, possibly eliminating one or more segments. (Refer to Figure 3-10.)

Drawing Diagrams

78

 Figure 3-10 Moving a Symbol with Attached Data Flows

Moving a block is similar to moving an individual symbol. If Include Connections is enabled,
lines attached both to objects within the block and to objects outside the block rubber band
and remain connected.

If you move a line to connect it to a different symbol, you should move its endpoint (handle)
to the border of the other symbol. If Auto Connect from the Options menu is selected, you can
drag the endpoint of the line to anywhere within the other symbol and Visible Analyst
attaches the line to the border of that symbol.

Notes
2 Please remember the following:

• Any text associated with symbols or lines moves automatically if the
symbol or line is moved. Also, once a label has been created for these
objects, it may be moved independently of the object without affecting the
label/object relationship.

• Items not completely enclosed by a block are not moved.
• If you press ESC before you release the mouse button while dragging an

object, the move is canceled and the object snaps back to its original
position. Use the Undo operation to cancel a moved line after the mouse
button is released, or select Erase Changes from the File menu.

• Moving a symbol by itself without enabling Include Connections may
detach it from attached lines. Detaching a relationship from an entity deletes
the text on the relationship, since a relationship has no meaning without two
entities; the relationship line on the diagram is not deleted. This means that
the relationship entry in the repository is deleted if there is no descriptive
information and if it doesn’t exist on another view. Setting Include

Drawing Diagrams

79

Connections does not cause this detachment. However, if you move a
relationship so it connects a different pair of entities, the name(s) remains as
long as there is no previously existing relationship with the same name(s)
between the second pair of entities.

• While moving a line, you can add or remove segments, or change its
orientation by using shortcut keys. Refer to Adding or Changing Lines later
in this chapter for details.

Line Handles
Whenever you add a line to a diagram or whenever you select a line, you see small colored
boxes at each end of the line and at the end of every segment of the line. These are handles
(refer to Figure 3-11). You can select a line by clicking on one of its end points or handles,
even if the handle is not visible on the screen. You can point your mouse at any one of these
handles, hold down the left mouse button and drag the handle to a new position on the
diagram. When you release the button, the segment(s) involved redraws at the position you
selected.

 Figure 3-11 Line with its Handles

Drawing Symbols
The following sections describe the symbols used for diagramming and the manner in which
they are placed into position on your diagrams.

The Symbols
The symbols that you use to create all of your diagrams are stored in Visible Analyst. Twelve
sets of symbols are provided: one each for DFDs, FDDs, ERDs, structure charts, class
diagrams, state transition diagrams, ELH diagrams, use case, sequence, collaboration, activity,
and unstructured diagrams. By selecting various symbols, then adding lines and text as
described in the sections that follow, you have the versatility to build many types of diagrams
that reflect your specific project analysis and design needs.

Depending on your configuration, Visible Analyst is shipped with one or more of the
following toolsets:

Drawing Diagrams

80

• The three standard symbols each for the Yourdon/DeMarco data flow diagramming
methodologies, as well as the symbols for functional decomposition diagrams and the
standard Yourdon/Constantine symbols for structure charts.

• The set of symbols for ERDs.
• The set of symbols for CLDs and STDs.
• The set of symbols for ELHs.
• The set of symbols for activity diagrams.
• The set of symbols for collaboration diagrams.
• The set of symbols for sequence diagrams.
• The set of symbols for use case diagrams.

In addition, some commonly used diagramming symbols are also included with the DFD and
unstructured symbol sets, as shown in Figure 3-13. The methodology symbols for each
diagram type are accessed from the Diagram menu or from the control bar. The symbols
available from each of these sources vary as the diagram type of the current diagram changes.

Symbol Restrictions when Applying Rules
You should be aware that rules are applied only to certain symbols for each diagram type, as
described in the following paragraphs.

Functional Decomposition Methodology Symbols
There are three symbols used under the rules for functional decomposition diagrams, as
shown in Figure 3-12.

 Figure 3-12 Functional Decomposition Diagramming Symbols

Drawing Diagrams

81

Functions
A business function is denoted by a rectangle. It is the first symbol for this diagram on the
control bar.

Processes
A process is denoted by a rectangle with rounded corners. The conceptual dividing point
between functions and processes is arbitrary and entirely up to you.

Page Connectors
A functional decomposition is viewed by Visible Analyst as one unified diagram. You can,
however, spread your FDD over multiple pages. The process for linking pages with Page is
very similar to that for DFDs. Unlike DFDs, however, the rules Analyze function recognizes
page connectors and can transparently apply the methodology across them. The page
connector symbol is the third symbol on the control bar and is identical in appearance to the
off-page connector for structure charts.

DFD Symbols

Symbols Recognized by Yourdon Methodology
When Yourdon methodology is enabled for a project, rules are applied only to the symbols
available from the Diagram menu or the diagram tools tool bar, as shown in Figure 3-13.
Figure 3-13 shows the standard Visible Analyst symbols for data flow diagramming.

The Yourdon rules function also assigns a process number to any process symbol when it is
drawn. For more information on the numbering scheme that is applied by the Yourdon
methodology, refer to The Visible Rules.

Symbols Recognized by Gane & Sarson Methodology
When Gane & Sarson methodology is enabled for a project, rules are applied only to the
symbols available from the Diagram menu or from the diagram tools tool bar, as shown in
Figure 3-13.

The Gane & Sarson rules function also assigns a number to a process or data store when
drawn. For more information on the numbering scheme that is applied by Gane & Sarson
methodology, refer to The Visible Rules.

Symbols Recognized by Métrica
When the Métrica methodology is enabled for a project, rules are applied only to the symbols
available from the Diagram menu or from the diagram tools tool bar, as shown in Figure 3-13.

The Métrica rules function also assigns a process number or data store number to any process
or data store symbol when it is drawn. If a data store or external entity is used more than once
on a diagram, or a process is exploded, it is drawn slightly differently.

Drawing Diagrams

82

Symbols Recognized by the SSADM Methodology
When the SSADM methodology is enabled for a project, rules are applied only to the symbols
available from the Diagram menu or from the diagram tools tool bar, as shown in Figure 3-13.

The SSADM rules function also assigns a process number or data store number to any process
or data store symbol when it is drawn. If a data store or external entity is used more than once
on a diagram, or a process is exploded, it is drawn slightly differently.

1
D

Métrica and SSADM

Process Data Store External Entity

1

D

Process Data Store External Entity

0

Process File Source/Sink

Gane & Sarson

Yourdon/DeMarco

 Figure 3-13 Data Flow Diagramming Symbols

Drawing Diagrams

83

Symbol Set for Structure Charts
There is a separate symbol set that contains the standard symbols for the Yourdon/Constantine
method of structure chart diagramming, shown in Figure 3-14. This symbol set is
automatically loaded whenever the diagram type is set for structure charts, or whenever a
structure chart diagram is accessed. All of the symbols shown in Figure 3-14 are recognized
by the Yourdon/Constantine rules as specific method symbols with associated identities and
meanings.

 Figure 3-14 Structure Chart Diagramming Symbols

Drawing Information Clusters
The information cluster symbol in the structure chart symbol set is a compound symbol. Each
can have a variable number of modules within it, as well as a shared data-only module. Place
one on a diagram like any other symbol (see below); the decision as to how many modules it
will contain is made in the labeling process.

ELH Symbols
There is a separate symbol set that contains the standard symbols for entity life history
diagrams. The symbol set is automatically loaded whenever the diagram type is entity life
history, or whenever an ELH is accessed. The symbols listed on the Symbols submenu or on
the diagram tools tool bar are recognized by the SSADM and Métrica rules as specific
methodology symbols with associated identities and meanings.

Drawing Diagrams

84

Figure 3-15 Entity Life History Diagramming Symbols

ERD Symbols
There is a separate symbol set that contains the standard symbols for data modeling (shown in
Figure 3-16). This symbol set is automatically loaded whenever the diagram type is entity
relationship, or whenever an ERD is accessed. The symbols listed on the Symbols submenu or
on the control bar are recognized by the data modeling rules as specific methodology symbols
with associated identities and meanings.

1

ELH Methodology Sym bols

Ent i ty Structure Box Sequence Event

Select ion Event I terat ion Event Operation

Para l le l L i fe

Drawing Diagrams

85

 Figure 3-16 Entity Relationship Diagramming Symbols

Class Diagram Symbol
There is a separate symbol set that contains the standard symbols for object modeling (shown
in Figure 3-17). This symbol set is automatically loaded whenever the diagram type is class or
whenever a class diagram is accessed. The symbols listed on the Symbols submenu or on the
control bar are recognized by the object modeling rules as specific methodology symbols with
associated identities and meanings.

 Figure 3-17 Class Diagram Symbol

Drawing Diagrams

86

State-Transition Diagram Symbol
There is a separate symbol set that contains the standard symbols for creating state transition
diagrams (shown in Figure 3-18). This symbol set is automatically loaded whenever the
diagram type is state-transition or whenever an state-transition diagram is accessed. The
symbols listed on the Symbols submenu or on the control bar are recognized by the object
modeling rules as a specific methodology symbols with associated identities and meanings.

 Figure 3-18 State Transition Diagram Symbols

Symbol Set for Activity Diagrams
There is a separate symbol set that contains the standard symbols for creating activity
diagrams (shown in Figure 3-19). This symbol set is automatically loaded whenever the
diagram type is activity or whenever an activity diagram is accessed. The symbols listed on
the Symbols submenu or on the control bar are recognized by the object modeling rules as
specific methodology symbols with associated identifies and meanings.

Drawing Diagrams

87

 Figure 3-19 Activity Diagram Symbols

Symbol Set for Use-Case Diagrams
There is a separate symbol set that contains the standard symbols for creating use-case
diagrams (shown in Figure 3-20). This symbol set is automatically loaded whenever the
diagram type is use case or whenever a use-case diagram is accessed. The symbols listed on
the Symbols submenu or on the control bar are recognized by the object modeling rules as
specific methodology symbols with associated identities and meanings.

Drawing Diagrams

88

 Figure 3-20 Use-Case Diagram Symbols

Symbol Set for Sequence Diagrams
There is a separate symbol set that contains the standard symbols for creating sequence
diagrams (shown in Figure 3-21). This symbol set is automatically loaded whenever the
diagram type is sequence or whenever a sequence diagram is accessed. The symbols listed on
the Symbols submenu or on the control bar are recognized by the object modeling rules as
specific methodology symbols with associated identifies and meanings.

Drawing Diagrams

89

 Figure 3-21 Sequence Diagram Symbols

Symbol Set for Collaboration Diagrams
There is a separate symbol set that contains the standard symbols for creating collaboration
diagrams (shown in Figure 3-22). This symbol set is automatically loaded whenever the
diagram type is collaboration or whenever a collaboration diagram is accessed. The symbols
listed on the Symbols submenu or on the control bar are recognized by the object modeling
rules as specific methodology symbols with associated identifies and meanings.

Drawing Diagrams

90

 Figure 3-22 Collaboration Diagram Symbols

Symbol Set for Unstructured Diagrams
There are a number of useful symbols that can be used on unstructured diagrams; and since
there are no reserved or methodology symbols, you may eliminate or change any of them.
They are similar to the non-methodology symbols in the DFD symbol set.

Auto Labeling Symbols
Within the Options menu of Visible Analyst, there is a selection for Auto Label Symbols. The
auto label function can be enabled to instruct Visible Analyst to prompt you for a label for
each symbol you draw onto a diagram.

With the Auto Label Symbols function enabled, you still have the option to disregard each
prompt if you just want to draw each symbol and return to it later for labeling. The auto label
function can be enabled or disabled at any time before, during, or after work on a diagram.
(There is also an Auto Label Lines selection that prompts you when drawing lines, described
later in this chapter.)

Adding Symbols to a Diagram
There are three ways to add symbols to a diagram:
• Whenever a diagram is active, the Diagram menu (Figure 3-8) is enabled and you can

select Symbols to add to your diagram. Visible Analyst displays a cascading submenu of
the names of the methodology symbols for the diagram type of the currently active
diagram.

• You can click on any of the buttons in the control bar that represent the available
symbols. The symbol last entered is highlighted and ready to be used again, but you are
free to choose another symbol.

Drawing Diagrams

91

• Whenever a diagram is active and the object browser is displayed, you can click on an
object in the object browser list and drag it onto the diagram.

When you select symbol entry by one of the first two methods, the mouse cursor changes to
the symbol cursor (see Figure 3-23). Move the symbol cursor to where you want the center of
the symbol to appear and click; that symbol is drawn on the diagram. If you enabled Auto
Label Symbols, a Label Object dialog box appears into which you can type the name of the
symbol. If it is a process or a Gane & Sarson data store, its number also appears, and you can
change it if you want. If you click the Search button on this dialog box, the names of all of the
symbols of this type already in the repository are listed. You can find the one you want and
select it to be the name of the symbol you just added.

 Figure 3-23 The Symbol Cursor

Note

2 To return to the standard mouse cursor, you can either click the ë button in the
control bar, click the selected button to deselect it, press the ESC key or toggle
the Symbols selection line on the Diagram menu.

When you select symbol entry by clicking and dragging from the object browser, the cursor
changes to the object symbol and name. Move the object to where you want it on the chart
and release the mouse button.

When you finish adding the symbol to the diagram, it is highlighted in a different color,
indicating that it is the selected item. There are numerous things you can do with selected
items. This subject is explained in the section entitled Selecting Diagram Objects, above.

Drawing Lines
Lines can be added to your diagrams to indicate project and process input/outputs, depict data
flow between processes, to represent couples and connections between modules on structure
charts, relationships between entities, etc. A wide variety of line terminators and line types is
available for your selection. The line entry function is accessed by selecting Lines on the
Diagram menu or you can click on a line button in the control bar.

Drawing Diagrams

92

Lines
You can draw lines thick or thin; solid, dashed, or channeled; straight, elbow or curved; with
or without terminators; and select filled versus unfilled arrow terminators. You can draw your
lines in point-to-point mode, where you use the mouse to position both the start and end
points of the line, having the line drawn between the two points. Or you can draw straight
lines in snap mode, where you point and select a starting point then an end point, having the
straight line snap into position on the horizontal plane. Or you can draw lines containing only
right angles in elbow mode where you point and select a starting point then an end point,
having only horizontal or vertical straight lines. Except for the right angles, elbow lines work
like arcs. Additionally, lines can have multiple segments that allow you to have start and end
points distant from each other. The line terminators, such as the relationship cardinality
terminators available for ERDs, are configurable at any time from the Line Settings selection
from the Options menu

ERD Line Terminators
Figure 3-24 explains the proper use of relationship line terminators to show the cardinality of
relationships between entities.

Class Diagram Line Terminators
Figure 3-25 explains the proper use of relationship line terminators to show the cardinality of
relationships between classes.

IDEF1X Diagram Line Terminators
Figure 3-26 explains the proper use of relationship line terminators to show the cardinality of
relationships between entities.

UML Diagram Line Terminators
Figure 3-27 explains the proper use of relationship line terminators to show the cardinality of
relationships between entities.

Drawing Diagrams

93

Figure 3-24 ERD Relationship Line Terminators

Drawing Diagrams

94

 Figure 3-25 Class Relationship Notation

Drawing Diagrams

95

 Figure 3-26 IDEF1X Relationship Line Terminators

 A solid line indicates an identifying relationship.

 A dashed line indicates a non-identifying relationship.

 A solid ball indicates zero or more.

 A solid ball with a P indicates one or more.
 p

 A solid ball with a Z indicates zero or more.
 z

 A number can be used to indicate a specific multiplicity.
 2

 A diamond indicates an optional relationship;
 otherwise, the relationship is mandatory.

Drawing Diagrams

96

 Figure 3-27 UML Relationship Notation

Auto Labeling Lines
Within the Options menu of Visible Analyst, there is a selection for Auto Label Lines. The
auto label function can be enabled to instruct Visible Analyst to prompt you for a label for
each line you draw onto a diagram.

With the Auto Label Lines function enabled, you still have the option to disregard each
prompt if you just want to draw a line and return to it later for labeling. The auto label
function can be enabled or disabled at any time before, during, or after work on a diagram.
(There is also an Auto Label Symbols selection that prompts you when drawing symbols, as
described elsewhere in this chapter.)

Adding or Changing Lines
There are three ways to add lines to a diagram:

Drawing Diagrams

97

• Whenever a diagram is displayed, the Diagram menu is enabled and you can select Lines
to add a line to the diagram.

• You can click on any of the buttons on the control bar that represent the available line
styles. The line style last entered is highlighted and ready to be entered, but you are free
to choose another style.

• You can have Visible Analyst connect the symbols, using Connect from the Diagram
menu, with the current line style and terminator(s). This same procedure works for
connecting pairs of symbols on other types of diagrams.

When you select line entry by any of these methods, the cursor changes to the line cursor (see
Figure 3-28). Move the line cursor to where you want the beginning of the line to be. Click
and drag the cursor to where you want the end of the line and double-click. The line is drawn
on the diagram. If you are adding a line to connect two symbols, you should place its start
point and endpoint on the border of the respective symbols. If Auto Connect from the Options
menu is selected, you can start and end the line anywhere within the two symbols and Visible
Analyst attaches the line to the borders of those symbols.

 Figure 3-28 The Line Cursor

If you want a multi-segment line, simply click at the end of each segment and double-click at
the end of the line. If the line style you are using is an arc or an elbow line, you might find
that the loop of the arc or the angle of the elbow for a given segment is on the opposite side
from where you want it. This is easy to correct. While you have the left mouse button
depressed and before you click for the end of the segment or double-click for the end of the
line, simply click the right mouse button; and the arc or elbow segment inverts. To invert an
elbow or arc in an existing line, point to the line handle at the end of the segment, click and
drag a little bit. While the left mouse button is still depressed, click the right button and the
segment inverts.

If you enabled Auto Label Lines, a Label Object dialog box appears into which you can type
the name of the symbol. If you click the Search button on this dialog box, the names of all of
the lines for this diagram type already in the repository are listed. You can find the one you
want and select it to be the name of the line you just added. If you click the Change Type
button, you have the capability to change the line type, terminator type and line orientation of
line you just drew. This brings up the same dialog box explained in the Default Line
Selections section below. When you finish adding the line to the diagram, it is highlighted in a
different color, indicating that it is the selected item. There are numerous things you can do
with selected items. This subject is explained in the section entitled Selecting Diagram
Objects, above.

Drawing Diagrams

98

Notes

2 To return to the standard mouse cursor, you can either click on the ë button in
the control bar, click the selected button to deselect it, press the ESC key or
toggle the Lines selection line on the Diagram menu.

2 When you draw a line and double-click to signal that you want the line to end at
that point, you may sometimes move the mouse little. Because of the way
Windows communicates with applications, it is possible that Visible Analyst
will interpret your action as wanting to add another segment to the line you are
drawing before terminating the line. To help prevent this, you can specify a
minimum line length. If you find that this happens to you, increase the minimum
line length setting. Thereafter, any motion of the mouse while double-clicking
that is less than the minimum line length does not cause a new line segment to
be drawn.

To change this setting, you must edit the VAW.INI file in the directory
containing the Visible Analyst executable files, usually \VA, with an ASCII text
editor. (If you have a network version of Visible Analyst, the file name has your
network user number appended to it. For example, if your user number is 11, the
file is named VAW0011.INI. You can find out your user number by looking at
the Help/About dialog box.) There is a line in this file that, by default, reads
“Minimum Line=10”. The units are internal Visible Analyst length units.
Changing this value to a higher number, say 20, should reduce the frequency of
this situation occurring.

Changing the Number or Orientation of Line Segments
You can add, remove, or straighten segments on existing diagram lines. To remove a segment
from an existing line:

Set Selection Mode: 1 Be sure you have established the standard mouse cursor

for selecting diagram objects. You can either click the ë
button in the control bar, click on the selected button to
deselect it, press the ESC key or toggle the checked
selection line on Symbols, Lines or Text on the Diagram
menu.

Select the Line: 2 Select the line from which you want to remove a segment

or to which you want to add one. The line handles of the
line are displayed, one each at the beginning and end of
each segment.

Select the Segment: 3 To delete, point the cursor at the handle at the beginning

of the segment you wish to delete.

Drawing Diagrams

99

 To insert, point the cursor at the handle at the beginning

of the segment before which you wish to insert a new
segment.

To straighten, point the cursor at the handle at the
beginning of the segment that you wish to straighten.

 4 Press the left mouse button and start to drag the handle, as

if you want to move its position. Drag it just enough so
that the line changes to the dashed line used to show a line
being moved. Don’t release the mouse button yet.

Delete, Insert, or 5 To delete, press the DELETE key and that segment
Straighten Segment: vanishes, with a new segment being drawn from the
 cursor position to the end of the following segment

To insert, press the INSERT key and a new segment is
inserted at that point, but you won’t be able to see it
because it has zero length. If you drag the mouse cursor,
the new segment shows itself.

To straighten, press the S key and the line segment is
snapped either horizontal or vertical depending on the
plane the endpoint is closest to.

Position the Segment: 6 Release the mouse button when the new segment is
 positioned as you wish.

Adding a Couple to a Structure Chart Diagram
Adding a couple to a diagram is done a little differently. There are two ways to add couples:
• First, set the default line type to couple. Do this with the Line Settings function from

Options menu. Then select Lines from the Diagram menu. When you move the mouse
cursor over the drawing area of the diagram, it changes into the couple cursor shown in
Figure 3-29.

• You can click on any of the buttons on the control bar that represent the available couple
styles. The couple style last entered is highlighted and ready to be entered, but you are
free to choose another style.

• Then select an invocation line. Now click on the end of the invocation from which you
want the couple passed and the couple is drawn.

Drawing Diagrams

100

 Figure 3-29 The Couple Cursor

If you have Auto Label Lines turned on in the Options menu a Label Object dialog box opens
and allows you to enter the text for the couple label. That text is added in the font you chose
in the Text Settings function from the Options menu. If you click the Search button in the
dialog box, the repository search feature is activated and you can choose from the names of
couples of this type currently in the repository. At that time, you are also able to change the
type of the couple.

After you finish adding a couple, it remains highlighted as the selected object and the couple
handles are displayed.

Note
2 The cursor remains a couple cursor until you leave the couple entry mode by

either clicking on the ë button in the control bar, clicking the selected button to
deselect it, pressing the ESC key, or toggling the Diagram menu selection off. If
you don’t turn off the couple cursor in this manner, Visible Analyst starts a
couple at every invocation line you select.

Default Line Selections
If you use the same type of line and terminator often in your diagrams, you can save time by
using those selections as defaults every time you draw a line. You can define defaults for line
type (straight line, dashed line, arc, etc.), terminator type (solid arrowhead, open arrowhead,
no terminator, etc.) and line orientation (point-to-point, elbow) for each diagram type by
selecting Line Settings from the Options menu. The selections available for line and
terminator types vary with the diagram type. The dialog box displays a copy of a line drawn
with all of the selections you choose, and the defaults are saved until you change them, as
shown in Figure 3-30. Note that not all combinations of these line style settings are valid. An
error message displays when you pick an invalid combination. You do not have to use the
default selections for all lines on a diagram. You can draw it in the default style and change it,
as described above.

Drawing Diagrams

101

 Figure 3-30 Line Settings Dialog Box

This dialog box is essentially the same as the one displayed when you want to change the
style of an existing line. Here there is an additional selection box, the Unstructured Diagram
Default Values box. You can choose the line and terminator values that are accessible when
the diagram type of the active diagram is Unstructured. They can be made the same as the
lines available for any other diagram type. However, the unstructured values set for a
particular diagram are those in effect at the time the diagram was created. Note that when you
display this dialog box from an unstructured diagram, the Diagram Type box does not read
Unstructured, but rather the default type you set in the Unstructured Diagram Default Values
box.

Bi-directional Couples and Data Flows
Bi-directional couples and data flows can be added to your structure charts as any other
couple is. Set the default line type to a data flow or couple with two terminators, or change the
line to one of these types after it is drawn.

Drawing Relationships
Relationships are drawn as any other line, but labeling them is a little different. This is
explained in the section Labeling a Relationship, below.

FDD Connection Lines
The lines between functions, between processes, and from functions to processes are called
“connectors.” They allow you to specify the hierarchical relationships between the functional

Drawing Diagrams

102

elements of your model. The higher-order symbol can be referred to as a “parent” and each of
the lower-order symbols connected can be called a “child” of the parent.

The connectors between functions are purely diagrammatic in that they don’t appear in the
project repository. You can change them at will with no ramifications on other parts of your
model. The connectors between processes represent the same type of parent/child
relationships as exist on data flow diagrams. Processes with the same parent would appear on
the same DFD. Connectors between a function and one or more processes are significant at
the time you Spawn that function; the child processes of a function are placed on the top
diagram of the process model branch spawned by the FDD, and so forth.

You can change any of these connectors at any time. However, if you change the hierarchical
relationships between functions and processes, and DFDs including these processes exist, the
two diagram types are then out of sync. You should correct this with the Spawn Verify
function.

Drawing Connectors
The lines available for FDDs are the same as for DFDs. You can use any line style and any
terminator you want to make the connections necessary to show the function/process
hierarchy in your model. However, since “elbow lines” are commonly used in this type of
methodology, there is a special line drawing technique for making branched elbow line
connectors on FDDs. This procedure is as follows:

Block Method
To connect a function or process with subsidiary functions or processes, place the parent and
child symbols in a block. (Selecting symbols with the SHIFT-click method is probably the
most efficient way.) Then select Connect from the Diagram. Branched, elbow connectors are
drawn from the parent to the child symbols.

Individual Method
• For a function being broken down into several lower-level functions or processes, draw a

two-segment elbow line in the usual manner.
• For the second (and subsequent) connector, indicate the start point by pointing at or very

close to the beginning of the previous connector.
• Indicate the start of the second segment by pointing to a point either along or on an

extension of the second section of the previous line.
• Point to the edge of the second symbol to indicate the endpoint of the connector.

Visible Analyst superimposes the lines for as much of the length as possible, making nice,
neat, branched, hierarchical connectors. The same technique can be extended for connectors
with a greater number of segments. This drawing technique works for elbow lines on
diagrams of all types, not just on FDDs.

Drawing Diagrams

103

Unlike data flows, FDD connector lines are not designed to be labeled. If it makes your
diagram clearer to you, you can label them using the Text function from the Diagram menu.
The labels are for your own information only and are ignored by the Visible rules and
repository.

Entering Text
Visible Analyst allows (and encourages) you to label the objects drawn on your diagrams. An
object without a label does not exist, as far as the repository for the project is concerned. For
example, you can label symbols and data flows, but not invocation lines. In addition, you can
enter notes or captions in paragraph form. Finally, you can edit existing text. To allow easier
use of Visible Analyst with non-English languages, the entire ANSI character set can be used
for text, except for characters with a value of 221-222, which are used for special purposes by
Visible Analyst.

Entering Text on a Diagram
You can select Text from the Diagram menu to access the text entry function. Adding or
changing labels on screen objects is done somewhat differently from caption text and is
discussed later.

There are two ways to add free form caption text to a diagram:
• Whenever a diagram is displayed, the Diagram menu is enabled and you can select Text

to add text to the diagram.
• You can click on the large T (text) button on the control bar.

When you select text entry by either of these methods, the cursor changes to the text cursor
(see Figure 3-31). Move the text cursor to where you want the upper left of the caption to
appear and click; a dialog box displays into which you can type your text. When you click
OK, the text is drawn on the diagram. When you finish adding caption text to the diagram, it
is highlighted in a different color, indicating that it is the selected item. There are numerous
things you can do with selected items. This subject is explained in the section entitled
Selecting Diagram Objects, above.

 Figure 3-31 The Text Cursor

Drawing Diagrams

104

Note
2 To return to the standard mouse cursor, you can either click on the ë button in

the control bar, click on the selected button to deselect it, press the ESC key or
toggle the Text selection line on the Diagram menu.

Labeling Diagram Objects
The procedure for labeling an object (symbol or line) on a diagram is simple:
• Select the object with the mouse. If you just placed the object on the diagram, it is

already selected as the current object.
• Select Change Item from the Diagram menu to get the dialog box used for entering

labels.
• Fill in the label field(s) in the dialog box.
• Click OK when you are done, and the object is labeled and entered into the repository.

When labeling an object on a sequence or collaboration diagram, in addition to the object
name, a class must be specified. The object name is optional; however, the class is
mandatory. Choose the class from the drop-down list; or you can enter a new class name if
you have configured the tool to operate in this manner.

There are variations on this procedure. You can click the right mouse button on the object,
thus selecting it and displaying the Object menu. Then select Change Item and continue as
above. You can click the right mouse button on an object already highlighted as the current
object; this also displays the Object menu. The procedure varies slightly for some specialized
objects, as described immediately below. Note that for processes and Gane & Sarson data
stores, process and data store numbers become part of the labeling process. These are
assigned by Visible Analyst, but you can change process numbers when labeling the symbol
or later. As described under symbol and line entry, you can click the Search button in the
dialog box and select the names of existing objects from the repository.

Auto Label
The Options menu includes selections for Auto Label Symbols and Auto Label Lines. These
automatic labeling functions can be enabled to instruct Visible Analyst to prompt you for a
label as each object is drawn on a diagram. These functions are described in their own
sections earlier in this manual.

Labeling a Relationship
Relationships must be independently labeled in each direction, unless you have specified that
only one label is used for a relationship when you created the project. If Auto Label Lines is
enabled, after you draw the line you see a dialog box in which you can enter the names of the
relationships and their cardinality, the relationship type, and either denormalization
information for ERDs or role/qualifier names for class diagrams. If Auto Label Lines was not
enabled when you added the relationship to the diagram, or you chose not to label it at that

Drawing Diagrams

105

time, you can label it as described above by selecting Change Item from either the Diagram or
Object menu and completing the dialog box. With this dialog box you can also change the
cardinality of an existing relationship. As with other symbols, you can click the Search button
in the dialog box and pick the names of existing relationships from the repository. This can be
done for each relationship to be labeled by putting the cursor in each relationship name box in
turn and clicking the Search button.

 Figure 3-32 Label ERD Relationship Dialog Box

The information that is maintained for a relationship is:
• From. The name of the parent entity or class.
• Cardinality. How many instances of one entity or class relates to another. The Detail

field can be used to store a specific quantity, for example 1, 3 or 5+.
• To. The name of the child entity or class.
• Type. The type of relationship. An identifying relationship indicates the child entity

cannot exist without the parent; the child is drawn as an attributive or associative entity
depending on the number of identifying relationships attached. A supertype/subtype

Drawing Diagrams

106

relationship indicates the creation of a specialized entity (subtype) that is based on a
generalized entity (supertype) that shares common attributes. Only the attributes unique
to the specialized entity need to be listed in the subtype object. An aggregation
relationship indicates the parent class contains the child. An inheritance relationship
indicates the definition of the To class is based on the From class. The base class contains
the basic definition, while the derived class implements only those features that need to
be different. A normal relationship indicates there are no special characteristics between
the objects involved.

• Incomplete. If the relationship type is set to supertype/subtype, and all subtypes within a
group appear on the current diagram, you can force the IDEF1X category symbol to be
drawn as incomplete by clicking on the Incomplete option.

• Denormalization. The denormalization option to be used during SQL generation. None
indicates the tables should not be altered during SQL generation. Collapse Child
indicates the child columns should be added to the parent table. (If a supertype/subtype
relationship is used, a discriminator should be specified.) Duplicate Parent indicates the
columns in the parent table should be added to the child table, and the parent table should
not be generated, while Duplicate Parent and Retain indicates the parent should be
generated.

• Discriminator. The name of the discriminator used for supertype/subtype relationships.
A discriminator is used to distinguish between different subtypes when the
denormalization option for a relationship is set to collapse child. For example, if you had
a supertype named Employee, and subtypes named Salaried Employee and Hourly
Employee, and Collapse Child was the denormalization option, the discriminator
Employee Type would be used to differentiate between the two types of employees

• Role. The role names used for the parent and child classes. For normal relationships, a
role should exist as an attribute of the class at the other end of the association with the
Reference type set to Address. For aggregation relationships, it should be set to Value.
The Visibility in both cases should be Protected, and the type set to the opposite class.

• Qualifier. The qualifier names used for the parent and child classes. If a qualifier is used,
an attribute of type Void is created in the class at the other end of the association with the
Reference type set to Address and the Visibility set to Protected. You can change the type
of the qualifier by modifying the attributes field in the repository.

• Ordered. Ordering indicates the objects on the many side of a relationship have an
explicit order. The term set is commonly used to describe an unordered association, while
a list indicates an ordered association.

• Stereotype. For relationships between use case symbols, this field determines the type of
relationship. <<extend>> indicates the target use case adds functionality to the source
use case. <<include>> indicates the target includes the functionality of the source, while
<<generalize>> indicates a generalization relationship. The <<generalize>> stereotype is
not displayed on the diagram because the notation (open arrowhead as opposed to stick
arrowhead) indicates the type of relationship.

Drawing Diagrams

107

 Figure 3-33 Label Class Relationship Dialog Box

Note

2 Each relationship between two entities or classes is a unique object in the
repository. The fact that two relationships between two different pairs of objects
may have the same name does not change the fact that the individual
relationships are distinct. When using the Search function to name relationships,
you are only selecting a name, not a relationship repository object. If, when you
are finished, a pair of objects on this view is connected by relationships with the
same names as relationships joining the same objects on another view in the data
or object model, then both sets of relationships are considered two different
instances (locations) of the same repository object.

Labeling an Information Cluster
As a compound symbol, an information cluster is labeled somewhat differently from other
symbols. After you draw it onto a diagram, you must decide how many modules are to be

Drawing Diagrams

108

contained in the cluster. If Auto Label Symbols is enabled, after you draw the symbol you see
a dialog box in which you can enter the name of the information cluster, the name of the data-
only module and the names of the contained modules. After you enter this text, the
information cluster is redrawn with the number of modules for which you provided labels. If
Auto Label Symbols was not enabled when you added the information cluster to the diagram,
or you chose not to label it at that time, you can label it as described above by selecting
Change Item from either the Diagram or Object menu and completing the dialog box. As with
other symbols, you can click the Search button in the dialog box and select names of existing
modules from the repository. This can be done for each module or data-only module, or even
the information cluster itself, to be labeled by putting the cursor in each relationship name box
in turn and clicking the Search button.

With this dialog box you can also change the number of modules in the information cluster by
changing the number of module labels, or reorder the modules by reordering the labels by
cutting and pasting using the Windows clipboard.

Labeling a Message
Messages must be labeled in order for an entry to be created in the repository. If Auto Label
Lines is enabled, after you draw the message line, you will see a dialog box in which you can
enter the name of the message, the message type, and other useful information.

If Auto Label Lines was not enabled when you added the message to the diagram, or you
chose not to label it at that time, you can label it by selecting Change Item from either the
Diagram or Object menu and completing the dialog box.

The following information is maintained for a message:

• To. This is the name of the target object.
• Name (Method). Name is the name of the message along with its arguments. The name

is based on the name of a method in the target object’s class, or in a base class. Only
methods from the derivation tree of the target object’s class can be used. All available
methods are displayed in the drop-down list. If you want to create a new method, click
the New Method button. If the method has arguments, you can specify values for the
arguments by clicking the Values button. By default, the name and type for the method
are displayed. If you want to change the argument list of the method, click the Change
Arguments button.

2 Note The degree to which you can change method or message
attributes depends on your rights to the target object’s class and the
interaction diagram settings.

• Type. This is the type of message, either Asynchronous Stimulus, Flat Flow of Control,

or Procedure Call.

Drawing Diagrams

109

• Occurs Multiple Times. This indicates that the message will be called more than once.
If this option is selected, an asterisk will appear next to the message name on the
diagram.

• Guard Condition. Specify the guard condition that controls the firing of the message.
This is a free-form text field.

• Sequence Number. This indicates the order of messages. This can either be a single
numeric value, such as 1, 2, or 3, or a decimal such as 1.2 or 1.1.4. This option is only
available on collaboration diagrams, since sequence by its very nature indicates message
ordering.

• From. This is the name of the source object.

 Figure 3-34 Label Message Dialog Box

Labeling an Event
Events must be labeled in order for an entry to be created in the repository. If Auto Label
Lines is enabled, after you draw the event line, you will see a dialog box in which you can
enter the name of the event and other useful information.

Drawing Diagrams

110

If Auto Label Lines was not enabled when you added the event to the diagram, or you chose
not to label it at that time, you can label it as described above by selecting Change Item from
either the Diagram or Object menu and completing the dialog box.

The following information is maintained for an event:
• Event Name. The event name is the name of the event.
• Guard Condition. Specify the guard condition that controls the firing of the event. This

is a free-form text field.
• Action Expression. Specify the action expression that executes if the event is fired.

This is a free-form text field.
• Multiple Trigger. Multiple trigger indicates that the event will be fired more than once.

If this option is selected, an asterisk will appear next to the event name on the diagram.

Editing Existing Text and Labels
The procedure for editing existing text is identical to that for entering it. The only difference
is that you must decide whether the change is to be Individual, Local, or Global. If you choose
Individual, the edit is applied to only the selected text. If the text is a label for a symbol that
exists in more than one location and you change this particular instance of it, a new repository
entry is created and it becomes a new repository item. If the new name is that of an existing
object of that kind, it becomes a new location for that object. If you choose Local, the edit is
applied to all occurrences of the selected text or label on the current diagram. If you choose
Global the edit is applied to all occurrences of the selected text within the entire project.

Text Default Settings
When entering text, you can use any fonts that you have available under Windows. Selecting
Text Settings from the Options menu allows you to make settings for different kinds of text
used in Visible Analyst: symbol, process numbers, report headings, etc. For each of these text
types, you can set the typeface and point size, as well as other characteristics such as bold,
italic, underline, centered, etc. See Figure 3-35.

Drawing Diagrams

111

 Figure 3-35 Text Settings Dialog Box

EDITING A DIAGRAM — OTHER DIAGRAMMING
FUNCTIONS
Editing functions deal more with the appearance of diagrams than their underlying meaning.
Other Visible Analyst functions that deal more with the semantics of diagrams or with tying
diagrams to a project repository are described in the chapters on The Visible Rules and The
Visible Repository, respectively. Editing functions can be performed while creating a diagram
as described in the previous sections of this chapter. Editing can also be performed after the
diagram is saved by initiating editing functions from File, Edit, Options or Diagram menus
and by making use of other Visible Analyst functions. The latter part of this chapter is
devoted to the description of some of the major editing functions. This section explains some
of the smaller functions not described elsewhere. Note that some of these functions appear not
only on the menus mentioned, but also in the Object menu for a selected object. The functions
explained here are:

Drawing Diagrams

112

Options menu Diagram menu File menu Edit menu
Control Bar Change Item Project History Copy
Object Browser Stylize Erase Changes Paste
 Snap Symbols Clear
 Delete

Control Bar
Control Bar, on the Options menu, displays a row of buttons above the diagram workspace
that gives you quick access to some Visible Analyst functions. For example, you can execute
the following menu functions with control bar buttons:
• Select project to open.
• Create a new diagram.
• Open an existing diagram.
• Save the current diagram.
• Print diagram(s).
• Find an object on the current diagram.
• Generate database schema
• Import RDBMS database definitions.

Other buttons on the control bar aid you in drawing diagrams. For example, to add a symbol
to a diagram, you would have to select Symbols from the Diagram menu and then pick the
symbol you want to add from the submenu that displays. With the control bar, shown in
Figure 3-36, you simply click the button representing the symbol you want to add, if it is not
already highlighted. Adding lines and couples works in the same way.

 Figure 3-36 Control Bar Buttons for Yourdon DFDs

The Control Bar menu option allows you to customize the control bar. When you select
Control Bar, the Control Bar dialog box is displayed, allowing you to select the control bar
options you want displayed. The control bar can contain up to four tool bars:
• The standard tool bar contains basic buttons (Select Project, New Diagram, Open

Diagram, etc.).
• The diagram tools tool bar contains the symbol, line and text buttons appropriate for the

current diagram.
• The view tool bar contains controls to change the zoom level and entity/class view level.
• The font tool bar contains controls to allow changing the current font characteristics.

Drawing Diagrams

113

Object Browser
With Object Browser, on the Options menu, you can choose to have the object browser,
shown in Figure 3-37, display on your screen.

The object browser displays a list of all the objects in the repository. If there are no diagrams
open, or the current window is the diagram list, the object browser displays all the objects in
the repository. If a diagram is open, only the objects valid for that diagram type are shown. If
an object appears on the diagram, it is shown in bold.

 Figure 3-37 Object Browser Displayed on the Workspace

In the object browser you can:
• Double-click on a folder to expand or collapse it.
• Double-click on an object to display the Define dialog box.
• Right-click on an object to display a context-sensitive menu of options.
• Click and drag an object onto the diagram.

Right-click within the Object Browser window (but not on an entry) to display a context-
sensitive menu of options for the browser: Hide turns off the browser window, Refresh

Drawing Diagrams

114

reloads the repository objects, and Properties displays a dialog box that allows you to
change how the object browser appears. Properties include:

• Group Objects by Type. For each object type in the repository, a folder is displayed with
the object name. To see the objects, open the folder by clicking the + button or double-
clicking on the item. If this option is not checked, all entries in the repository are listed
alphabetically without folders.

• Differentiate Entity Types. Entities/Independent Entities, Associative Entities, and
Attributive/Dependent Entities have their own folders. If not checked, all entity types are
listed in one folder.

• Auto-Find Object When Selected. If this option is checked, the object is scrolled into
view on the current diagram.

• Attributes. The attributes (composition) for entities, classes, data flows, data stores, and
any user-defined object types created with Composite Type option are displayed.

• Primary Key. The primary key field(s) for an entity is displayed. This option is checked
by default when attributes are displayed.

• Foreign Keys. The foreign key field(s) for an entity is displayed. This option is checked
by default when attributes are displayed.

• Methods. The methods for a class are displayed.
• Base Classes/Entities. The classes or entities that are related to the current object via a

dependent relationship are displayed.
• Physical Characteristics for Elemental Types. The type, length, and null characteristics

for an elemental object (data elements or classes with an elemental subtype) are
displayed.

To resize the object browser, click on the right browser margin and drag the margin to the
size you want.

The Edit Menu Functions
The Undo, Cut, Copy, Paste, Clear and Delete functions from Edit menu are the standard
Windows editing functions and work as usual in the Visible Analyst diagram editing context.

Undo
Undo deletes a partially completed line from a diagram. Once you double-click to complete
the line, Undo no longer works. You must then use Delete.

Cut, Copy and Paste
These three functions all interact with the Windows Clipboard. The formats used to move data
to and from the Clipboard are text (used when only text is copied to the Clipboard), Windows
bitmap, Windows meta file, and a proprietary Visible Analyst format. Once data is on the
Clipboard, it can be used by any software application that recognizes that particular format.

Drawing Diagrams

115

Cut, Copy
Cut and Copy are identical in function except that when Cut is executed, whatever is placed
on the Clipboard is also removed from the diagram. Any object highlighted as the current
object or any block selected on a diagram can be cut/copied to the Clipboard. If a symbol is
selected and Include Connections is enabled, both the symbol and any connected lines
(including labels for all of these) go to the Clipboard. Selecting a line with Include
Connections enabled does not put attached symbols on the Clipboard. The formats in which
items are moved to the Clipboard are:
• Anything sent to the Clipboard (symbols, lines, either of those with attached labels,

caption text in a block with other diagram objects), resides there as a Windows bitmap, a
Windows meta file, and in the Visible Analyst proprietary format.

As is usual with Windows applications, text from edit boxes can be cut and copied to the
Clipboard by highlighting it with the cursor and pressing the shortcut key for Cut or Copy.

Paste
Paste moves data from the Clipboard into Visible Analyst. The only items that can currently
be pasted onto a diagram are Clipboard data in either text format or Visible Analyst
proprietary format. When you select Paste from the Edit menu or press the shortcut keys, the
Clipboard data is displayed on your diagram as a selected block at the cursor position. You
can then move the block anywhere on the diagram and fix its new position by clicking the left
mouse button anywhere on the diagram outside the block.

 Figure 3-38 Windows Clipboard with Visible Analyst Data

Drawing Diagrams

116

When you paste Clipboard information other than simple text onto a diagram, Visible Analyst
recognizes what it is and adds it to the diagram correctly: symbols are added as symbols, lines
as lines, etc. If you try to paste onto a diagram an object (such as a process) that must be
unique in a project, Visible Analyst does not paste it with its label if it is found to violate the
uniqueness rule. It is pasted without its label.

As is usual with Windows applications, text from the Clipboard can be pasted into edit boxes
by pressing the shortcut key for Paste.

Clear
Clear deselects the current object or block on the current diagram. It performs the same
function as clicking on a blank area of the diagram with the mouse. As is usual with Windows
applications, you can also use the shortcut key that is shown on that menu item.

Delete
Delete is identical to Cut, except that nothing is moved to the Clipboard. Since it is not
reversible as Cut is, the Delete function asks you for confirmation before deleting from a
diagram.

Note
2 If Include Connections is enabled, deleting or cutting a symbol also removes its

attached lines from the diagram. For example, if the symbol is an entity, Visible
Analyst deletes any attached relationship. This means that the relationship entry
in the repository is deleted if there is no descriptive information and if it doesn’t
exist on another view. Deleting a line with Include Connections enabled does
not delete attached symbols.

The Change Item Function
As is mentioned elsewhere, Change Item on the Diagram menu allows you to change existing
caption text, symbol and line labels, relationship cardinality, information cluster module
number and order, and, for lines, the type of the line itself, as well as its terminators and
orientation (point-to-point, snap, elbow).

You can also click the Search button to search the repository for the item you wish to enter
into the label field. Items of the same repository object type are displayed alphabetically.

Generally, when you label an object on a diagram, Visible Analyst decides, based on diagram
space available, whether the label fits all on one line or it breaks over multiple lines.
However, you can force a label to spread over more than one line. Wherever you want a line
break in an object label, either press CTRL+ENTER or enter a ØØ character by typing

Drawing Diagrams

117

ALT+0187 (hold down the ALT key and type 0187 on the numeric keypad). When the label
is drawn on the diagram, the label breaks where you specified.

The Change Type Button
Also in this dialog box is the Change Type button. With it you can change a selected symbol
already placed on a diagram to another symbol in the symbol set in use for the diagram type
currently selected. The symbols to which you can change the selected one are listed in the
Change Type dialog box. Line connections, symbol label and symbol stylizing remain as on
the original symbol. (If the new symbol is very differently shaped from the old, lines may
appear disconnected from the new symbol and certain stylizations may change.) You can also
change a selected line into one of another style or change its terminators or orientation. There
are some restrictions on what symbols and lines can be changed. If a change is not possible,
the individual selections or perhaps the button itself are not available.

Note
2 Change Type functions for most methodology symbols, but not for those on data

flow diagrams, because DFD symbols used don’t have reasonable alternative
symbols to which to change them. Change Type also works for non-
methodology symbols on structure chart, boilerplate and unstructured diagrams.

The Stylize Function
The Diagram menu Stylize function allows you to enhance the appearance of symbols, or
change the size of any symbol in a diagram. After selecting a symbol and choosing Stylize
from the Diagram or Object menu, a dialog box displays containing a symbol of the type
selected. You can choose from Horizontal and Vertical, Size, Boldness, Relief Amount, and
Overlay. Size makes the symbol smaller or larger in the horizontal or vertical plane, or both.
If you select Bold, you can darken the symbol. Relief adds a shadow effect to the symbol.
Overlay creates a stacked symbol. The use of the Stylize function changes the appearance of
symbols and can be useful for special effects and presentation graphic purposes; it does not
affect the identity or recognition of methodology symbols.

For Size, Boldness and Relief Amount, use the scroll bars to select the degree of change you
want to make in the symbol. At any time, you can click the Apply button to see the effect of
the changes you have made. For Overlays, you must set the Count (the number of overlays)
and use the scroll bars of the box to specify the relative position of the overlay to the original
symbol. This relative offset is used to position each successive overlay. Again, click Apply to
see the total effect of all of the stylizing you have done.

At any time you can click Reset to undo the stylizing you have done to the symbol. Once you
click OK, the stylizing is applied to the symbol on the drawing. If the symbol originally
selected was already stylized, Stylize modifies it or, by clicking Reset, returns it to its original
state.

Drawing Diagrams

118

If you want to make a symbol size change permanent, click the Set Default Size button.
Whenever you add a new symbol of this type to a diagram, the size is set to the new size.

Note
2 If you change the size of the symbol and/or add enough overlays, the symbol

becomes too big to fit in the stylize box. In such cases, the symbol as displayed
is scaled to fit the box. However, when you click OK, the stylizing is applied to
the selected symbol on the diagram full scale; the scaling done in the dialog box
has no affect.

Changing the Size of a Symbol
Whenever you add a symbol to a diagram or whenever you select a symbol, you see small
colored boxes, or handles, in the four corners of the symbol. You can use the handles to
change the size of the symbol by pointing the cursor at any one of these handles, holding
down the left mouse button and dragging the handle to a new position. When you release the
button, the symbol is redrawn.

Notes
2 Please remember the following:

• Entities and classes do not have sizing handles if attributes are displayed.
To change the symbol size, you must turn off attribute display mode.

• If you press the ESC key before you release the mouse button while
dragging a handle, the sizing operation is canceled and the object returns to
its original size.

Snap Symbols
Snap Symbols, on the Options menu eases the alignment of symbols along a grid. If you
select into a block the symbols you want to line up in one horizontal or vertical row and select
Snap Symbols, the symbols in the block snap into exact horizontal and/or vertical alignment,
whichever applies

The Project History Function
Project History, from the File menu, allows you to display a summary description of the
project as a whole. In addition to all of the settings you made when you created it, you can
view the diagram trees for each diagram type and see when each diagram was last edited. If
you have the LAN version of Visible Analyst, you can see who created the project, as listed in
the Project Manager field, change a project owner, and determine which diagrams have been
edited and by whom.

Drawing Diagrams

119

 Figure 3-39 Project History Box

The Erase Changes Function
Erase Changes, from the File menu, instructs Visible Analyst to ignore all editing changes
that have been made to the diagram since the last time it was saved. The diagram redraws as it
was last saved and any changes you made are permanently lost.

USING CONSTRUCTS
Visible Analyst provides the capability to store entire diagrams or sections of diagrams as
constructs. They may be thought of as “library” files for saving whole or partial diagrams that
you may wish to reuse throughout a project or in different projects. Constructs are stored as
system files and may be recalled for use in new diagrams as well as in other portions of an
existing diagram. Constructs may be composed of anything that appears on a diagram
(symbols, lines, text) and provide reusable pieces or shells of diagrams that can be used at
will. There is no limit to the number of constructs that may be stored in the construct library,
and you may load a construct into any diagram.

Drawing Diagrams

120

Working with constructs is very similar to using Copy and Paste, from the Edit menu, on
selected blocks on a diagram. The difference is that you can save them permanently, whereas
Copy and Paste deal only with the Windows Clipboard.

Creating a Construct
To create a construct:

Open a Diagram: 1 Access the diagram from which you wish to create the
 construct.

Enclose the Desired 2 Select a block enclosing the items you want to include in
Objects in a Block: the construct.

 3 Select Construct at Diagram menu. The Create a
 Construct dialog box displays.

Name and Describe 4 Enter an eight-character file name for the construct and
the Construct: and a description of it to help you remember what the
 construct is.

Save the Construct: 5 Click OK to save the construct. Your construct is

saved in a file and can be recalled by selecting Construct,
as described below.

Loading a Construct
To load a construct onto a diagram:

Open a Diagram: 1 Access the diagram to which you wish to add the

construct. Note that if you have only one diagram open
and it is minimized to an icon, you can load a construct to
it, but cannot complete the process until the diagram has
been at least enlarged to a window.

2 Select Construct at the Diagram menu. The Load a

Construct dialog box displays. The names of the
constructs currently stored in your construct library are
displayed, along with a description for each.

Select a Construct: 3 Select one of the constructs from the display and click the

Load button. It appears on your diagram as a block
enclosed in a rectangle, with the items within it shown as
selected.

Drawing Diagrams

121

Load and Position the 4 Position the construct on the diagram as you would a
Construct: a block, by clicking the left mouse button and dragging

the block to where you want it. Clicking outside of the
block finalizes the position of the construct on your dia-
gram.

Note

2 If an object label in the construct conflicts with an object label already in the
project, then that label is not copied to the diagram as part of the construct. Also,
if a construct is created from one diagram type and loaded into a different
diagram type, the construct diagram appears but the objects are not recognized
as methodology objects and are transparent to the Analyze function. Further,
nothing within a construct is linked to the repository until it has been added to a
diagram and saved. To move an entire diagram between projects along with all
associated repository entries, see the section describing the Copy Diagram
function.

Deleting a Construct
To delete a construct:

Open a Diagram: 1 Access a diagram. The Diagram menu is not activated
 until a diagram is open.

2 Select Construct at the Diagram menu. The Load a
Construct dialog box displays. The names of the
constructs currently stored in your construct library are
displayed, along with a description for each.

Select a Construct: 3 Select one of the constructs from the list.

Delete the Construct: 4 Click the Delete button. You are asked for a

confirmation before the construct is deleted from your
library.

NESTED DECOMPOSITION
The Nest function, on the File menu, allows you to “explode,” or decompose a symbol,
usually a process, and create a lower level diagram that represents the detailed functional
aspects of the symbol being exploded. The newly created lower level diagram becomes
“nested” to the higher level symbol and the diagram containing it; that is, the lower-level
diagram becomes a child of the parent diagram in the project tree. (Note that only one child

Drawing Diagrams

122

diagram can be nested from any process.) Nest also allows you to create a process
decomposition. Nest functions only for data flow diagrams and only on processes; it does not
apply to structure chart, entity relationship or unstructured diagrams. Nest can be used to
decompose any symbol. For functional decomposition diagrams, it is replaced on the File
menu with Spawn. The Spawn function is described later in this chapter.

The Nest function can also be used to connect a class to a state transition diagram. The
“exploded” diagram shows the dynamic behavior of the class.

Nesting Considerations
New data flow diagrams below the top level are normally created using the Nest function. The
following considerations also apply to nested diagrams:
• Only process symbols may be exploded into a lower-level child diagram when using

rules. (Refer to the section on Drawing Symbols for additional information.)
• Process numbers are automatically added to processes when using rules. Refer to The

Visible Rules for additional information on the process numbering scheme.
• All data flows attached to the process being exploded are duplicated and displayed on the

lower level nested diagram when using rules. That is, all net input and net output data
flows are automatically “dragged down” to the lower level for level-to-level balancing
purposes.

The Nest Procedure
The Nest function has four subsidiary functions in its submenu: Explode, Parent, Detach and
Decompose.

Each of these is explained below.

Explode
What Explode does depends upon whether the currently selected symbol has an existing nest
relationship to a child diagram. If it does not, you can create a nested decomposition to a child
diagram. If the current symbol does have an existing nest relationship to a child diagram, you
immediately open that diagram, or activate it if it is already open.

The procedure for exploding a symbol with no existing child and creating a lower-level nested
child diagram is as follows:

Select a Symbol: 1 Click on a process or class symbol to select it. You can

also click with the right button to activate the Object
menu.

Drawing Diagrams

123

Select Nest/Explode: 2 Select Nest at the File menu, then Explode from the
submenu, or pick Explode from the Object menu. The
Nest dialog box appears.

Select New or Existing 3 You can click either of the buttons in the box:
Diagram:

• Create New. A new diagram is created and becomes
the active diagram. When exploding a process and
rules are enabled, all net input and output data flows
are dragged down to the new diagram.

• Select Existing. This allows you to nest to an already
existing diagram. For DFDs, the dialog box expands,
showing all diagrams in the branch of the project tree
file directly below the current diagram and not
already nested. You must select one of these existing
diagrams to be the nested child. The selected child
diagram is activated, all net input and output data
flows are dragged down to the diagram and the nest
relationship created. When exploding a class, a list
of all state transition diagrams is displayed.

You must Save the child diagram to permanently establish
the nest relationship.

Parent
If the currently selected diagram has an existing nest relationship to a parent process, selecting
Parent opens the parent diagram, or activates it if it is already open.

Detach
If the active diagram has an existing nest relationship to a parent process, selecting Detach
breaks or un-nests the relationship. The two diagrams retain their relative positions in the
project tree, but the parent child relationship no longer exist. This allows the former parent
process to be nested to a different child diagram and vice versa.

Decompose
Decompose generates a process decomposition diagram, as described below.

Generating Process Decomposition Diagrams
Process decomposition diagrams can be created automatically from a set of data flow
diagrams. By selecting a process and choosing Decompose from the Nest submenu or from
the process Object menu, a process decomposition diagram is generated that shows all
subordinate processes at their appropriate levels. If you select a process without children, the

Drawing Diagrams

124

Decompose menu selection is not available. The procedure for generating a process
decomposition diagram for a project branch, which may cover the whole project if the
highest-level process is used, is automatic once the above action is taken. Visible Analyst
draws an editable unstructured process decomposition diagram and that new diagram is the
active one.

For a large project or branch, it is possible that the process decomposition diagram is too large
to edit. If this happens, you are notified and given the opportunity to send the diagram to the
print queue. Visible Analyst proposes a name to identify the diagram in the print queue and
you are able to change it if you wish. To print it, select Print from the File menu.

Note
2 A process decomposition diagram is very different from a functional

decomposition diagram. The former is simply an unstructured diagram laying
out the hierarchy of processes that are descendants of a selected process. The
latter is a full diagramming methodology for doing business planning.

Using Spawn with FDDs
For FDDs, the purpose of the Spawn function, from the File menu is to create a process model
extension of your broad functional decomposition and allow you to carry out a detailed
analysis. With Spawn, you indicate a lower-level function, one that you have decomposed on
the diagram into processes, and Spawn it. Visible Analyst creates DFDs containing these
processes, to which you can add all of the other elements normally contained on DFDs. While
it is not impossible to continue to make changes to a function branch on an FDD after
spawning DFDs from it, it would be better to do the Spawn operation after the FDD is well
thought out and complete. The concept of the Spawn operation is illustrated in Figure 3-40.

Drawing Diagrams

125

 Figure 3-40 DFDs Created by an FDD by Using SPAWN

The first time you Spawn a function on an FDD, you are given the option to create a top-level
diagram beneath which you can hang all branches of your DFD tree. This new top level
diagram would symbolize all of the functions on your FDD. If you are using Yourdon rules,
you also have the option to make this top-level diagram a context diagram. Unless you have
processes hierarchically immediately beneath your highest-level function, you should accept
this top-level diagram option. Otherwise, you have to manually insert a diagram as a parent

Drawing Diagrams

126

for your spawned DFDs. If data flow diagrams already exist at the time of the first Spawn,
Visible Analyst attempts to incorporate them into the Spawn operation.

The Spawn Procedure
The spawn procedure has four subsidiary functions: New DFD Set, Load DFD, Verify and
Unlink. Each of these is explained below.

New DFD Set
What New DFD Set does depends upon whether the currently selected function has been
decomposed on the diagram to a set of processes and whether DFDs have already been
spawned from the function. If it has not been decomposed, Spawn advises you to decompose
before you can proceed. If you created a decomposition, you can execute this function to
create the set of DFDs composing this function. If the current function does have an existing
set of DFDs, you can execute the other Spawn subfunctions described below.

The procedure for spawning a function with a decomposition and no existing set of DFDs is:

Select a Function: 1 Click on a function to select it. You can also click with

the right button to activate the Object menu.

Select the Spawn 2 Select Spawn at the File menu and New DFD Set from
Functions: from the submenu, or pick New DFD Set from the

Object menu. The Spawn dialog box appears.

Position the Diagrams 3 From the tree display in the box, choose the diagram you
in the Tree: want to be the parent to the new set of diagrams. When

you click the Update DFDs button, the new diagrams
become part of your project. Parent/child nest
relationships are established among the diagrams of the
new DFD set, as defined in the FDD. However, the top
diagram of the newly added branch is not nested to the
diagram you selected as the parent in the dialog box. You
have to Nest before this relationship is established.

Load DFD
If the currently selected function does have an existing set of DFDs and you want to edit
existing spawned DFDs (to add data flows, for instance), open the Spawn menu and choose
Load DFD. The top diagram of the spawned branch of DFDs is opened. You can open lower
level diagrams by selecting a process and exploding it.

Drawing Diagrams

127

Verify
If the current function has an existing set of DFDs, you can update and resynchronize the two
sets of diagrams (the FDD and DFDs). You may want to do this if you have made changes to
your FDD and want to update the spawned DFDs to reflect these changes. Bring up the
Spawn menu and choose Verify. Visible Analyst compares the diagrams to find
inconsistencies. If changes are needed, a dialog box describes them and asks you if you want
to proceed. If you choose to continue, Visible Analyst makes the necessary changes to the
DFDs and saves them. It then activates the top DFD of the branch for you to edit.

Unlink
If the current function has an existing set of DFDs, you can break the link between them with
the Spawn function Unlink. You may want to do this if you want to make serious hierarchical
relationship changes to your FDD or to change or delete the function from which the DFDs
were spawned. These operations are not allowed on functions linked to DFDs. You can
respawn later, if you choose. Note that this operation does not alter your DFDs in any way.

THE DIAGRAM VIEW FUNCTIONS
A “view” is an entity relationship or class diagram containing a selection of entity types or
classes and the relationships between them. Since certain data objects may interact in different
ways at different times, you have the option to look at these distinct interactions in different
combinations on different views. A view is usually a subset of a larger data/object model and,
in any given view, you are not obligated to use all of the relationships that exist in your model
for any pair of entities/classes; you may select all of them or any subset of them, and you may
create new relationships on the current view. Any new relationship you add between a pair of
objects in a view is added to the repository of the appropriate model and becomes available to
be added to any other view.

Implicit in any data or object model is a global view; that is, a view containing all of the
information in the repository. In many models, the size of a global view may be too large to
edit as a diagram (and probably too large to be visually useful, as well). That does not
preclude, however, your ability to look at the whole thing should you desire. Visible Analyst
draws your global view for you and enters it into the print queue.

There are two ways you can create a data or object model view. One is to open a new diagram
and manually draw on it the entities/classes and relationships that you want for that view. This
is how you must begin the first view in a project because it is the only way to add
relationships. (Entities and classes can be directly entered into the repository.) The second
way is to let Visible Analyst help you by using the View of Data Model group of functions:
Global, New and Process, and also Modify View, that appears on the Diagram menu and as an
option the New Diagram dialog box (Drawing Method). After your data model is well along,
you can use the functions for creating cluster views. These are described later in this chapter.
After the new view has been created, you may edit it as you wish.

Drawing Diagrams

128

Using the View of Data Model functions plus Modify View allow you to specify existing
entities, and relationships from the repository and assure yourself that the new view is
consistent with what is already in the repository. The functions then automatically draw your
new view after you have completed specifying the contents for the view (see below).

When using the View of Data Model feature, remember the following:
• A view is like any other diagram in that it must obey the same rules. View diagram

names must be unique within the data or object model for the current project.
• An entity or class may appear on any number of views at one time, but only once per

view.
• The view functions work only for entity relationship and class diagrams.
• If an entity is used on a class diagram, its type is converted to class with a subtype of the

actual entity type. If a class is used on an entity relationship diagram, the subtype is set
accordingly.

Creating a New View
To create a new view, select View of Data Model from the File menu and then New from the
submenu, or choose New Diagram from the File menu and set the Diagram Type to Class or
Entity Relationship, the Drawing Method to New View and click OK. The repository is
scanned and a window opens displaying all existing entities or classes, and relationships. As
you move through the list and select items to go in your view by clicking on their names, they
are highlighted. When you select a relationship, that relationship, the reverse relationship and
both objects to which they are attached are also selected. If you change your mind about an
item, you may click on it to deselect it and the highlight disappears.

Note
2 A database view is different from a model view. To create a database view, see

SQL View Overview.

Drawing Diagrams

129

 Figure 3-41 The View of Data Model Menu

After selecting the items to appear on the new view, click OK to confirm your choices and
have Visible Analyst automatically draw the diagram or click Cancel to start over.

Note
2 You can control the scale of a new view drawn by Visible Analyst. The size of

the symbols is based on the size of the font you choose to use for symbols. The
smaller the font, the smaller the entity symbols. (Symbols only get so large, so
huge text does not result in a huge symbol.) The length of the relationship lines
and the spacing of the symbols is based upon the size of the font used for
relationship lines. The larger the font, the longer the relationship lines and the
more widely spaced the entity symbols. To make these adjustments, use the Text
Settings selection from the Options menu to set the defaults for these fonts
before beginning the creation of the new view.

Drawing Diagrams

130

Creating a Process View
A process view is an entity relationship diagram that represents a subset of your data model
and is based upon a process existing on a data flow diagram in the same project. Data
elements that enter or leave the selected process in data flows and that are also contained in
the composition of entities cause those entities to appear in the process view, along with
relationships existing between pairs of entities. (Undesired relationships may either be
eliminated manually or by editing the view and modifying it, as described below.) When you
select Process, Visible Analyst prompts you to select the name of the process on which to
base the view from a list in a dialog box.

After selecting the process, you have an opportunity to confirm your choice. When you do,
the components of the new view are automatically selected from the repository and the
diagram drawn and named for the process used. Visible Analyst then transfers control to you
to edit and/or save the diagram.

Creating or Printing a Global View
When you select Global from the View of Data Model menu, or choose Global View Drawing
Method when creating a new diagram, the repository is scanned. The global view (the view
of the entire data or object model that exists in the repository diagram) is prepared. Global
views can be too large to edit on the screen. However, Visible Analyst is capable of
automatically drawing a global view and printing it. After the view is prepared, Visible
Analyst lets you know if it is too large to edit and gives you the option to print it. If you
decide to do this, it is entered into the print queue and can be printed from the File menu.

Modifying the Current View
Entities, classes and relationships may be added to or deleted from a view diagram. The
procedure is identical to creating a new view, except that all entities, classes, and relationships
already in the current view are displayed as selected. (Selecting Modify View on a blank,
newly created diagram is equivalent to choosing New from the View of Data Model submenu.
Since the view is empty, nothing is displayed as already selected.) The diagram is redrawn
from scratch using the new list of entities, classes, and relationships.

LINKING MULTIPLE PAGE DIAGRAMS
Visible Analyst provides links between multiple page diagrams with the File menu Page
function. You can create a diagram and use Page to link it to additional diagrams. You can
then move between the linked pages on your workspace by selecting Page and then Connect.
You can also break the link between two pages by selecting Disconnect.

When using Page, remember the following:
• You must use a symbol as the page link between one diagram and another.

Drawing Diagrams

131

• A symbol can be linked to only one other page. For additional page links, use additional
symbols.

• You can only page link a diagram to an existing diagram that is stored at the same level
in the project tree, or to a new diagram.

• You cannot page link the top-level data flow diagram of any project.
• The page linking situation is somewhat different for data flow or unstructured diagrams

and structure charts; see the sections below for explanations. Page doesn’t apply to entity
relationship diagrams, class diagrams, or state diagrams.

Note

2 Page links diagrams on the same level in the tree, whereas Nest links diagrams
on different levels of the tree hierarchy.

Page Link Considerations When Using Rules
It is strongly recommended that Page not be used on data flow diagrams in a project that has
rules enabled. This is because rules treat a multiple page diagram as separate diagrams. Rules
capabilities including analysis cannot be applied across linked data flow diagram pages. They
can, however, be applied across multiple page structure chart diagrams and decomposition
diagrams.

Selecting Page Link Symbols for Data Flow Diagrams
Any symbol in a data flow diagram can be used as the page link symbol, unless it is already
used for a nesting link. The symbols shipped with Visible Analyst include the recommended
page link symbol for data flow diagrams, shown in Figure 3-42, which is the standard flow
charting page symbol. However, you can select any other symbol that is already drawn into
the diagram and link it to one other page or add your symbol at the time you wish to make the
link. Although almost any symbol may be used, it is recommended that you select a particular
symbol and dedicate it to always represent your page links. The dedicated symbol can be any
standard or custom symbol that allows you to easily recognize the link to another page. That
symbol can be used repeatedly with incrementing page numbers in any diagram to represent
links to additional pages. Although the illustration shows each page link symbol with a
“number” label, you may use any label you desire.

Drawing Diagrams

132

 Figure 3-42 Recommended Page Link Symbols for Data Flow

The Page Link Procedure for Data Flow Diagrams
The procedure for linking multiple pages within a diagram is as follows. (Note that this
example applies to a data flow diagram. The procedure for structure chart diagrams is the
same except that the off-page connector symbol must be used.)

Draw a Page Link 1 Draw and label a page link symbol on the currently
Symbol: active diagram. (You can also use an existing symbol

already in the diagram as the page link.)

Select the Page Link 2 Click the page link symbol to make it the selected
Symbol: symbol, if it is not already selected.

Start the Page Function: 3 Select Page from the File menu and then Connect.

If the symbol you selected is already linked to another
page, that diagram is activated. If not, the Page dialog box
displays.

Drawing Diagrams

133

Choose the Page to 4 Click either the Select Existing Diagram or the
Connect: the Create New Diagram button.

• Select Existing presents you with a list of diagrams
eligible to be page-connected to the current one (all
diagrams in the project tree that are at the same level
as the diagram from which you want to page). Select
one.

 Note

2 For a structure chart, if there is an existing diagram with a page connector
symbol with the same label as the one which you are currently trying to link, it
is moved to the top of the list and marked with an asterisk, so you won’t have to
look for it in the diagram list.

• Create New Diagram creates a new, blank diagram.

Visible Analyst draws a page connector symbol and label
on the linked diagram that is identical to the one you used
on the connected diagram.

Save the Page Link: 5 Select Save from the File menu to make the page link

permanent. The diagrams at both ends of the link are
saved.

Page Linking for Structure Chart Diagrams
The page linking function works differently for structure chart diagrams because structure
chart diagrams do not have hierarchical relationships that data flow diagrams have, and
because it is frequently necessary to use more than one page to represent a large or complex
program structure. The basic differences are:
• There are two symbols within the structure chart symbol set that are dedicated page

connector symbols. These are the “on-page connector” and “off-page connector,” as
illustrated in Figure 3-43. Only these symbols may be used.

• The page connector symbols are fully recognized by the rules, and the analysis function
for structure chart diagrams reaches across multiple pages that are connected by off-page
connectors.

• For structure charts, paging is one directional. Since paging can be many-to-one, once
you move across a page link, Visible Analyst doesn’t always know where you came from
and thus cannot bring you back across the link. However, since both diagrams are then be
open, you can easily activate the original diagram.

Drawing Diagrams

134

 Figure 3-43 Structure Chart Page Connectors

For a detailed description of the page linking procedure, see the previous section. As with
DFDs, when you are linking structure chart diagrams, the page connector symbol on the new
diagram is given the same name as the originating page connector symbol, in order for the
invocation line to be recognized as unbroken.

Note
2 There is also a special connect process for structure chart diagrams via an off-

page connector by using the Object menu. Draw the input connector on a
structure chart, name it and save the diagram. Then click on the connector
symbol with the right mouse button to display the Object menu for the
connector. Select Connect. You have the option of selecting an existing diagram
or creating a new one. After you decide and choose, the output page connector is
drawn on the other diagram and the connection established when you Save.
After the connected diagrams have been saved, the Disconnect option on the
Object menu becomes enabled, allowing you to sever the connection. Note that
after the diagrams have been connected, selecting Connect from the Object
menu moves you between the diagrams rather than making a new connection.

On-Page Connector
The on-page connector allows invocation lines between structure chart symbols to be broken
and then continued starting in another location on the same diagram. This can be necessary at
times because of diagram space considerations. The invocation line to be broken is first
terminated with an on-page connector that is labeled, and then the invocation line is started
again at another on-page connector bearing the same label elsewhere in the diagram. For
analysis purposes, the invocation line is considered unbroken. This is illustrated in Figure 3-
44. The on-page connector cannot be used to link pages together.

Drawing Diagrams

135

 Figure 3-44 On-Page Connectors

Off-Page Connector
The off-page connector symbol serves two purposes:
• To create multiple page structure charts.
• To ensure that an invocation line that crosses a page boundary to a new diagram is

recognized for analysis purposes as an unbroken invocation line.

When a multiple page structure chart is created by using the off-page connector, the analysis
function can be applied across the various diagrams. The use of an off-page connector is
illustrated in Figure 3-45. The same symbol is usually used to connect pages in FDDs and
DFDs.

Drawing Diagrams

136

 Figure 3-45 Off-Page Connector

Page Linking for FDDs
You can link pages of a functional decomposition diagram in a manner identical to data flow
diagrams. The only difference is that with FDDs, the page link is transparent to the rules.

CLUSTER DIAGRAMS
Visible Analyst provides a means to make complex entity relationship diagrams easier to
grasp with clusters. A cluster is a group of entities that can be displayed as one symbol on a
diagram. Its purpose is to reduce the amount of displayed detail. In a cluster diagram, clusters
are shown joined by pseudo-relationships wherever at least one entity in one cluster is joined
by a relationship to at least one entity in the other cluster. When using the Cluster feature,
remember the following:
• Cluster names should be unique within the data model for the current project.
• An entity may be a member of just one cluster at a time.
• Any cluster diagrams you create are unstructured diagrams. Creating a cluster diagram

does not change your existing data model in any way.

Drawing Diagrams

137

• Cluster works only for entity relationship diagrams.

Clusters are created from within the repository. The process is described in The Visible
Repository. Although clusters are stored in the repository, they have no real inherent meaning
in a data model; thus, any cluster diagrams you create are not a living part of your model.
Visible Analyst creates unstructured diagrams that you may edit or print as any other diagram;
however, they are no longer linked to the repository and any future changes you make are not
reflected in them.

First you must choose the scope of the cluster diagram; that is, whether it displays just the
entities and clusters appearing on the current view, all entities and clusters in the repository or
a custom-designed diagram displaying any clusters you choose from the whole repository.
View of Data Model on the File menu has Cluster subfunctions that are used to Current View,
Global, and Custom cluster diagrams. They function in the same way as to the other View of
Data Model functions described previously.

Selecting any function causes a repository scan. Selecting Current View or Global
immediately creates the diagram. Selecting Custom displays a dialog box containing a list of
existing clusters and gives you the opportunity to select the ones you want on your cluster
diagram. Visible Analyst then creates the diagram. It is possible that a global cluster diagram
for a very large data model is too large to edit. If this happens, Visible Analyst lets you know
and gives you the opportunity to print it. Visible Analyst sends your cluster diagram directly
to the print queue, and you can print it from the File menu.

SAVING YOUR WORK
All of your work during an editing session on a particular diagram can be saved or discarded.
When you edit an existing diagram, the changes do not become a permanent part of the
diagram until it is saved. Therefore, if you want to save your work, be sure to open the File
menu and select Save as the last step before quitting work on any diagram, new or old. (Note
that Visible Analyst always displays messages to remind you to save your work before
allowing you to close a diagram or exit Visible Analyst.) Conversely, if you want to revert to
the pre-edited version rather than save the edited version, simply answer No to the prompt
when you exit the diagram.

Several of the Visible Analyst functions perform an “auto save” before executing if you have
made any changes in a diagram. For example, if you make changes to a diagram then select
Define to access the repository, your changes are automatically saved before the function is
executed. The functions that perform an auto save are Analyze, Define, Nest, Page, and View
of Data Model.

Drawing Diagrams

138

Saving a New Diagram
The only difference between saving a new diagram and an existing one is that you have to
give the new one a name in the dialog box that appears. The only restrictions on diagram
labels are that they cannot exceed 128 characters and that they must be unique within the
diagram type of the project. After that, Visible Analyst saves it to the tree position that you
specified when you created it (if it is a DFD).

EXAMPLE DIAGRAMS
The following pages contain a representative selection of the types of diagrams that can be
produced with Visible Analyst, even though formal methodologies are not yet available for
many of them. They were all created with Visible Analyst, then imported into the word
processing package used to produce this manual.

 PLANNING
 Enterprise Modeling
 Business Modeling Diagrams
 Pert Charts

 ANALYSIS
 Customized Data Flow Diagrams
 High-Level System Diagrams
 Process Flow Diagrams

 DESIGN
 State Transition Diagrams

 MISCELLANEOUS
 Organization Charts
 Requirements Matrices
 Forms
 HIPO Diagrams

Drawing Diagrams

139

Strategic

Profile

General

Environmental

Analysis

Missions

Policies

Goals

Program

Strategies

Tactical

Plans

Budgets

Operational

Results

Implementation

Major Expectations:

Stockholders,

Top Management

Strategic

Issues

Sample Strategic Planning Model

 Figure 3-46 Sample Strategic Planning Model

Drawing Diagrams

140

 Figure 3-47 Sample Real-Time Diagram

Drawing Diagrams

141

HEATER OFF

HEATER DUTY

CYCLE MODE

FULL HEAT ON

0 = HEATER_CTL

0 < HEATER_CTL < 100

0 = HEATER_CTL0 < HEATER_CTL < 100

100 = HEATER_CTL

100 = HEATER_CTL

TURN HEATER ON

TURN AUX HEATER ON

TURN AUX HEATER OFF

DUTY CYCLE HEATER

TURN HEATER OFFDUTY CYCLE HEATER

TURN HEATER OFF

TURN AUX HEATER OFF

TURN HEATER ON

TURN AUX HEATER ON

Sample State Transition Diagram

 Figure 3-48 Sample State Transition Diagram

Drawing Diagrams

142

Update

Master

File

Get Master

Record

Get

Valid

Transaction

Update

Master

Record

Write

Master

Record

Print

Error

Message

Collect

Fields

Get

Valid

Field

Extract

Field

Get

Next

Card

Edit

Field

Get

Next

Field

Sample HIPO Diagram

 Figure 3-49 Sample HIPO Diagram

Drawing Diagrams

143

 Figure 3-50 Sample PERT Chart

Drawing Diagrams

144

Percent

Complete

Period Ending (Week)

25 26 27 28 29 30

Scheduled Completion

Actual ProgressOARS Project

J. Smith - Programmer Analyst

ACTIVITY

DOCUMENT

Project Plan and Status Report

Study Phase

Initial Investig.

Performance Spec.

Study Phase Report

DESIGN PHASE

Allocation of Funct.

Computer Prog Funct

Test Requirements

Design Spec.

Design Phase Report

Design Phase Review

95

100

100

100

0Study Phase Rev.

0

0

0

0

0

0

0

Sample Gantt-Type Chart

 Figure 3-51 Sample Gantt-Type Chart

The Visible Rules

145

Chapter 4

The Visible Rules

VISIBLE RULES OVERVIEW
The Visible rules module is a set of features and functions that, collectively, allow you to
develop projects under the discipline of a structured methodology. Rules support commonly
used methodologies, two for structured systems analysis and one for structured systems
design, plus data modeling. For structured analysis, the supported methodologies are
Yourdon/DeMarco, Gane & Sarson, SSADM, and Métrica. For structured design, the
supported methodology is Yourdon/Constantine. For object modeling, both Object Modeling
Technique (OMT) and the Unified Modeling Language (UML) can be used.

Visible rules go further in life cycle coverage than simple support for structured analysis and
design techniques. To be most effective, structured design should be based on specifications
derived using structured analysis. This capability to integrate analysis and design provides
you with the knowledge that your designs reflect the reality of your specifications.

DATA FLOW DIAGRAMS

Structured Analysis Methods Overview
The primary purpose of structured analysis methodologies is to provide techniques that help
specify systems. Since most systems today are complex, structured analysis encourages
specification of the broader aspects of the system and then decomposition of these larger
views into finer and more readily understandable pieces.

The Yourdon/DeMarco and Gane & Sarson analysis methodologies have many similarities.
Differences between the two are primarily syntax; however, there are superficial semantic
differences that are explained in the following paragraphs. 1 Some of the major concepts of
structured analysis include:

1 For more detailed information on these analysis methodologies, you can refer to the
following books:
 DeMarco, Tom. Structured Analysis and System Specification. Englewood Cliffs:
Prentice-Hall, 1978.
 Gane, C., and Sarson, T. Structured Systems Analysis: Tools and Techniques.
Englewood Cliffs: Prentice-Hall, 1979.

The Visible Rules

146

• Nested Decomposition
• Data Flow Balancing
• Data Flow Splitting
• Logic, Balance, and Completeness Verification
• Automated Repository Maintenance

Visible Rules functions that support the above are Nest, Split Data Flow, Analyze, and
Define. In this chapter, we deal primarily with the first three. The Visible Repository provides
a full description of Define. The Drawing Diagrams chapter provides a full description of the
Nest function. In this chapter, we deal mainly with the consequences of a Nest operation
rather than the operation itself.

To make use of the a specific set of rules, Yourdon/DeMarco, Gane & Sarson, SSADM, or
Métrica must be the currently enabled method. You can select a data flow methodology to use
for a project when you create it, as described in Drawing Diagrams. Once selected, the
methodology is applied on a project-wide basis. In other words, rules cannot be selected to
apply only to an individual diagram.

As you draw each diagram using rules, the following features are employed:
• Context diagrams. The Yourdon/DeMarco methodology allows you the option of

working with context diagrams. Context diagrams are simply top-level diagrams with
only one process that represents the entire system to show its relation to its environment.

• Process Numbering. Visible Analyst automatically numbers each process placed on a
diagram. The numbers allow you to keep track of all project processes and their nested
parent/child relationships. SSADM and Métrica methodologies assign a process number
to any process when it is drawn.

• Data Store Numbering. The Gane & Sarson, SSADM, and Métrica methodologies
automatically number each data store drawn onto a diagram.

• Data Flow Splitting. Visible rules provide the capability to split data flows into subflows.
This is accomplished using the Split Data Flow command on the Diagram menu. A split
flow report can also be generated using the Reports function on the Repository menu to
list split data flows and their subflows by diagram, by branch (a data flow diagram and all
of its children/grandchildren), or by project.

• Analyze Project Diagrams. Visible rules allow you to analyze a project to check for
errors within the structural framework of the applied methodology using the Diagram
menu Analyze function. Errors detected for a diagram or an entire project can be
displayed on the screen or printed in report form.

• Automatic Data Flow Balancing. Visible Analyst automatically drags down (balances) all
input and output data flows from parent processes to child diagrams.

The Visible Rules

147

Process Modeling Graphics

Methodology Symbols
Methodology symbols for a given diagram type are listed on the Symbols submenu of the
Diagram menu. In addition, they are represented by buttons on the control bar.

Process Numbering
All process symbols are numbered. On each DFD, processes are numbered in the order that
they are drawn, not in the order that they are labeled. The single process that is allowed in a
Yourdon context diagram is always assigned the number 0. All other processes in Yourdon or
Gane & Sarson projects are numbered by level and in sequence beginning with the number 1.
For example, the first process drawn in any project diagram (other than a context diagram) is
assigned number 1. If a second process is added to the project, it receives the number 2, the
next process number 3, etc.

Process numbers also represent levels of decomposition on a project-wide basis. For example,
if process 1 is decomposed into three subprocesses as shown in Figure 4-1, the subprocesses
are sequentially assigned numbers 1.1 through 1.3. And if process 1.2 is further decomposed
into two other processes, they are numbered 1.2.1 through 1.2.2, and so on.

The Visible Rules

148

 Figure 4-1 Example of Process Numbering Scheme

Although all process numbers are assigned sequentially and according to decomposition level,
you can go back and modify the assigned numbers using the Change Item function if you
follow a few simple guidelines.
• You cannot duplicate any process number in the same project; if a process number has

already been assigned, you cannot use it when changing the number assigned to another
process.

• You cannot change the decomposition level being represented; if a process is numbered
1.1.3 you can change it to 1.1.4, but you cannot change it to 1.4.

• You only have to change one number. Visible Analyst carries process number changes
throughout the project on a global basis, and any processes on lower levels are
automatically renumbered.

• You can reuse a process number from any process symbol that has been deleted from a
project.

The Visible Rules

149

Data Store Numbering
When working under rules for Gane & Sarson, SSADM, or Métrica methodologies, data store
symbols are numbered. Data store numbering differs from the process numbering as follows:
• Each data store number contains the prefix “D.”
• Each uniquely labeled data store is assigned a unique number.
• You cannot change data store number assignments. When a data store is drawn, it is

sequentially numbered; and it maintains the assigned number wherever it appears
throughout the project.

If you delete a data store, the deleted data store number is reassigned to the next data store
that is added to the project. For example, if a project has data stores numbered D1 through
D10, and all data stores numbered D5 are deleted, then D5 is reassigned to the next unique
data store added to the project. However, be aware that an interim Save must be performed in
order for the reassignment to occur; for example, after you delete D5 you must save the
diagram, then add the new data store. If the interim save is not performed, the new data store
is numbered D11.

Splitting Data Flows
The Split Data Flow function is enabled on the Diagram menu when the diagram type is data
flow and a data flow is selected as the current object. It also appears on the Object menu of a
selected data flow. It offers the capability to divide net input or net output data flows into
subflows, creating a more detailed representation on lower level diagrams. This capability
greatly aids the analysis process by showing more complex data flows at high levels of the
structured specification, and smaller or even atomic data flows at the lower levels of the
structured specification, thus allowing better understanding of the whole system and of its
parts. Only data flows that have labels and have been dragged down from a parent diagram as
the result of a Nest operation can be subdivided. The relationship between subflows and their
parent flows is automatically maintained within the project repository, so that data flow
balancing can be assured whenever the project is analyzed.

Whenever a data flow is split into subflows, the original data flow is erased from the
displayed diagram and replaced by the selected subflows. The original flow does not change
on the parent diagram, however. The subflows can be repositioned on the diagram by moving
them, as described in Drawing Diagrams. A split flows listing can be generated to obtain a
listing of all parent flows and their subflows throughout a diagram, a branch or an entire
project.

Split Data Flow Procedure
To split a data flow into subflows:

The Visible Rules

150

Select a Data Flow or 1 Select a data flow or a subflow of a previously split
an Existing Subflow: flow to which you want to add more subflows by clicking
 on one end of it.

Select Split Data Flow: 2 Choose Split Data Flow from the Diagram menu or from

the data flow’s Object menu.

Choose How to Split 3a If the selected data flow has not been previously split,
the Data Flow: Visible Analyst displays the Split dialog box, giving you

three edit boxes to choose from:
• Enter Subflows allows you to manually enter labels

for new subflows from your keyboard. See step 4.
• Select Components allows you to specify items that

already exist in the repository Composition field of
the selected data flow. There must be existing
components for this box to be enabled. See step 5.

• Select Flows from Diagram allows you to select data
flows that already exist on the diagram. See step 6.

You can choose any combination of the three operations
or you can Cancel.

 3b If the data flow you select is the product of a prior split

operation, Visible Analyst asks you if you want to add
more subflows to the parent flow. If you click OK, the
above dialog box displays.

If Entering Subflows 4 If you chose Enter Subflows in step 3a, you can begin
from the Keyboard: entering labels for as many subflows as you want to use to

replace the parent data flow being split. These new flows
are added to the repository and to the Composition field
of the parent, and appear on the diagram.

If Selecting Components: 5 If you chose Select Components in step 3a, the

components that are already defined in the repository
Composition field for the selected flow are displayed in
the list box. You can select one or more of them.

The Visible Rules

151

 Note

2 If the selected items in the Composition field are data elements, these are
converted to data flows when selected from the Component field. These flows
are now available for use on a DFD. If you want to maintain these data
elements as elements and not data flows, enter the new flows in the Enter
Subflow section of the Split Flow dialog box.

If Selecting from the 6 If you choose Select from Diagram in step 3a, the
Diagram: list box displays the names of all net input or output

flows (depending upon the parent flow) on the diagram
that are not already subflows of flows appearing on the
parent diagram. Click on the ones that you want to
designate as subflows of this parent flow. You can select
one or more of them. If none are available, the box is
disabled.

7 When you finish, click OK. Visible Analyst erases the

data flow that is being split (if you are not adding
subflows to a flow that has already been split and erased
from the diagram) and each subflow is drawn at the edge
of the diagram. You can then move the subflows into the
positions where you want them on the diagram.

The Visible Rules

152

 Figure 4-2 Splitting a Data Flow

Analyzing Data Flow Diagrams
As a project undergoes a number of nested decompositions, data flow splits, and various
moves or other edits, there exists a significant possibility that various data flows will be
incorrectly used, or that objects will be forgotten, etc. This is a natural consequence of the
iterative nature of structured analysis. The Analyze function is designed to inform you of
completeness and logic errors that exist at any given moment.

The Analyze function checks for a variety of balance conditions by comparing and validating
data flows for a single diagram or a complete project at all levels, including the use of
subflows. When Analyze is initiated, the following checks are performed:
• Checks all objects (symbols and data flows) for labels and processes for numbers.
• Checks for dangling objects (any unattached symbols or data flows).

The Visible Rules

153

• Checks that all processes have at least one input and one output.
• Checks data flow balance. The rule for data flow balancing is: if a data flow is used as a

net input or net output (it doesn’t matter which) at any level, all occurrences of that data
flow on lower levels must be of the same direction (either input or output).

The Analysis Error Message Box
The Analysis error message box, including similar boxes from SQL schema generation, shell
code generation, etc., is a special kind of window. It allows you to keep it on the screen, size
it, and move it around while doing other things within Visible Analyst. This means that you
can keep it on the screen while you correct the errors displayed. You can size it so that it
displays only one or two errors at a time while you open and edit diagrams, work in the
repository, etc. Working this way is an alternative to printing the list of errors and working
from the printed sheet.

Data Flow Balancing Examples
The following examples illustrate data flow balancing situations:

If net input data flow “A,” attached to process #1 on diagram 0, appears on diagram 1,
attached as a net input data flow to process #1.1, no error condition exists. See Figure 4-3.

 Figure 4-3 Data Flow Balancing

The Visible Rules

154

If net input data flow “A,” attached to process #1, on diagram 0, has subflows “A1,” “A2,”
“A(n),” etc., all used as net inputs on diagram 1, attached to processes #1.1, 1.2, 1.n, etc., no
error condition exists. See Figure 4-4.

 Figure 4-4 Data Flow with Subflows

If, however, a subflow like “A2” is used on diagram 1 as a net output, an error message is
generated because data flow “A,” on diagram 0 is a net input, and the system becomes
unbalanced. See Figure 4-5.

The Visible Rules

155

 Figure 4-5 Unbalanced Data Flow

If net input data flow “A,” attached to process number 1 on diagram 0 is used on diagram 1 as
a net output data flow, two error messages are generated, one indicating that it isn’t used on
diagram 0 as a net output data flow and one indicating it isn’t used on diagram 1 as a net input
data flow. The reason for this is that flow “A” may very well be used as both input and output,
but that the systems analysis hadn’t yet indicated both needs. See Figure 4-6.

The Visible Rules

156

 Figure 4-6 Data Flow Errors

If data flow “C” is used on diagram 1 and is not attached to any process on diagram 0, an
error message is generated because it is not represented anywhere on the higher level diagram.
Note that this might not be valid in the case where flow “C” was a subflow of some other flow
on diagram 0. See Figure 4-7.

 Figure 4-7 Data Flow Errors

The Visible Rules

157

Some types of data flows are ignored by the Analyze function for various practical reasons.
These exceptions are:

1. Data flows whose labels begin with the word Error or Reject are ignored for the

purposes of balancing. These labels have special meaning under the methodologies.
They indicate trivial error conditions that are not necessary for the purpose of system
analysis, but that are entirely necessary for understanding how a target system works.
See Figure 4-8.

 Figure 4-8 Data Flows with Error Labels

2. Local process-to-file I/O data flows are ignored for upwards balancing purposes. If a

process has one or more inputs and one or more outputs to the same file (or data
store in Gane & Sarson), all the data flows going to that file are considered local file
I/O data flows and are not analyzed for upwards balance. However, if the process is
exploded using Nest, these flows balance down to the lower level diagram and are
then evaluated for balance between the two diagrams. (Figure 4-9)

The Visible Rules

158

 Figure 4-9

3. If a process has an output data flow to a file and a second process receives an input

data flow from the same file, both the input and output flows are considered file I/O
data flows, and are not analyzed for upwards balance. Here again, if one of these
processes is exploded, automatic balancing is enforced and balance is checked in the
new parent/child relationship. (Figure 4-10)

 Figure 4-10

Level 0

Level 1

1

1.1 1.2

A B

A B

C D

X

File 1

Level 0

Level 1
File 1

1.1 1.2
A B

C D

1
A B

The Visible Rules

159

4. If a data flow is attached to two processes, it is not a net input or net output data

flow, and is not analyzed for upwards balance. If one of the processes is exploded,
automatic balancing is enforced, and the new parent/child relationship is validated
for balance. See Figure 4-11.

 Figure 4-11

Structured Analysis Error Messages
The Visible rules module can generate a multitude of error and warning messages whenever
the Analyze function is invoked, presuming there are errors, of course.

The following error and warning messages are generated. Included are brief descriptions of
the meaning of the errors and warnings, as well as procedures to resolve them.

ERROR There are ‘x’ unnamed Process(es).
ERROR There are ‘x’ unnamed File(s).
ERROR There are ‘x’ unnamed Data Store(s).
ERROR There are ‘x’ unnamed Source/Sink(s).
ERROR There are ‘x’ unnamed External Entity(s).
ERROR There are ‘x’ unnamed Data Flow(s).

A D
C X

1.1.1

FIle 1

A

C D

X B
1.1 1.2

1
A B

The Visible Rules

160

The above group of error messages applies to data flow diagram-based symbols and data
flows. Unlabeled symbols and data flows generate error messages because they indicate the
incompleteness of a specification. (Note that if an unnamed data flow is attached to file or
data store, it is not necessarily an error.) See Figure 4-12.

 Figure 4-12

To resolve the error, use the Change Item function to label the unnamed symbols and data
flows.

WARNING Data flow attached to file labeled ‘x’ is unnamed.

This warning message indicates that the unlabeled data flow is incompletely described.
Though not technically an error, unnamed data flows are flagged to indicate incompleteness.
If the process this flow is attached to is nested, this flow assumes the name of the file (or data
store) it is attached to when it appears on the subsequent child diagram.

To resolve the warning, use the Change Item function to label the data flow, or the Nest
function to explode the process it is attached to, or leave the flow unlabeled. In this case, the
data flow is interpreted to mean that it carries the entire content of the file.

ERROR Process labeled ‘x’ is a dangling process.
ERROR File labeled ‘x’ is dangling.
ERROR Data Store labeled ‘x’ is dangling.
ERROR Source/Sink labeled ‘x’ is dangling.
ERROR External Entity labeled ‘x’ is dangling.
ERROR Data flow labeled ‘x’ is dangling.

The above error messages indicate incompleteness of analysis. They also indicate, however,
that the dangling item’s relationship to the rest of the system is undefined at the point where

The Visible Rules

161

the item is dangling. To resolve the error, either move the item(s) to attach dangling data
flows to symbols, or vice versa, or add any missing flows or symbols. See Figure 4-13.

 Figure 4-13

ERROR There are ‘x’ unnumbered process(es).

An unnumbered process is also unlabeled. It is illegal for the same reasons as unlabeled
processes.

To resolve the error, use the Change Item function to label the unnumbered process. This
causes the process to automatically be assigned a process number.

ERROR Process labeled ‘x’ is an input only process.
ERROR Process labeled ‘x’ is an output only process.

The above two error messages indicate incomplete analysis. Processes, by definition, must
“process” data. A process without both input and output is therefore illogical and incomplete.

To resolve the error, create or find the necessary input or output data flow and connect it to
the process. See Figure 4-14.

The Visible Rules

162

 Figure 4-14

ERROR Data flow labeled ‘x’ is not attached to a process.

This error message indicates that the flagged data flow is connecting two non-process
symbols (data stores or external entities).

To resolve the error, move the data flow to connect it to a process.

ERROR Diagram named ‘x’ has no parent diagram.

In structured analysis, all diagrams except the top level diagram must be based upon the
decomposition of a process. If a diagram is not a top-level diagram and it has no parent, then
some high level function is being left out of the specification.

To resolve the error, find or create a process on a diagram at a higher level than the flagged
diagram and explode that process using the Nest function. Nest asks you whether to Create
New Diagram or Select Existing Diagram. Choose Select Existing Diagram. Visible Analyst
presents the portion of the project tree file containing the available diagrams, and you can
select the unconnected diagram.

ERROR Input data flow ‘x’ on parent is not shown.
ERROR Output data flow ‘x’ on parent is not shown.

These two messages indicate that a data flow has been added to a higher level diagram but is
not reflected in the lower level diagram.

To resolve the error, use the Parent subfunction Nest to open the parent diagram. Then find
the process to which the unbalanced data flow is attached. Use the Nest function and Explode
that process. This drags the unbalanced flow down to the child diagram where it needs to be
used.

ERROR Net input data flow ‘x’ is not shown attached to parent process
ERROR Net output data flow ‘x’ is not shown attached to parent process.

The Visible Rules

163

These two error messages indicate that the flagged data flow needs to be attached to the
process that was exploded to create the diagram on which the error exists. An alternative
resolution is to split the data flow into a data flow previously dragged down to the current
diagram. The two resolutions are shown below:
• To resolve the error, first note the process numbers on the current diagram. Then select

Nest from the File menu or Object and select Parent subfunction (or just switch to the
parent diagram, if it is already open). Visible Analyst loads the diagram where the parent
process is located. Locate the process with the appropriate process number (if child
diagram processes are 1.1.1, 1.1.2, 1.1.3, etc., locate process 1.1 on the parent). Then find
or create a data flow with the same name as the flagged data flow and attach it to this
process.

• To resolve the error, locate a data flow on the current diagram that is either dragged down
from the parent or an already split subflow. Click on it to select it as the current object.
Select the Split Data Flow function and make it a subflow of a data flow that is shown
attached to the parent process.

ERROR ‘x’ should be shown as a Net input data flow.
ERROR ‘x’ should be shown as a Net output data flow.

These two errors indicate that a subflow has been incorrectly used in relation to its parent. A
subflow on a child diagram of a net input (or output) flow on a parent diagram cannot be used
as a net output (or input) data flow or as an internal process-to-process the data flow. Data
flows “A2” in Figure 4-5 and “A” on the bottom of Figure 4- 6 would generate such an error.

To resolve the error, locate the subflow and move it to properly attach it.

ERROR Net input data flow labeled ‘x’ is attached to a different object
 on parent.
ERROR Net output data flow labeled ‘x’ is attached to a different object
 on parent.

These two error messages indicate that a net input or output data flow is attached to an
external entity or global file on the current diagram and is not attached to an external entity or
file with the same name on the parent diagram.

To resolve the error, change either the parent or child diagram so that the data flow
attachments match.

A Complicated Error

ERROR Net data flow labeled ‘x’ is attached to a local file.

The Visible Rules

164

This error message requires some background explanation. Before explaining the reasons for
the error message, the definition of a net data flow requires review.

Net Data Flows
Input and output data flows refer to data entering or leaving, respectively, a process to which
the flow is connected. The criteria for when a flow is termed a net flow are:
• On a given diagram, a data flow is a net input or output flow if one end of the data flow is

not connected to any object or if one end of the data flow is connected to an external
entity, like “A” and “C” in Figure 4-15.

• On a given diagram, a data flow is a net input or output flow if one end of the data flow is
connected to a non-local data store, like “F” in Figure 4-15. (This somewhat circular part
of the definition is explained below.)

• A data flow is a net input or output flow if it enters or leaves the parent process of the
current diagram. When a process is decomposed with Nest, the net input and output data
flows defined for the parent process are also the net input and output flows for its
immediate child diagram. In other words, the net flows associated with the parent process
must be accounted for on its immediate child diagram; otherwise, the Analyze operation
indicates a balancing error.

• A data flow is a net input or output flow if the data flow is a subflow of a net input or
output flow. This means that the property of “net input” or “net output” is inheritable
from a parent to a child diagram using the Nest and Split Data Flow operations.

 Figure 4-15 Net and Local Data Flows

Net Local
A, C, F B, D, E, G

A

B
C

D

E

G

F

The Visible Rules

165

Any flow not characterized as a net flow on the child diagram is considered internal to the
parent process. Hence, it is local to the child diagram and is termed a local data flow.

Data Stores and Physical Files
Although the concepts of data stores and physical files are similar, the terms are not
synonymous. Access to a data store must abide by the balancing principles of data flow
diagramming. You should adhere to the following guidelines when you draw a data store:
• A data store is a container that temporarily holds data while it is flowing between

different processes. It functions as an interface between those separate processes. Beware
of cyclic connections drawn between a single process and a data store. A cyclic
connection exists if data moves in both directions between a process and a data store.
This situation strongly suggests that the data flowing between the process and data store
is really internal to the process. It would be preferable not to diagram the data store at
this level. Instead, decompose the process with the Nest function. On the child diagram,
show the processes that have been factored out from the parent process and then draw the
data store as it relates to these processes.

• When a process accesses a data store, only the net flow of data should be diagrammed.
For instance, if a process withdraws data from a data store, meaningfully generates and/or
transforms the data, and then returns some or all of it, only the net flow of data should be
diagrammed at that level.

• All references to a data store (i.e., the data flows) should appear on the diagram on which
the data store is initially drawn. This is called the “defining instance.” Subflows derived
from these data flows maintain this data store connection even if the data store does not
appear on the diagrams on which these subflows appear.

• All subsequent child diagrams should consistently access the data store. For instance, if
the defining instance of a data store is referenced by process “1” with only net output data
flows, then only net output data flows may be associated to this data store on the child
diagram of process “1” without generating an analysis error.

The Error Message Explanation
When a local data flow is connected to a data store as an input to that data store, the data store
inherits the local attribute of the data flow and that instance of the data store is viewed by
Analyze as a local data store. This represents the “defining instance” of that local data store
because it contains data derived within the parent process from the net inputs connected to the
parent process. If a net input flow is connected directly to this local data store, then a mixture
of net and derived data can occur. (Net and local output data flows work the same way.)
Allowing this mixture of derived and net data would negate the reconciliation effort intrinsic
to the methodology of data flow diagramming. Thus, Visible Analyst generates this analysis
error when this situation occurs. For example, if data flow “G” in Figure 4-15 were shown on
the parent diagram as a net output data flow, it would generate this error message because it is
used “locally” on this diagram.

The Visible Rules

166

After generating this message, Analyze thereafter looks at data flow x as a local data flow, no
longer having the property “net input” or “net output.” Analyze then tries to balance the net
flows appearing on the parent and child diagrams and is forced to issue the additional error
message:

ERROR Input/Output data flow ‘x’ on parent is not shown.

To resolve both errors at once, do one of the following:
• Make the data store to which x is connected non-local by allowing only flows entering it

(if x is a net output flow) or only flows leaving it (if x is a net input flow).
• Add an additional instance of the data store to the child diagram, one to be used as a local

data store and the other to be connected to data flow x.
• Disconnect data flow x from the data store, leaving one end connected to a process and

the other connected to nothing. (Remember that the data store connected to x or its parent
flow on the parent diagram remains implicitly connected on all descendent diagrams.)
Then the data store is only a local one on this diagram.

The source of this analysis error message might indicate that your analysis is affected by
thinking that is too “physical.” It is sometimes difficult to remember, especially for data
stores, that data acquisition or transformation at a lower level might have to be propagated
either up or down a diagram branch.

To put into practice the guidelines we have presented, we suggest that you identify the net
input and output flows for a process and create the initial version of each child diagram
without incorporating any data stores. (An equivalent data flow diagram can always be drawn
without them!) Afterwards, when all the data flows on the diagram have been documented,
insert the data stores, adhering to the previously discussed data store guidelines. Then your
project is both methodologically correct and an accurate description of your system.

FUNCTIONAL DECOMPOSITION DIAGRAMS

Business Planning Analysis Methods
Functional decomposition diagrams (FDDs) give you the ability to do high-level planning of
business functions diagrammatically while concurrently populating the repository. 2 You can
enter business functions that you define onto diagrams and break them down into successively
finer gradations. At some point, one that is entirely up to you, you can break down business
functions (hereafter called simply functions) into processes. These processes are semantically

2 Some of the theory behind functional decomposition diagrams can be found in:
 Martin, J., and McClure, C. Structured Techniques for Computing. Englewood
Cliffs: Prentice-Hall, 1985.

The Visible Rules

167

equal to the processes that appear on data flow diagrams. The processes can themselves be
broken down into smaller parts (still lower-level processes) on FDDs.

Functional decomposition diagrams are viewed as the highest level of business planning. It is
probably the place you want to begin when you wish to display the broadest picture of the
functions of an enterprise. There is no rule that you must begin here, but other things are
easier if you do. For designing individual projects, it might be just as effective to start with a
process model or a data model (or both at once) if you feel that the project does not have the
breadth to warrant planning at the FDD level.

After you diagram your highest-level business functions and decompose them somewhat, you
get to the level where you feel functionality below this should be subject to the detailed type
of analysis possible with DFDs. This is the point at which you want to show finer gradations
of functionality as processes. You can lay out all of the processes of this branch of your FDD
and their hierarchical relationships. After that, you can instruct Visible Analyst to produce a
set of DFDs for this branch of processes. Then you can flesh out the DFDs and add data
flows, files, external entities, etc.

Although it is possible to go back and forth between FDDs and DFDs generated from them, it
is likely that the editing you do on the different types of diagrams will introduce problems,
such as making incompatible changes in the hierarchical relationship between processes on
the two types of diagrams. Therefore, it is recommended that you complete your business
analysis on FDDs as far as possible, at least for a given branch of the diagram, and then
generate DFDs and flesh them out. If you later find that you need to add processes, it is better
to return to the FDD and add them there. You can then have Visible Analyst place the new
processes onto the proper DFDs. Proceeding in this manner keeps the two sets of diagrams in
sync and avoids compatibility problems.

Note

2 A functional decomposition diagram is very different from a process
decomposition diagram. The former is a full diagramming methodology for
doing business planning. The latter is simply an unstructured diagram laying out
the hierarchy of processes that are descendants of an indicated process.

Rules Functions
Visible rules functions that support the above are Spawn, Change Item, Analyze, Page and
Define. FDDs also have full repository support, overlapping somewhat with DFDs. As
explained in Getting Started, the functionality of Spawn is somewhat similar to but not
identical to that used with the Nest function for data flow diagrams.

Since there is some overlap between DFDs and FDDs, it is significant which process
modeling methodology (Yourdon/DeMarco or Gane & Sarson) you choose when you create a
project. You should consider this carefully before you save the first diagram of a project.

The Visible Rules

168

Also, it is helpful to be familiar with the terms and techniques of the process modeling
methodology before continuing with this description of functional decomposition diagrams.
This description is given in the early pages of this chapter.

Naming Rules for FDDs
There are a couple of points to be aware of in addition to the standard Visible Analyst naming
rules of no more than 128-character names and labels cannot use certain delimiter characters.
A function cannot have the same name as a process in the same project.
• Otherwise, a function can have any other valid Visible Analyst name, regardless of

whether any other object is using that label within the project.
• Any process can occur on one FDD and on one DFD.

The Rules in Action
As you create functional decomposition diagrams, the following features of Visible rules are
employed.
• Repository entries are created. When you show hierarchical relationships between

functions and/or processes, they are known to Visible Analyst, even though you cannot
see them if you look at the repository entries.

• You can Spawn a function that you have diagrammatically broken down into one or more
processes. The first time you use Spawn on a function, a branch (subtree) of DFDs
including these processes is created. Subsequent uses of Spawn allow you to move from
your FDD to the DFD at the top of the branch, to resynchronize the DFDs with your
FDD, or to break the spawn link between them.

If DFDs exist at the time of your spawn request, Visible Analyst attempts to integrate
these into the proper relationship with your FDD. Be aware, however, that this might be
impossible due to extreme contradictions between how you specified relative process
hierarchies on each of your diagram sets. In this case, Visible Analyst lets you know this
and suggests that you run Analyze to find out just what the problems are.

• After a Spawn operation is complete, the processes that appear on the created DFDs are
numbered in the usual manner for DFDs. However, these numbers do not appear on your
FDD.

• Change Item, from the Diagram menu, allows you to convert a function into a process
and vice versa, in case you change your mind about something after you have entered it
on the FDD. You cannot change a process into a function if it already exists on a DFD,
and you cannot change a function into a process if it has been spawned.

• You can Analyze your FDDs, either individually or as a group, to find inconsistencies
and violations of methodology rules. These rules and the analysis process are explained
below.

The Visible Rules

169

Analyzing FDDs

Overview
Visible rules check four classes of errors:
• Syntax errors. These are errors that make your FDD impossible for Visible Analyst to

understand.
• Connection errors. These indicate violations of the rule that a function is of a higher order

than a process and make it impossible to generate spawned DFDs.
• Balancing errors against DFDs. These are things wrong with a FDD that make it

incompatible with existing or planned DFDs.
• Page connection errors. These are errors involving improperly specified page connections

between parts of an FDD, incorrect or missing connector labels, etc.

There are two types of analysis:
• Current diagram. This checks for the first three of the above errors for the currently

selected FDD.
• Entire project. This examines all of the FDDs in the current project (Analyze moves

across page connections) and checks for all of the above errors.

It is recommended that you run Analyze before executing Spawn on your FDD for the first
time to catch errors and allow you to correct them early, when they are easiest to fix.

Functional Decomposition Error Messages

Syntax Errors

ERROR There are ‘x’ unnamed function(s).
ERROR There are ‘x’ unnamed process(es).

These errors are the result of not labeling functions or processes on your FDDs.

To resolve the errors, find and label them using the Change Item function.

ERROR Function labeled ‘x’ is a dangling function.
ERROR Process labeled ‘x’ is a dangling process.

The above error messages are the result of not connecting the indicated items with connector
lines.

To resolve the error, move the lines and/or the symbols to appropriately connect them.

ERROR Function labeled ‘x’ has more than one input connection.

The Visible Rules

170

ERROR Process labeled ‘x’ has more than one input connection.

The above error messages are the result of connecting the indicated item to more than one
superior item, like function “D” in Figure 4-16.

 Figure 4-16

To resolve the error, move or delete lines to connect the function or process to one and only
one superior symbol.

Balancing Errors Against DFDs

ERROR Process labeled ‘x’ has a different parent on a data flow
 diagram.

The above error message indicates incompatible function/process hierarchies on your FDD
and DFDs. This is probably due either to independently making changes to these diagrams or
to spawning your FDD to an already existing branch of data flow diagrams. This situation can
occur either on a single FDD or across a page connection.

To resolve the error, first decide whether your FDD or your DFDs have priority. If you use
functional decomposition for your overall business planning, it should probably be given
priority. In this case, edit the DFD to make it match the FDD and then rerun Spawn Verify on
the parent function to synchronize the diagrams and to make sure that the error message goes
away. If your DFDs have priority, you can either correct the FDD or you can do nothing and
live with this error message and the fact that the FDD and DFDs are out of sync.

The Visible Rules

171

WARNING Process labeled ‘x’ is not used on a data flow diagram.

The above warning message indicates that either the FDD containing the process has not been
spawned or that the process has been deleted from a DFD.

To resolve the warning, Spawn the FDD (if it has never been spawned), or add the process to
a DFD manually or with the Spawn Verify function.

Connection Errors

ERROR Function labeled ‘x’ is placed illegally in the hierarchy structure – its

parent is a process.

The above error message is the result of violating the hierarchy rule for functions and
processes, like function “D” in Figure 4-17. This situation can occur either on a single FDD or
across a page connection.

 Figure 4-17

To resolve the error, use the Change Item function to make the function into a process or the
superior process into a function.

ERROR There are ‘x’ lines only connected at one end to a methodology symbol.

The above error message is the result of improperly connecting two symbols, as between
functions “A” and “C” in Figure 4-18. The elbow connector to function “C” was not drawn
starting at function “A”, but at the elbow of the connector joining functions “A” and “B.” It is,

The Visible Rules

172

in actuality, if not in appearance, dangling. Note that a visibly dangling connector line would
also generate this error message.

 Figure 4-18

To resolve the error, redraw the line so that it truly joins functions “A” and “C.”

Page Connection Error Messages

ERROR Page connector labeled ‘x’ is dangling.

The above error messages are the result of not connecting the indicated page connector with
connector lines.

To resolve the error, draw or move connector lines to connect the function or process to an
appropriate other symbol.

ERROR Duplicate appearance of page connector ‘x’.

This error message is issued when two or more instances of either an input or an output page
connector are assigned an identical label.

To resolve the error, either delete or change the label of the duplicate instance of the page
connector.

ERROR There are ‘x’ unnamed page connectors.

These errors are the result of not labeling page connectors on your FDDs.

To resolve the errors, find and label them using the Change Item function. The page connector
symbols on each end of the link should have the same name.

ERROR Page connector labeled ‘x’ is placed on wrong diagram.

The Visible Rules

173

This error message occurs when the input page connector symbol is located on a different
diagram from the page that is actually connected.

To resolve the error, delete the misplaced page connector symbol and recreate it on the page
that is actually connected. (You might want to use the Construct function to do this.)

ERROR Page connector labeled ‘x’ has more than one connection.

The above error message means that either the page connector has more than one hierarchical
parent, as in Figure 4-19, or that it has been used to substitute for a connector junction (it has
more than one hierarchical child) as in Figure 4-20.

 Figure 4-19

The Visible Rules

174

 Figure 4-20

To resolve the error in the first situation, break one of the connections from a function or
process to the page connector. In the second circumstance, move the parent of the page
connector to the paged diagram, as in Figure 4-21.

The Visible Rules

175

 Figure 4-21

ERROR Valid matching page connector cannot be found for ‘x’.

The above error message indicates that either the two page connectors for a page connection
are not labeled identically or that one or both are not labeled at all.

To resolve the error, change the name on one page connector to match the one at the other end
of the connection.

ERROR Unexpected appearance of page connector labeled ‘x’.

The above error message indicates that Visible Analyst could not match up pairs of page
connectors. Page connectors must be paired: one input and one output. The many-to-one page
connections acceptable for structure charts are not valid on FDDs. Analyze requires unique
and identical labels on each end of a page connection. If two page connectors on a diagram
are not labeled identically, Visible Analyst is unable to resolve the connections, as in Figure
4-22, and issues this message. The Page operation automatically copies a labeled page
connector to the newly connected page to insure the existence of both connector symbols and
avoid this error.

The Visible Rules

176

 Figure 4-22

To resolve the error, either eliminate one occurrence of the named page connector or rename
one of them to something else.

STRUCTURE CHARTS

Structured Design Overview
Structured design is a discipline that is complementary to structured analysis and, in fact,
builds upon it. The purpose of structured design is to provide a technique for translating
specifications generated using structured analysis into computer programs. As such, it is
almost a graphical programming technique. Structured design is practiced in a more
subjective manner than is structured analysis, meaning that there are fewer hard and fast rules
for how a given project analysis should translate into a structured design. After all, even badly
written programs can work.

Visible rules implementation of the Yourdon/Constantine3 structured design methodology is
intended to maintain as much design freedom as possible for the user, while providing design

3 For more detailed information on the Yourdon/Constantine structured design technique you
can refer to the following books:

The Visible Rules

177

evaluation against known poor design practices. The error and warning messages generated
are intended to be used as guidelines rather than rules.

Visible Analyst support for the Yourdon/Constantine methodology includes four major areas.
These are symbol support, line and connector support, analysis support, and repository
support.

Structure Chart Graphics
Structured design is primarily a program description or specification technique. As such, the
symbols, lines, and connectors used by the technique represent programming constructs. The
symbols used4 are as follows:

Structure Chart Symbols

Module Library Module On-Page Connector
Macro Library Macro Off-Page Connector
Data Only Module Information Cluster

As with DFD symbols, they can be accessed from the Diagram menu or the control bar. All of
the symbols supported under Yourdon/Constantine methodology are program modules of
some type, except for the on-page and off-page connector.

Data only modules and information clusters are specialized types of modules. Modules,
macros, and library modules are types of normal program modules. However, there are some
differences between them.
• A module represents a contiguous sequence of program statements, in other words, a

program, subroutine, function, etc., depending upon the target development language. Its
interfaces to other modules (of all types) are not hidden from the designer.

• A library module is “a module that always executes in the same way on each separate
activation, as if it were a fresh copy of the module.”5 It is differentiated from a module in
usage by the fact that its interfaces to other modules (if any) are hidden from the
designer.

• A macro is “a module whose body is effectively copied in-line during translation (e.g.,
compilation or assembly) as a result of being invoked by name; that is, the bounded

 Yourdon, E.N., and Constantine, L.L. Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design. Englewood Cliffs: Prentice-Hall,
1986.
 Page-Jones, M. The Practical Guide to Structured Systems Design. Englewood
Cliffs: Prentice-Hall, 1988.
4 For a more complete and formal definition of these symbols, see Yourdon/Constantine,
p.456.
5Ibid., p. 459.

The Visible Rules

178

contents replace the reference to the aggregate identifier.” 6 The only practical difference
between a macro and a module is that macros tend to make a system operate faster, but at
the expense of more memory space required to operate that system.

• A library macro is a macro whose interfaces to other modules (if any) are hidden from the
designer.

Note

2 Each of these module varieties can have a subtype classification. It can be the
standard one, as described above, or it can be a check condition, stored
procedure or a trigger. These types of modules are used to store SQL procedure
code to be generated with SQL schemas.

A data only module is a module that consists solely of data – data elements or structures of
data elements. It is always a lowest-level module in that it may only be accessed by other
module types and never calls other modules itself (though it can contain lexically included
data modules).
• An information cluster is an aggregate of two or more modules and only one data-only

module. Rules support information clusters with up to seven internal modules. The
information cluster is intended to aggregate all the modules that would share a single data
only module, for the purpose of diagram clarity and understanding. It operates as a
module for all other purposes. The Drawing Diagrams chapter has a full description of
how to add an information cluster to a diagram.

• A program is a structure chart item that appears only in the repository of your project. It
represents a computer program and is composed of a number of modules. Its use is
discussed under Shell Code Generation in The Visible Repository chapter.

Structure Chart Line Types
Structure charts use four line types:
• Invocation lines
• Data and control connections
• Data, control, and generic couples
• Data, control and generic interface table rows (ITRs)

Invocation lines, along with data and control connections, are line types that connect modules
on a diagram. Invocation lines differ from data and control connections in a number of
significant ways. Couples and interface table rows are a third line type and are distinguished
from invocations and connections by the fact that they do not connect modules, but are shown
being passed to and from modules by invocations and connections. A discussion of the
differences and uses of the different line types follows.

6Ibid., p. 455.

The Visible Rules

179

Invocation Lines
The meaning of this relationship is a passing of control: module A calls module B. Implicit in
the meaning of an invocation is the return of control to the calling module when the called
module is done processing. An invocation is shown by drawing a line from the border of one
module to the border of any other module except data only-modules. (See Figure 4-23.)
Invocation lines can pass combinations of couples and ITRs to other modules.

 Figure 4-23

Using Invocation Lines
To use an invocation line, add it to your diagram as described in the Drawing Diagrams
chapter. Any line style can be used to draw an invocation line except for the two line styles
with control and data end points (solid or open circle on one endpoint) and the loop line type.
Invocation lines can have a variety of terminators associated with their endpoints. These are
arrowhead, conditional, and lexical inclusion. Use of a terminator is optional. Terminators are
discussed later.

Data and Control Connections
Data and control connections always show data or control being passed. Implicit in their use
is that control or data is passed uni-directionally. Control does not automatically return to the
calling module as it does for invocations. They are differentiated from invocations by a
number of criteria:
• They never use conditional, lexical, or loop connectors.

The Visible Rules

180

• Pathological connections are allowed (but not encouraged).
• Data connections can pass data couples (or DITRs) between modules; control

connections can pass control couples (or CITRs) between modules.

Using Data and Control Connections
A data connection is drawn using the line selection with an open circle on one endpoint of the
line. Again, arrowhead terminators are optional on the other end. Data connections are used to
show that data only is being passed, as from module C to module A in Figure 4-24.
• A control connection is drawn using the line selection with a filled circle on one endpoint

of the line. Arrowheads are optional but recommended. Control connections are used to
show that only control is being passed, as from module A to module B in Figure 4-24.

 Figure 4-24

Terminators for Invocation Lines
As described above, invocation lines can use a variety of terminator types. Terminators add
information about how control is passed from module to module. This is generally necessary
for proper documentation when describing complex programs. Visible rules support special
terminator types and one special line type used to denote the programming constructs under
which invocations are made.

The terminator types and the special lines supported for invocation lines are:
• Arrowhead
• Conditional
• Loop (a line type)

• Lexical Inclusion

The Visible Rules

181

Conditional is the diamond shaped terminator. A conditional connector may be attached to
only the “invoking” or starting point of an invocation line. It shows that conditions apply to
the invocation. It is used primarily to indicate a decision. For instance, in Figure 4-25 module
A calls module B under one set of conditions and module C under a second set of conditions.

 Figure 4-25

The loop line is the open ellipse line type in the structure chart Line Settings dialog box. (See
Figure 4-26.) Even though it is a line, it cannot be labeled, it cannot be defined in the
repository, and its primary purpose is to show that an invocation line (of any type) is part of
an iterative and/or an ordered set of invocations. In use, a loop can be drawn around the start
point of one or more invocation lines. Loops can be nested.

The Visible Rules

182

 Figure 4-26

The lexical inclusion is the “split line” or “hat” shaped terminator for structure chart lines.
(See Figure 4-27.) Its purpose is to show that the invoked module is logically separate but
physically internal to the calling module. Its definition is “the property of one object ... being
wholly contained within the lexical boundaries of another.” 7A lexical inclusion terminator
may only be attached at the end point of an invocation line.

7 Ibid., p. 455.

The Visible Rules

183

 Figure 4-27

Data Couples
A data couple is a line type that is associated with invocation or data connection lines. Data
couples are the data parameters that get passed between program modules. They are
distinguished by an open circle at one endpoint and an arrowhead at the other. (See lines “W”
and “X” in Figure 4-28.) Data couples can be bi-directional; that is, two arrowheads pointing
away from each other, and one open circle in the middle of the line. Bi-directional data
couples are used for indicating in-out data coupling. Refer to Drawing Diagrams for a full
description of how to draw couples. A data couple can be changed into a data interface table
row by modifying the couple type field in the repository, as explained in The Visible
Repository chapter.

The Visible Rules

184

 Figure 4-28

Control Couples
A control couple is a line type that is associated with invocation and control connection lines.
Control couples are the control parameters that are passed between modules upon invocation
or return. Control couples are distinguished by a filled circle at one endpoint and an
arrowhead at the other. (See line “Y” in Figure 4-28.) Control couples can be bi-directional
just like data couples and are used for indicating an in-out couple. A control couple can be
changed into a control interface table row by modifying the couple type field in the
repository, as explained in The Visible Repository chapter.

Generic Couples
A generic couple is a line type that is associated only with invocation lines. Generic couples
show that both data parameters and control parameters are passed between modules upon
invocation. Generic couples are distinguished by not having a circle on one endpoint of the
line and by an arrowhead at the other. (See line “Z” in Figure 4-28.) Generic couples can be
bi-directional (like data and control couples). A generic couple can be made into a generic
interface table row by modifying the couple type field in the repository, as explained in The
Visible Repository chapter.

The Visible Rules

185

Interface Table Rows (ITRs)
An interface table row represents a group of one type of couples and is drawn on the diagram
to be a couple of that type. It is used to simplify the diagramming of complex module
interfaces that include many different types of couples and make the diagram appear less
cluttered. The couples that make up an ITR are listed in the composition field of the ITR in its
repository entry (see The Visible Repository).

Linking Structure Chart Pages Together
Structure chart diagrams, in contrast to data flow diagrams, are not hierarchically organized.
In Visible Analyst, structure charts are linked together using both on-page and off-page
connectors. The Page function is used to link the structure chart modules together over
diagram boundaries, without the loss of connection normally associated with multi-diagram
charts. The Nest and Split Data Flow functions that connected your data flow diagrams, are
disabled for the purposes of drawing structure charts. Visible Analyst recognizes page
connectors when performing an analysis validation; that is, if a structure chart is composed of
ten connected pages, Analyze reviews all ten pages as though they were one chart.
Off-page connectors can be either input connectors or output connectors. An input connector
carries an invocation from a module to another diagram. An output connector joins an
invocation from another diagram to a module on the current diagram. There are some general
rules when using off-page connectors.
• Each input connector may refer to only one output connector.
• Each set of connectors must be uniquely identified. For an input connector labeled XYZ,

there must be an output connector labeled XYZ.
• Each set of connectors must be connected with the same type of invocation line or data or

control connection.
• Input connectors can have multiple occurrences that all refer to the same output

connector.
• Input connectors can have many invocation lines or data or control connections (all of the

same type) attached to them.
• Output connectors may have only one invocation line or data or control connection going

from it to a module.

Analyzing Structure Charts
Visible rules analyze structure chart diagrams based upon heuristics. Fan-in, fan-out, design
complexity and completeness are checked. Analysis operates at two levels, module-to-module
and global. At the module-to-module level, the Analyze function reviews the connections
between modules for correctness of connection, complexity of interface, and completeness of
design. Module-to-module connections are in one of three conditions for any connection:
• A valid connection, for which no error message is generated.
• A conditionally invalid connection, for which a WARNING message is generated.
• An invalid connection, for which an ERROR message is generated.

The Visible Rules

186

All modules are analyzed for complexity of interface. The technique used is called fan-in/fan-
out analysis8. Fan-in and fan-out measure, respectively, the number of calls to a module from
other modules and the number of calls a module makes to other modules. Analyze gives
warnings for low fan-in and high fan-out. Additionally, Analyze implements Card’s Intrinsic
Complexity Algorithm9 to generate an index of a diagram’s complexity. (See Figure 4-34 for
more information.)

All modules and interfaces are analyzed for completeness of design. Modules and couples are
checked for labeling and connection. If a module or couple is unlabeled, an error message is
generated. If a module is unconnected, an error message is generated. If an invocation line
does not connect to another module, an error message is generated. This is explained in detail
below.

Structured Design Error Messages

ERROR There are ‘x’ unnamed module(s).
ERROR There are ‘x’ unnamed page connector(s).
ERROR There are ‘x’ unnamed couple(s).
ERROR There are ‘x’ unnamed information cluster(s).

These error messages are the result of not labeling symbols or couples on your structure
charts.

To resolve the errors, find and label them using the Change Item function.

ERROR Module labeled ‘x’ is a dangling module.
ERROR Page connector labeled ‘x’ is dangling.
ERROR There are ‘x’ invocation line(s) without source and/or destination.

The above error messages are the result of not connecting the indicated items with invocation
lines.

To resolve the error(s), draw invocation or connector lines or move modules or lines so that
they will be connected.

ERROR Page connector labeled ‘x’ has both input and output connections.

8 Refer to Yourdon/ Constantine for a full description of acceptable fan-in/fan-out parameters.
9Card, David N., and Glass, Robert L. Measuring Software Complexity. Englewood Cliffs:
Prentice-Hall, 1990.

The Visible Rules

187

The above error is the result of using the same page connector for two-way page connections.
See Figure 4-29. Rules expect page connectors to be one-way only. (This is for validation
purposes.)

Figure 4-29

To resolve the error, create a second page connector using the Page function and use it to
replace one of the directions included in the original page connector.

ERROR There are ‘x’ incorrectly placed looping structure(s).

This error message is the result of not placing a loop connector properly on the diagram.
To resolve the error, reposition any loops so that they are placed with at least one endpoint
attached to a module.

ERROR Illegal connection between module ‘x’ and module ‘y’.
ERROR Illegal connection(s) using off-page connector ‘x’.

The above error is the result of connecting two modules in an incorrect manner. In general,
this error is the result of using a library module, library macro, or data only module to call

The Visible Rules

188

another module, possibly using a page connector (there are some exceptions). See Figure
4-30.

 Figure 4-30

To resolve the error, review the module(s) with illegal connections, and change the
connections to correct or permitted types.

WARNING Connection type between module ‘x’ and module ‘y’ cannot be
 accurately determined.

The above warning message indicates that rules were unable to determine a connection type,
for instance, a pathological data connection that refers to an entire module.

To resolve the warning, review the diagram and check for proper use of the line type for the
particular situation.

ERROR ‘x’ has more than one lexical inclusion.

The above error message indicates that the flagged module is represented as lexically included
in more than one other module.

To resolve the error, either change the terminator or move the extra lexical inclusion line(s) so
that only one lexical inclusion references the flagged module.

The Visible Rules

189

WARNING Permitted but not recommended connection between module
 ‘x’ and module ‘y’.
WARNING Permitted but not recommended connection(s) using off-page
 connector ‘x’.

The above warning messages are generated when modules are connected in ways that have
been proven to have drawbacks in terms of design.

To resolve the warning(s), change the connections to more acceptable types.

ERROR Page connector labeled ‘x’ has more than one output connection

The above error is the result of using the same page connector for calling multiple modules on
another page. As discussed earlier, an output connector may only connect to one module. See
Figure 4-31.

 Figure 4-31

To resolve the error, reverse the positions of the calling module and the page connector; that
is, replace the calling module with a page connector on the calling page. This has the effect of
moving the page connector up one level in the program hierarchy. Next, place the module (the
one just replaced with the page connector) on the called diagram. Use the page connector on
the called page to connect to the module, then use the module to call the other modules.

ERROR Page connector labeled ‘x’ appears as output more than once.

The Visible Rules

190

The above error indicates that the flagged page connector is an output connector in more than
one place in your structure chart. As discussed earlier, each set of uniquely named connectors
may have only one output connector.

To resolve the error, remove or rename the flagged output connectors until only one output
connector of that name remains in the structure chart set.

ERROR Page connector labeled ‘x’ has mismatched connection types.

The above error is the result of calling to a page connector with one type of connector, and
calling from the connector, on the called page, with another type of connector. See Figure 4-
32.

Figure 4-32

To resolve the error, first decide which connector type is the desired type. Then use the
Change Item function to change the invalid connector to the desired type.

ERROR Matching page connector cannot be found for ‘x’.

The Visible Rules

191

The above error is the result of not using a page connector either on the calling or on the
called page. Also, one or more page connectors used might be incorrectly labeled.

To resolve the error, locate the page connector without a match and use the Page function to
access the paged diagram. Once on the connected diagram, review the diagram for the
presence of the offending connector. If it isn’t there, use the Symbols function to place one on
the diagram and the Lines function to connect it to the module it should be connected to.

ERROR Off-page labeled ‘x’ appears as both input and output.

The above error indicates that a connector exists as both input and output. A page connector
may be either input or output, but not both. Also, a page connector may not exist as separate
input and output connectors on the same page.

To resolve the error, remove the connections to the flagged page connector so that it is either
input or output.

WARNING Low fan-in for module ‘x’.

The above warning message is the result of a module being called by too few other modules.
This is an indication that the called module could, potentially, be moved into the body of the
calling module. This warning falls into the same category as the next warning message in that
it is a guideline, not a rule.

To resolve the warning, check the modules involved and verify whether upwards joining is
needed or not needed. Once you’ve made the determination for yourself, you can safely
ignore the warning message from then on.

WARNING High fan-out for module ‘x’.

The above warning message is the result of using too many calls from the flagged module.
The warning is based upon design principles and is meant to be a guideline indicating a
potentially overly complex control structure within the calling module.

To resolve the warning, add levels of modules to break up control issues into less complex
structures.10

ERROR Information cluster labeled ‘x’ has unnamed modules.

10 Refer to Yourdon/Constantine, Chapter 9, for a full discussion of how to resolve high fan-
out.

The Visible Rules

192

The above error is the result of not labeling one or more of the modules internal to an
information cluster. See Figure 4-33.

 Figure 4-33

To resolve the error, label all of the modules in the information cluster.

Analysis Statistics
Analyze generates statistics to help you evaluate your design diagrams. The figures it displays
are:
• Number of modules x
• Average module fan-out x
• Structural complexity x

Figure 4-34 explains how these statistics are calculated for the sample structure chart diagram
shown.

The Visible Rules

193

Structural Complexity

Module 1

Module 2 Module 3

Module 8Module 4 Module 5 Module 6 Module 7

22

22

32

S = ΣΣ f 2
 n

22 + 22 + 32 = 2.1
 8

Note: Structural complexity is equal to the sum of the square of
module fan-out (the number of invocation lines from a module)
divided by the number of modules in the system.

 S = structural (intermodule) complexity
 f = fan-out of a module
 n = number of modules in system
 Statistics:
 Number of modules 8
 Module average fan-out 0.9
 Structural complexity 2.1

 Figure 4-34 Structural Complexity Information

The Visible Rules

194

ENTITY RELATIONSHIP DIAGRAMS

Data Modeling Overview
Entity relationship diagrams allow you to express the data model of your project
diagrammatically. You can describe the entities (or, more properly, entity types) in the data
you are modeling and the relationships between them by drawing them onto a diagram. Each
diagram or view can show an arbitrarily large or small part of your data model. You can show
multiple views of your data model by including different combinations of entities and
relationships on various diagrams. However, the entire data model is retained in the
repository. To show really large data models and still have them comprehensible, you can
cluster groups of entities and show these clusters and the relationships between them on a
view. See Drawing Diagrams for descriptions of this function.11

All information you place in a view is, of course, captured by the repository and is available
to both your process model (data flow diagrams) and to your structure charts, where
applicable, if you have an integrated tool set. The Analyze function can help you balance a
data model against a process model and maintain consistency. Additionally, Key Analysis can
help you set up a consistent relational database key structure by data elements (sometimes
called attributes) which you designate as keys or parts of compound keys across relationships
to associated entities and create foreign keys. Using associator element names in relationship
repository entries makes this process work better.

Data Modeling Graphics
Entity relationship diagramming is designed to give you the ability to clearly show the
characteristics of your data while still allowing a certain degree of flexibility in modeling
style. By careful use of configuration settings and the line and symbol sets, you have the
ability to use different entity symbols and various line terminators that show relationship
cardinality.

11 Although many of the methodological details are different from how it is done in Visible
Analyst, a good introduction to the concepts of data modeling can be found in Shlaer, S., and
Mellor, S. J., Object-Oriented Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1988.

A practical, but more advanced, book is:
 Fleming, C. C., and von Halle, B. Handbook of Relational Database Design.
Reading: Addison-Wesley, 1989.

The Visible Rules

195

Entity Symbols
There are three entity types available for you to use: fundamental, associative (sometimes
called junction entities, concatenated entities, gerunds or correlation tables) and attributive,
each with its own symbol in the symbol set. The Analyze function takes into account the type
of entity you specify and helps you identify certain normalization errors, as well as assists in
key migration. You can, if you wish, use a single symbol to represent entities of all types or
you can alter your symbol set so that the different types of entities have any appearance you
desire.

Entity symbols can be shown on an ERD at three levels of detail. The diagram can be set to
show only the entity names, the entity name and attributes that are part of the primary key, or
all attributes. When changing the detail level, entity symbols are automatically resized and the
relationships are reconnected properly. To set the detail level, choose Entity Display Options
from the View menu; or click one of the display level buttons on the control bar when the
diagram tools tool bar is displayed.

Relationship Lines
Relationships can be labeled in one or both directions. You set this value when you create the
project. Relationship lines between entities usually have terminators on each end that show if
the relationship cardinality is 0:1, 1:1, 0:many, 1:many or many:many. You can set default
terminators to show relationship cardinality with Line Settings from the Options menu, as
described in the Drawing Diagrams chapter. If Auto Label Lines is enabled, after you add a
relationship to your view, a dialog box opens in which you can enter the labels for each
direction of the relationship. At that time, you also have the opportunity to change the
cardinality from the default.

View Objects
A view object is similar to an entity in that it has a composition but the items that appear in
the composition of a view must belong to other entities or be expressed based on data
elements used by another entity. View objects are described in detail in The Visible
Repository.

Analysis for Entity Relationship Diagrams
For data modeling, after selecting Analyze from the Diagram menu you have an additional
analysis choice available when analyzing either the current diagram or the entire project. You
have the option of doing normalization as well as syntax analysis. Syntax analysis identifies
unnamed entities and relationships. Normalization analysis does syntax analysis and also
identifies certain possible relationship normalization errors. This warns you of many-to-many
relationships, optional-optional relationships, mandatory one-to-one in both directions and the
fact that the identifying relationships for associative and attributive relationships are not
shown on the current view. (A relationship is identifying or defining if it comes from a
fundamental entity where the cardinality is 1:1.)

The Visible Rules

196

From the Repository menu, you have the additional analysis choices Key Analysis, Key
Synchronization and Model Balancing (balancing your data model against your process
model).

Normalization Analysis
Normalization12 errors at the entire project level warn you if an associative entity has fewer
than two identifying relationships and if an attributive entity has other than one identifying
relationship.

Key Analysis
Key analysis does syntax and normalization analysis, and also finds errors in primary and
foreign key specification. It notes:
• An entity without a primary key.
• A primary key on one end of a relationship without a foreign key on the other end.
• An associative entity with fewer than two foreign keys making up the primary key.
• An attributive entity with other than exactly one foreign key as a primary key.
• A foreign key without a corresponding relationship.
• A foreign key that is part of the primary key of a fundamental entity.

As described in The Visible Repository, you have the option of adding the name of a special
kind of data element called an associator to the repository entry of a relationship. When
specified and automatically created, this is used by Analyze as the name of the foreign key for
an entity at the other end of the relationship in the current direction.

Key Synchronization
Key synchronization migrates primary keys across normalized relationships to make foreign
keys in other entities and adds descriptive information about the relationship and the related
entities. If you do key migration on an entity pair whose relationship has no associator
element name specified, Analyze uses whatever name you have already specified for the
existing primary key (or just the abbreviations [PK] and [FK]). If you later add an associator
element name for the relationship and rerun Key Synchronization, the key is updated with the
proper associator element name. You can choose to do all of this key migration manually, if
you wish. Alternate keys ([AK#]) are not migrated.

Process/Data Model Balancing
If at least one of the balancing options is set with ERD Balancing Rules from the Options
menu, the Model Balancing function balances data elements and/or entities against existing
data flow diagrams. The first option (All Fundamental Elements Must Be Used on a DFD)

12 Normalization is a means of eliminating redundancy in data. It is a complex topic and is
beyond the scope of this manual. Since understanding normalization is key to effective
database design, you should consult a text on the subject, such as one written by C. J. Date.

The Visible Rules

197

tells Visible Analyst whether you want to be made aware of any data elements that aren’t
used. In other words, is an element listed as part of an entity but not used by at least one
process on at least one data flow diagram? As for the second option (Every Entity Must
Correspond to a Data Store), there is some degree of correspondence between the entities in a
data model and the data stores in a process model. The nature of this correspondence is not
generally agreed upon. You can specify that every entity must correspond to a data store with
the same composition and Analyze notifies you if this is not the case.

Data Modeling Error Messages

ERROR Relationship ‘x’ is not normalized.

The above error indicates that the cardinality is not x:1 on either end (it is 0:many or
many:many in both directions). (See Figure 4-35.)

 Figure 4-35

To resolve the error, change the cardinality on one end of the relationship so that the upper
limit is one.

WARNING Reverse Relationship of ‘x’ is unnamed.

The above warning indicates that a relationship is labeled in only one direction, while the
project has been configured for relationships to have two labels.

The Visible Rules

198

To resolve the warning, find the relationship and make sure that it is labeled in both
directions.

WARNING Relationship ‘x’ is optional in both directions.

The above warning means that on both ends of a relationship, the cardinality is 0:x.
Optional:optional relationships can be difficult to implement. (See Figure 4-36.)

 Figure 4-36

To resolve the warning, make the relationship cardinality mandatory on at least one end.

WARNING Relationship ‘x’ is one to one mandatory.

The above warning indicates that there is a possible normalization error for the entities at both
ends might belong in the same table. (See Figure 4-37.)

The Visible Rules

199

Figure 4-37

To resolve the warning, either combine the two entities into one or change the relationship
cardinality. If the relationship is in fact correct, ignore the warning.

ERROR Unattached relationship ‘x’.

The above error should never happen in the normal course of things because Visible Analyst
rules do not allow you to draw and name an unattached relationship. Also, if you detach a
relationship from an entity or delete an attached entity, the name on the relationship is cleared.
(If the relationship has locations on other views, only this location is cleared.) However, a
corrupted file, such as from a power surge or system lockup at a critical time, could leave a
relationship unattached.

To resolve the error, display the diagram on which the error occurred and delete the
relationship. Then run the Rebuild function to restore synchronization between the repository
and the diagram. Finally, add the properly attached relationship back to the diagram.

ERROR There are ‘x’ unnamed entity(s).
ERROR There are ‘x’ unnamed relationship(s).

These error messages are the result of not labeling entities or relationships on your ERD(s).

To resolve the error, find and label them.

The Visible Rules

200

ERROR Attributive entity ‘x’ has no identifying relationship attached.

The above error indicates that nowhere in the repository does the required identifying
relationship for an attributive entity exist.

To resolve the error, be sure that this attributive entity has one identifying relationship.

ERROR Entity ‘x’ has no primary key defined.

The above error indicates that there is no data element listed in the composition field of this
entity marked with [PK] to indicate that it is the primary key for the relationship.

To resolve the error for a fundamental entity, be sure that at least one data element is listed in
the composition field of the entity marked with [PK]. To resolve the error for an associative
entity, run key synchronization to migrate the keys from fundamental or other associative
entities.

ERROR Associative entity ‘x’ has less than two identifying relationships attached.

The above error indicates that nowhere in the repository do the required two identifying
relationships for an associative entity exist.

To resolve the error, be sure that this associative entity has two identifying relationships. A
relationship is identifying if it comes from a fundamental entity where the cardinality is 1:1.

WARNING Associative entity ‘x’ has less than two identifying relationships

in this view.

The above warning alerts you that the identifying relationships for an associative entity might
not exist. (This error only happens when you are analyzing a single diagram. If both
identifying relationships exist in the repository, they are found by a whole-project analysis.)
(See Figure 4-38.)

The Visible Rules

201

 Figure 4-38

To resolve the warning, check to be sure that on some diagram this associative entity has two
identifying relationships. If it does, then ignore this warning. It is good practice to include
both identifying relationships on all views where an associative entity appears.

WARNING Attributive entity ‘x’ has no identifying relationship
 in this view.

The above warning exists to warn you that the identifying relationship for an attributive entity
might not exist. (This error only happens when you are analyzing a single diagram. If the
identifying relationship exists in the repository, it is found by a whole-project analysis.) (See
Figure 4-39.)

The Visible Rules

202

 Figure 4-39

To resolve the warning, check to be sure that on some diagram this attributive entity has an
identifying relationship. If it does, then ignore this warning. It good practice to include the
identifying relationship on all views where an attributive entity appears.

ERROR Attributive entity ‘x’ has no unique primary key.

The above error indicates that either no primary key or one that is not unique has been defined
for the named attributive entity. Attributive entities must be able to refer to only one
fundamental entity.

To resolve the error, add a unique primary key.

ERROR Foreign key does not exist for relationship ‘x’.

The above error indicates that a primary key has not been migrated across a relationship to
form a foreign key in another entity.

To resolve the error, you can either add a data element name preceded by [FK] to the
composition field of the indicated entity or run key synchronization and let Visible Analyst do
it for you.

ERROR Foreign key ‘x’ for entity ‘y’ already exists as associator element.

The Visible Rules

203

The above error indicates that both an associator element name and a foreign key with the
name of the primary key of the related entity have been added to the composition field of an
entity.

To resolve the error, run key synchronization; it leaves the name of the associator element as
the only name for the foreign key name.

ERROR Duplicate foreign key ‘x’ for entity ‘y’.

The above error indicates that there are two foreign keys with the same name listed in the
composition field of an entity.

To resolve the error, either eliminate the duplicate or run key synchronization again and
Visible Analyst deletes the duplicate for you.

WARNING Foreign key ‘x’ for entity ‘y’ has associator element defined.

The above warning indicates that an associator name has been added to a relationship since a
foreign key was added to the composition field of an entity.

To resolve the warning, run key synchronization; it substitutes the name of the associator
element for the existing foreign key name.

ERROR Associative entity ‘x’ has less than two foreign keys as primary key.

The above error either means that there are fewer than two identifying relationships for an
associative entity or the primary and/or foreign keys for existing identifying relationships
have not been identified in the composition field of the associative entity.

To resolve the error, be sure that both identifying relationships exist, that each identifying
entity has primary keys defined and that the keys have been migrated to form foreign keys in
the associative entity. Key synchronization accomplishes at least this last step.

ERROR Entity ‘x’ has cyclic definition - primary key cannot be
 determined.

The above error indicates that an associative entity is the identifying entity for another
associative entity that is, in turn, an identifying entity for this associative entity. There could
possibly be a chain of associative entities between them, still resulting in a cyclic definition.
(See Figure 4-40.)

The Visible Rules

204

 Figure 4-40

To resolve the error, make sure that there are no cyclic identifying relationships in your
project.

ERROR Attributive entity ‘x’ has no foreign key as primary key.

The above error either means that there is no identifying relationship for an attributive entity
or the primary and/or foreign key for an existing identifying relationship has not been
identified in the composition field of the attributive entity.

To resolve the error, be sure that an identifying relationship exists, that the identifying entity
has a primary key defined, and that the key has been migrated to form the foreign key in the
attributive entity. Key synchronization accomplishes at least this last step.

ERROR Foreign key ‘x’ for entity ‘y’ does not have corresponding relationship.

The above error indicates that a foreign key has been identified in the repository entry for an
entity, but that there is no relationship in a view that corresponds to this foreign key.
To resolve the error, add a relationship from another entity that has a primary key (or a
relationship with an associator element name) to correspond to the foreign key in the current
entity.

ERROR Primary key for fundamental entity ‘x’ contains foreign key.

The Visible Rules

205

The above error indicates that both a primary and a foreign key have been identified for a
fundamental entity.

To resolve the error, either change the symbol for the entity so that it is no longer a
fundamental entity or eliminate the [FK] notation in the composition field of the fundamental
entity.

ERROR Old foreign key column ‘x’ in entity ‘y’ should be removed.

The above error message indicates a column that had been marked as a foreign key should be
removed from the entity because it no longer appears as a key column in the parent entity, or
the relationship to which the key belonged was deleted.

To resolve the error, remove the column from the composition field, or perform key
synchronization.

ERROR Old foreign key column ‘x’ in entity ‘y’ should be removed from the

primary key.

The above error message indicates a column that had been marked as a primary foreign key
should be removed from the entity because it no longer appears as a key column in the parent
entity, or the relationship to which the key belonged was deleted.

To resolve the error, remove the column from the composition field, or perform key
synchronization.

ERROR Definition for column ‘x’ in entity ‘y’ should be updated for relationship

‘z’.

The above error message indicates that the type or physical characteristics of a foreign key
column in the child are different from the parent.

To resolve the error, change the definition in the dependent entity, or perform key
synchronization.

ERROR Extra primary key column ‘x’ in entity ‘y’ should be removed from the

primary key because of singular relationship ‘z’.

The above message indicates that there are columns included in the primary key that should
not be used. For supertype relationships and identifying relationships where the cardinality is
singular, the primary key of the child must exactly match the primary key of the parent. This
means all members of the primary key must be foreign key columns.

The Visible Rules

206

To resolve the error, remove the non-foreign key members of the primary key, or perform
Key Synchronization which removes the extra column from the primary key. The column is
not deleted from the entity.

ERROR Column ‘x’ in entity ‘y’ is used by overlapping foreign keys with

conflicting types. Relationship ‘z’ should no longer use this column.

The above message indicates the same foreign key column was used by more than one
relationship but the definition was different (physical information differs).

To resolve the error, add a new column for the conflicting key column or perform key
synchronization.

KEY SYNC Primary foreign key created for relationship ‘x’.

The above message is not an error. It exists to notify you that key synchronization migrated a
key across an identifying relationship.

KEY SYNC Foreign key created for relationship ‘x’.

The above message is not an error. It exists to notify you that key synchronization migrated a
key across a non-identifying relationship.

KEY SYNC Old foreign key column ‘x’ in entity ‘y’ has been removed.

During the key synchronization, a column that had been marked as a foreign key was
removed because it no longer appeared as a key column in the parent entity.

KEY SYNC Old foreign key column ‘x’ in entity ‘y’ has been removed from the primary

key.

During the key synchronization process, a column that had been marked as a primary foreign
key was removed because it no longer appeared as a key column in the parent entity.

KEY SYNC Column ‘x’ in entity ‘y’ is used by overlapping foreign keys with

conflicting types. Relationship ‘z’ will no longer use this column.

The above message notifies you that key synchronization removed a foreign key from the
child table because the same name was used by more than one relationship but the definition
was different (physical information differs). A new column is added for the conflicting key
column.

The Visible Rules

207

KEY SYNC Definition for column ‘x’ in entity ‘y’ has been updated for relationship ‘z’.

The above message is not an error. It notifies you that key synchronization changed the
definition of a foreign key column because the definition in the child was different from the
parent.

KEY SYNC Column ‘x’ in entity ‘y’ has been added to the foreign key of relationship

‘z’.

The above message is not an error. It notifies you that key synchronization migrated a key
across a non-identifying relationship.

KEY SYNC Extra primary key column ‘x’ in entity ‘y’ has been removed from the

primary key because of singular relationship ‘z’.

The above message is not an error. It notifies you that key synchronization removed a column
from the primary key. For supertype relationships and identifying relationships where the
cardinality is singular, the primary key of the child must exactly match the primary key of the
parent. This means all members of the primary key must be foreign key columns. The extra
column is removed from the primary key; the column is not deleted from the entity.

ERROR Foreign key for relationship ‘x’ is wholly dependent on the foreign key of

relationship ‘y’ in entity ‘z’.

The above message indicates that one of the relationships attached to the indicated entity
contains a subset of the foreign key columns used by the another relationship. This may
indicate that the relationship may be drawn between the wrong pair of entities.

To resolve the error, either remove the relationship, choose a different set of key columns for
the relationship, or redraw the relationship with a different parent entity.

WARNING Foreign key for relationship ‘x’ shares column(s) with the foreign key of

relationship ‘y’ in entity ‘z’.

The above message is not an error. It notifies you that key synchronization migrated the same
key column across multiple relationships because the same key column name was used in
more than one entity. This happens as long as all columns have the same physical
characteristics.

ERROR Foreign key for relationship ‘x’ should not be a component of the primary

key of entity ‘y’.

The Visible Rules

208

The above message indicates that the columns of the foreign key are marked as members of
the primary key for the dependent entity. This should only be true when the relationship is
identifying and the dependent entity is either associative or attributive.

To resolve the error, either remove the columns from the primary key list; or select the
indicated relationship, open the Change Item dialog box, and change the relationship type to
identifying.

ERROR Definition for column ‘x’ in entity ‘y’ conflicts with the definition of the

matching column on relationship ‘z’.

The above message indicates that a column that is part of the foreign key list has a different
set of physical characteristics from the corresponding primary key in the parent table.

To resolve the error, change the physical characteristics of one of the columns to match the
other.

ERROR Entity ‘x’ has multiple identifying relationships. This requires relationship

‘y’ to have a maximum cardinality greater than one.

The above message indicates that one of the identifying relationships attached to an
associative entity violates second normal form, which states that each non-key attribute must
be fully dependent on the entire primary key. By having a relationship that has a maximum
cardinality of one, you are indicating the entity is only dependent on the primary key columns
from this relationship.

To resolve the error, change the cardinality of the relationship by selecting the problem
relationship, choose Change Item from the Diagram menu, and change the Maximum
Cardinality field for the From entity.

ERROR Data Element ‘x’ is not used on data flow diagram.

The above error is generated when the process model/data model balancing criterion that all
data elements must be used has been set. It means that the specified data element is not used
by a process anywhere on any data flow diagram.

To resolve the error, be sure that the data element is listed in the composition field of some
data flow that either enters or leaves a process on at least one data flow diagram.

ERROR Entity ‘x’ has no composition defined.

The Visible Rules

209

The above error indicates that no composition has been defined for the entity. Since balancing
entities against data stores is based upon identifying identical compositions, balancing cannot
be done.

To resolve the error, add composition information.

ERROR Primary key for table ‘x’ cannot be identified.

The above error indicates that either no primary key has been specified or that the data
element named as the primary key has no physical information specified. Correct SQL
definition statements cannot be produced.

To resolve the error, either specify a primary key or correct the one that is specified.

ERROR Physical information for data element ‘x’ does not specify length.

The above error indicates that the physical information for the named data element does not
specify a length. Certain data types require a length for correct SQL definition statements to
be produced.

To resolve the error, display the physical information section for the data element and enter a
length.

ERROR Entity ‘x’ has no corresponding file.
ERROR Entity ‘x’ has no corresponding data store.

The above errors are generated when the process model/data model balancing criterion that
every entity must correspond to a data store with the same composition has been configured.
It either means that the specified entity does not correspond to a data store in the process
model or that the compositions of the entity and the intended corresponding data store differ.
The first message occurs for the Yourdon/DeMarco methodology, the second for Gane &
Sarson.

To resolve the error, be sure that there is a data store in the process model with the same
elemental composition as the named entity.

ERROR Columns for table ‘x’ cannot be identified.

The above error indicates that composition information for the entity that generates the
identified table has not been supplied. Correct SQL definition statements cannot be produced.

To resolve the error, supply composition information for the entity.

The Visible Rules

210

ERROR Entity ‘x’ is involved in a cyclic supertype/subtype relationship.

The above error indicates that two supertype relationships exist between a pair of entities,
where the supertype and subtype entities are different for each relationship. There could
possibly be a chain of entities between them, still resulting in a cyclic definition. See Figure
4-41.

Figure 4-41

To resolve the error, make sure that there are no cyclic supertype relationships in your project.

WARNING Not all subtype group members for entity ‘x’ are shown in this view.

The above warning warns you that all the subtypes that have been defined for a supertype are
not shown on a diagram. A supertype can have more than one subtype, and further, the
subtypes can be grouped together. When supertype relationships have the same origin point
on the supertype, they are considered members of the same group. There is no limit to the
number of groups that can be defined for a supertype. To resolve the warning, check to be
sure that all subtypes of a particular group are shown with all instances of the supertype and
other members of the group.

WARNING A non-supertype/subtype relationship exists between ‘x’ and ‘y’.

The above warning alerts you that there is both a supertype and normal relationship between a
pair of entities. If a supertype relationship is defined, there should not be another type of
relationship between the parent entity and any of the children defined by the supertype
structure.

The Visible Rules

211

To resolve the warning, remove the non-supertype/subtype relationship.

ERROR Syntax error in cardinality detail string (position ‘n’) for relationship ‘x’

between entities ‘y’ and ‘z’.
ERROR Syntax error in cardinality detail string (position ‘n’) for reverse

relationship ‘x’ between entities ‘y’ and ‘z’.

In addition to specifying cardinality of a relationship using notation on the relationship line,
you can specify a specific quantity in the detail field using numbers or a set of intervals, such
as ‘1’, ‘1+’, ‘1-3’, or ‘2,4,6’. If this quantity does not conform to the correct syntax or it
differs from the notation specified on the line, this error message is generated.

To resolve the error, change the detail to conform to the correct syntax and make sure it is
consistent with the drawn cardinality.

ERROR Discriminator element ‘x’ targeted for entity ‘y’ is simultaneously used by

more than one subtype group.

The above error message indicates that the indicated entity has more than one group of
subtypes, but each group does not have a unique discriminator. If you create exclusive
subtype groups (subtypes are in the same group if the relationship lines start from the same
point on the supertype), each group must have a different discriminator if you want to
collapse the subtypes into the supertype during SQL generation.

To resolve the error, make sure each subtype group that is being collapsed has a different
discriminator. To change the discriminator, select the problem relationship and choose
Change Item from the Diagram menu.

ERROR Recursive denormalizing cycle detected. Relationship ‘x’ completing cycle

has been removed.

The above error message indicates that SQL for a group of entities involved in a relationship
chain could not be produced because the denormalization options on the relationships are in
conflict. In the figure, if all three relationships had the denormalization option set to Collapse
Child, no tables could be produced, so one of the relationships would be dropped.

To resolve the error, either remove one of the relationships in the cycle, or change the
denormalization options on the relationships. To change the denormalization option, select the
problem relationship and choose Change Item from Diagram menu.

WARNING Discrepancy between specified cardinality of x and prefix/suffix count of y.
 Collapsing into parent table ‘z’ according to prefix/suffix count.

The Visible Rules

212

The above warning message indicates that the numerical cardinality specified for a
relationship does not match the number of items in the prefix/suffix list.

To resolve the warning, change either the numerical cardinality for a relationship or the
number of items in the prefix/suffix list. To change the cardinality, select the problem
relationship, choose Change Item from the Diagram menu, and change the Cardinality Detail
field for the From entity. To modify the prefix/suffix list, select the relationship, choose
Define from the Repository menu, and select the Cardinality tab.

ERROR Specify at least x denormalizing prefix/suffix names to conform to

cardinality of relationship ‘y’.

The above error message indicates that the specified relationship has its denormalization
option set to Collapse Child and the cardinality of the relationship has its maximum set to
Many, but no prefix/suffix names have been specified. If one entity is collapsed into another,
a prefix list is used to make unique column names. For example, if there was a relationship
between customer and address, and the cardinality specified there was more than one address
for each customer, if you choose to collapse the address table into the customer table, you
would need at least two prefix names (such as Home_ and Business_) to uniquely identify the
address columns in customer.

To resolve the error, change either the cardinality of the relationship or the number of items in
the prefix/suffix list. To change the cardinality, select the problem relationship, choose
Change Item from the Diagram menu, and change the Maximum Cardinality field for the
From entity. To modify the prefix/suffix list, select the relationship, choose Define from the
Repository menu and select the Cardinality tab.

CLASS DIAGRAMS

Object Modeling Overview
Class diagrams allow you to express the object model of your project diagrammatically.13
You can describe the classes in the data you are modeling and the relationships between them
by drawing them onto a diagram. Each diagram or view can show an arbitrarily large or small
part of your object model. You can show multiple views of your object model by including
different combinations of classes and relationships on various diagrams. However, the entire
object model is retained in the repository.

13 For a detailed discussion, refer to Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen,
Object-Oriented Modeling and Design, Englewood Cliffs: Prentice-Hall, 1991.

The Visible Rules

213

All information you place in a view is, of course, captured by the repository and is available
to your process model (data flow diagrams), your structure charts, and your data model (entity
relationship diagrams), where applicable, if you have an integrated tool set. The Analyze
function can assist you in determining any syntax or definition problems with your object
model.

Object Modeling Graphics
Class diagramming is designed to give you the ability to clearly show the characteristics of
your classes while still allowing a certain degree of flexibility in modeling style. By careful
use of configuration settings and the line and symbol sets, you have the ability to model
different types of classes and various line terminators that show relationship cardinality.

Class Symbol
The class symbol is the primary graphic used when creating an object model. When a class is
added to a diagram, an entry is created in the repository so that additional information can be
specified regarding the class, in order to complete its definition. Each class can be associated
with other classes through the use of relationship lines. Each class symbol can have a subtype
classification assigned when modifying the definition in the repository that is used to provide
additional information about how a class is to be used.
• Standard class (the default) indicates normal class.
• Elemental indicates the class contains no attributes and physical characteristics should be

defined. (A data element and a class with an element subtype are equivalent except that
methods cannot be specified for a data element.)

• Structure indicates a C style structure should be used instead of a class. Members (or
attributes) of a structure are public by default while members of a class are private. Union
indicates a C style union should be used instead of a class.

• Entity, Associative, Attributive and View indicate the class is persistent and can be used
on an entity relationship diagram.

Class symbols can be shown on a class diagram at three levels of detail. The diagram can be
set to show only the class names, the class name and attributes, or class names, attributes and
methods. When changing the detail level, class symbols are automatically resized and the
relationships are reconnected properly. See Class Attributes Displayed on Object Model
Diagrams in the Drawing Diagrams chapter for details.

Relationship Lines
Relationships can be labeled in one or both directions. You set this value when you create the
project. Relationship lines between classes usually have terminators on each end that show if
the relationship cardinality is 0:1, 1:1, 0:many, 1:many or many:many. You can set default
terminators to show relationship cardinality with Line Settings from the Options menu, as
described in Default Line Selections. If Auto Label Lines is enabled, after you add a
relationship to your view, a dialog box opens in which you can enter the labels for each
direction of the relationship. At that time, you also have the opportunity to change the

The Visible Rules

214

cardinality from the default to whatever you choose. You can also specify a textual phrase
that describes the cardinality.

Different types of relationships can be specified on class diagrams, including inheritance and
aggregation relationships. Role names and qualifiers can also be specified.

Analysis for Class Diagrams
Visible rules check for four classes of errors :
• Syntax errors. These are errors that would make your class diagram impossible for

Visible Analyst to understand.
• Connection errors. These indicate classes are improperly associated with other classes.

Different rules apply depending on whether the relationship type is normal, inheritance or
aggregation.

• Use errors. These indicate classes have not been used, either on a diagram or in the
definition of another class.

• Definition errors. These indicate a class definition is incomplete, either attributes or
methods have not be defined. Different rules apply depending upon the class subtype.

Object Modeling Error Messages

ERROR Class ‘x’ has no attributes defined.

The above error indicates that no attributes have been defined in the repository for the
indicated class. Classes with a structure or union subtype must have attributes in order to have
a valid definition. All other class subtypes are not required to have attributes, but in most
cases a class without attributes should be defined as an elemental class. To resolve the error,
specify at least one attribute for the class.

ERROR Class ‘x’ has no methods defined.

The above error (or in some cases warning) indicates that no methods have been defined in
the repository for the indicated class. Classes with a standard subtype must have methods in
order to have a valid definition, while those with an entity subtype should have methods
defined but they are not required. To resolve the error, specify at least one method for the
class.

ERROR Class ‘x’ is involved in cyclic inheritance relationship.

The above error indicates that two inheritance relationships exist between a pair of classes,
where the base class and the derived class are different for each relationship. There could
possibly be a chain of entities between them, still resulting in a cyclic definition. See Figure
4-42.

The Visible Rules

215

 Figure 4-42

To resolve the error, make sure that there are no cyclic inheritance relationships in your
project.

ERROR Class[Element] ‘x’ is undefined.

The above error indicates that the physical information for the named elemental class has not
been specified. To resolve the error, bring up the physical information page for the class and
open the Type box to select a data type.

ERROR Role names have not been assigned for relationship ‘x’ between ‘A and ‘B’.

When a non-inheritance relationship exists between a pair of classes, roles are used to create
unique members to provide the linkage between the classes. The type and cardinality of the
relationship determine whether roles are required or optional. In all cases, at least one role
name must be specified, typically on the child class.

To resolve the error, open a diagram that contains the relationship, select it and open the
Change Item dialog box. Add the required role name(s) based on the type of relationship.

ERROR There are ‘x’ unnamed classes.

This error message is the result of not labeling classes on your class diagram(s).

To resolve the error, find and label them.

WARNING A non-inheritance relationship exists between ‘x’ and ‘y’.

The Visible Rules

216

The above warning alerts you that there is both an inheritance and a normal relationship
between a pair of classes. If an inheritance relationship is defined, there should not be another
type of relationship between the base class and any of the derived classes defined by the
inheritance structure.

To resolve the warning, remove the non-inheritance relationship.

ERROR Syntax error in cardinality detail string (position ‘n’) for relationship ‘x’

between classes ‘y’ and ‘z’.

In addition to specifying cardinality of a relationship using notation on the relationship line,
you can specify a specific quantity in the detail field using numbers or a set of intervals, such
as 1, 1+. If this quantity does not conform to the syntax defined correct syntax or it differs
from the notation specified on the line, this error message is generated.

To resolve the error, change the detail to conform to the correct syntax and make sure it is
consistent with the drawn cardinality.

ERROR Syntax error in cardinality detail string (position ‘n’) for reverse

relationship ‘x’ between classes ‘y’ and ‘z’.

In addition to specifying cardinality of a relationship using notation on the relationship line,
you can specify a specific quantity in the detail field 1-3, or 2,4,6. If this quantity does not
conform to the correct syntax or it differs from the notation specified on the line, this error
message is generated.

To resolve the error, change the detail to conform to the correct syntax and make sure it is
consistent with the drawn cardinality.

ERROR Set of relationships for class ‘x’ is incorrect.

This error indicates that a class appearing on several diagrams, has both inheritance and
aggregation relationships attached, but not all relationships are shown on all diagrams.

To resolve the error, check to be sure that all relationships for the class are shown on all
diagrams where the class appears.

ERROR Class ‘x’ has no aggregation attributes defined.

When an aggregation relationship exists between a pair of classes, an instance of the child
class should exist in the member list of the parent class to provide the linkage between the
classes.

The Visible Rules

217

To resolve the error, you have two options: 1) open a diagram that contains the aggregation
relationship for the class, select it, open the Change Item dialog box, and then add a role name
to the child class; or 2) select the class, open the Define dialog box, and add the child class as
a member.

STATE TRANSITION DIAGRAMS

Dynamic Modeling Overview
State transition diagrams (STDs) allow you to express the dynamic model of your project
diagrammatically.14 You can describe the states in the data you are modeling and the events
between them by drawing them onto a diagram. Each state transition diagram that you create
can should show the dynamic behavior of a single class. You can connect a class to a state
transition diagram through the use of the Nest facility. Once connected, every state belongs to
the class; and in the repository, the class name prefixes the state name. The Analyze function
can assist you in determining any syntax or definition problems with your dynamic model.

Dynamic Modeling Graphics
State transition diagramming is designed to give you the ability to clearly show the dynamic
characteristics of your classes while still allowing some degree of flexibility in modeling
style. There are two basic elements to a state-transition diagram: states are represented by
rectangles and events are represented by lines between states.

State Symbol
The state symbol is the primary graphic used when creating a dynamic model. When a state is
added to a diagram, an entry is created in the repository so that additional information can be
specified regarding the state in order to complete its definition. If the diagram has been
connected to a class through the use of the Nest facility, each state on the connected diagram
belongs to the exploded class, and the state name is prefixed by the class name. To represent a
transition from one state to another, an event line can be drawn between states.

Events
Events are lines drawn between states to indicate a transition. They are given a name to
describe the type of action that occurs to trigger the state change. Events are global objects
that are not tied to a specific class. This means the same event can be used on different state
transition diagrams. Event lines between states usually have a terminator on one end to

14 For more detailed information on dynamic modeling, you can refer to the following books:

Rumbaugh, James et al, Object-Oriented Modeling and Design. Englewood Cliffs:
Prentice-Hall, 1991.

Booch, Grady, Object-Oriented Design with Applications. Redwood City:
Benjamin/Cummings Publishing Company, 1992.

The Visible Rules

218

indicate the direction of the transition. For example, the event Enter Password would cause a
state change from Request Password to Verify Account.

Analysis for State Transition Diagrams
Visible rules checks for the following problems:
• Syntax errors. These are errors that would make your state transition diagram impossible

for Visible Analyst to understand.
• Connection errors. These indicate states are improperly connected to other states either

because no events have been drawn, or because the state has only an input event or only
an output event.

• Use errors. These indicate state transition diagrams have not been connected to a specific
class.

Dynamic Modeling Error Messages

ERROR There are x unnamed state(s).

This error is the result of not labeling states on your state transition diagrams.

To resolve the error, find and label them using the Change Item function.

ERROR There are x unnamed event(s).

This error is the result of not labeling events on your state transition diagrams.

To resolve the error, find and label them using the Change Item function.

ERROR State labeled ‘x’ is a dangling state.

The above error message is the result of not connecting the indicated state with any event
lines.

To resolve the error, move the events and/or the state to appropriately connect them, or use
the Connect function.

ERROR Event labeled ‘x’ is a dangling event.

The above error message is the result of not connecting the indicated event to any states.

To resolve the error, move the event and/or the states to appropriately connect them, or use
the Connect function.

ERROR State labeled ‘x’ is an input only state.

The Visible Rules

219

The above error message indicates incomplete analysis. For a state change to take place, an
event must be processed. A state without both an input event and an output event is therefore
incomplete.

To resolve the error, create or find the necessary output event and connect it to the state.

ERROR State labeled ‘x’ is an output only state.

The above error message indicates incomplete analysis. For a state change to take place, an
event must be processed. A state without both an input event and an output event is therefore
incomplete.

To resolve the error, create or find the necessary input event and connect it to the state.

WARNING Event labeled ‘x’ is an input only event.

The above warning message indicates incomplete analysis. An event signals a change from
one state to another. In most cases, every event is attached to two states, the starting state
before the event and the ending state after the event. If the event is not connected to a starting
state, it could either signal an error or the initial event for the STD.

If an event is shown as an input only event on one state transition diagram, it may be shown
on another diagram attached to a starting state. In this case, this warning message is not
displayed.

To resolve the warning, create or find the necessary starting state and connect it to the event.

WARNING Event labeled ‘x’ is an output only event.

The above warning message indicates incomplete analysis. An event signals a change from
one state to another. In most cases, every event is attached to two states, the starting state
before the event and the ending state after the event. If the event is not connected to a ending
state, it could either signal an error or the final event for the STD.

If an event is shown as an output-only event on one state transition diagram, it may be shown
on another diagram attached to an ending state. In this case, this warning message is not
displayed.

To resolve the warning, create or find the necessary ending state and connect it to the event.

WARNING State diagram ‘x’ is not associated with a class.

The Visible Rules

220

The above warning message indicates the diagram has not been attached to a class using the
Nest function. When performing object modeling, a state transition diagram shows the
dynamic behavior of a class, and as such should be tied directly to the class. When a class is
exploded to a state transition diagram, all the states in the repository are members of that class
and their names are of the form class::state.

To resolve the warning, open a class diagram, select an appropriate class, and choose Nest
from the File menu. Choose Explode and select the indicated diagram. See Nested
Decomposition for more information.

ENTITY LIFE HISTORY DIAGRAMS

Data Modeling Overview
The entity life history (ELH) diagram is a component of both the SSADM and Métrica
methodologies and is similar to a structure chart. The ELH shows how events in a system
affect data entities. An ELH applies to a single entity that originates on an entity-relationship
diagram. There can be an ELH for each entity in the repository. An ELH can be exploded to
or from an instance of an entity on an entity relationship diagram.

An ELH diagram is derived from the Jackson structure diagram and represents the processing
performed on the data depicted by an entity. An ELH diagram should contain a single entity
at the top of the diagram that originates on an entity-relationship diagram, with symbols
arranged below the entity representing the events that affect an entity and the processing
performed on it.

On an ELH diagram, symbols called structure boxes are displayed below a single entity that
appears at the top of the diagram. Below the structure boxes are symbols called event boxes.
Structure boxes are used when necessary to meet two requirements of ELH diagrams:

• Event types (selection, iteration) cannot be mixed.
• Box types cannot be mixed on a particular level.

Just like structure charts, ELH diagrams are intended to be read from left to right and top to
bottom. Because an ELH diagram applies to an entity, the event processing deals with the
creation, processing, and deletion of the entity.

Entity Life History Graphics
Entity life history diagrams use a set of seven symbols to represent the relationship between
an entity, the events that affect the entity, and operations used as a result of an event.

The Visible Rules

221

Entity
The entity is the object of the diagram. The symbol originates on an entity-relationship
diagram.

Structure Box
The structure box is a placeholder symbol used to prevent the mixing of different event types.

Sequence Event
A sequence event shows a particular event that affects the entity. It is neither a selection
event nor an iteration event.

Iteration Event
An iteration event shows that an event may affect the occurrence of the entity more than once.

Operation
An operation symbol refers to the operation performed as the result of an event. An operation
can also appear on a structure chart. An operation has both a name and a number. The
number appears inside the symbol, while the name is listed in a table that is automatically
maintained by Visible Analyst.

Parallel Life
A parallel life symbol indicates that events may occur within the life of an entity, but not in a
prescribed order.

Analysis for Entity Life History Diagrams
Visible rules check for four classes of errors:
• Syntax errors. These are errors that would make your ELH diagram impossible for

Visible Analyst to understand.
• Connection errors. These indicate symbols are improperly associated with other

symbols. Different rules apply depending on the type of symbols connected.
• Structure errors. At a minimum, there be at least event blocks defined on an ELH. In

addition, event types cannot be mixed at different levels of the tree structure.

Analysis Error Messages

WARNING There are x unnamed structure box(es).

This warning is the result of not labeling structure boxes on your entity life history diagram.
To resolve the warning, find and label them using the Change Item function. However, since
structure boxes are simply placeholders, it is not necessary to label them.

The Visible Rules

222

ERROR There are ‘x’ unnamed sequence event(s).

This error is the result of not labeling sequence events on your entity life history diagram. To
resolve the error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed selection event(s).

This error is the result of not labeling selection events on your entity life history diagram. To
resolve the error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed iteration event(s).

This error is the result of not labeling iteration events on your entity life history diagram. To
resolve the error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed operation(s).

This error is the result of not labeling operations on your entity life history diagram. To
resolve the error, find and label them using the Change Item function. Note that even though
the name does not appear in the operation symbol, the name must exist and will be displayed
in the operation table.

ERROR There should be only one entity on this diagram.

An entity life history diagram describes the events and operations of a single entity. Remove
all but the desired entity for this diagram.

ERROR Entity labeled ‘x’ is dangling.

The above error message is the result of not connecting the indicated entity to any events on
an entity life history diagram. To resolve the error, draw a line from the entity to any event
type or structure box using the Connect function.

ERROR Structure box labeled ‘x’ is dangling.

The above error message is the result of not connecting the indicated structure box to an entity
or any events on an entity life history diagram. To resolve the error, draw a line connecting
the structure box to an entity or an event using the Connect function.

ERROR Sequence event labeled ‘x’ is dangling.

The Visible Rules

223

The above error message is the result of not connecting the indicated sequence event to an
entity or any events on an entity life history diagram. To resolve the error, draw a line
connecting the structure box to an entity or event using the Connect function.

ERROR Selection event labeled ‘x’ is dangling.

The above error message is the result of not connecting the indicated selection event box to an
entity or a structure box on an entity life history diagram. To resolve the error, draw a line
connecting the event to an entity or structure box using the Connect function.

ERROR Iteration event labeled ‘x’ is dangling.

The above error message is the result of not connecting the indicated iteration event to an
entity or a structure box on an entity life history diagram. To resolve the error, draw a line
connecting the event to an entity or structure box using the Connect function.

ERROR Operation labeled ‘x’ is dangling.

The above error message is the result of not connecting the indicated operation to an event on
an entity life history diagram. To resolve the error, draw a line connecting the operation to an
event using the connect function.

ERROR Operation labeled ‘x’ cannot be connected to an entity.

The above error message is the result of connecting the indicated operation to an entity.
Operations can only be connected to events. To resolve the error, connect the operation to an
event using the Connect function, or remove the connection to the entity.

ERROR There must be at least two event blocks defined on this diagram.

Event entity must have a creation event and a destruction event. In addition, there may be
other events that take place in between. This error indicates there are not at least two
connections from the defining entity to event symbols. To resolve the error, connect the
entity to at least two events using the Connect function.

ERROR Event labeled ‘x’ must be of the same type as the other events at this level.

All symbols hanging from a single node must be of the same type, or be a structure box that is
used as a placeholder. To resolve the error, change the symbol type of the indicated event
using the Change Item function.

ERROR Event labeled ‘x’ has more than one input connection.

The Visible Rules

224

The above error message is the result of connecting the indicated event to more than one
superior event/structure boxes. To resolve the error, move or delete all but one of the lines to
connect the event to one and only one superior event/structure box.

ERROR Operation labeled ‘x’ has more than one input connection.

The above error message is the result of connecting the indicated operation to more than one
event. To resolve the error, move or delete all but one of the lines to connect the operation to
one and only one event.

ERROR Entity labeled ‘x’ should have no input connections.

The entity on an entity life history diagram must be at the top of the hierarchy. To resolve the
error, remove all input connections to the entity.

WARNING Entity life history diagram ‘x’ is not associated with an entity.

This warning is the result of not exploding an entity on an entity relationship diagram to the
indicated entity life history diagram. To resolve the warning, open an entity relationship
diagram on which the entity appears, select the entity, and use the Explode function to attach
to the indicated ELH diagram.

USE CASE DIAGRAMS

Use Case Modeling Overview
The use case diagram is a component of the Unified Modeling Language (UML) and is used
to show the interaction between users and a system. A use case diagram is a graph of actors
and use cases, together with their relationships.

Use Case Graphics
Use case diagrams use a set of three symbols: use case, actor and system boundary. In
addition, lines can be used to indicate relationships among the symbols: communicates,
extend, include, and generalization.

Use Case
The use case is represented by an ellipse where the name appears at the top.

Actor
An actor is represented by a ‘stick man’ figure. The name of the actor appears below the
object.

The Visible Rules

225

Communicates
Communicates is a relationship line between actors and use cases. This relationship is drawn
as a solid line with no arrowhead. Cardinality can be shown.

Extends
Extends is a relationship line between two use cases. It is drawn as a dashed line with a stick
arrowhead at one end. The name of the relationship is <<extends>>.

Includes
Includes is a relationship line between two use cases. It is drawn as a dashed line with a stick
arrowhead at one end. The name of the relationship is <<includes>>.

Generalization
Generalization is a relationship line between two use cases or between two actors. It is drawn
as a solid line with an open arrowhead at one end. It is similar to a generalization relationship
on a class diagram.

System Boundary
System boundary is a box with a tab (folder) drawn around use case symbols to indicate a
complete system. The name of the system appears on the tab along with a stereotype name,
unless it does not contain any objects, in which case the name is drawn inside the main part of
the box. System boundary symbols can be related using both generalization and non-
generalization relationships.

Analysis for Use Case Diagrams
Visible rules check for two classes of errors:
• Syntax errors. These are errors that would make your use case diagram impossible for

Visible Analyst to understand.
• Connection errors. These indicate symbols are improperly associated with other

symbols. Different rules apply depending on the type of symbols connected.

Analysis Error Messages

ERROR There are ‘x’ unnamed note(s).

This error is the result of not labeling note symbols on one of several types of UML diagrams.
To resolve the error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed actors(s).

The Visible Rules

226

This error is the result of not labeling actors on your use case diagram. To resolve the error,
find and label them using the Change Item function.

ERROR There are ‘x’ unnamed use case(s).

This error is the result of not labeling use cases on your use case diagram. To resolve the
error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed system boundary(s).

This error is the result of not labeling system boundaries on your use case diagram. To
resolve the error, find and label them using the Change Item function.

WARNING There are ‘x’ unnamed relationship(s).

This warning is the result of not labeling relationships on your use case diagram. To resolve
the warning, find and label them using the Change Item function.

ERROR Actor labeled ‘x’ is dangling.

This error message is the result of not connecting the indicated actor to another actor or use
case on the use case diagram. To resolve the error, draw a line from the actor to any use case
or actor using the Connect function.

WARNING Use case labeled ‘x’ is dangling.

This warning message is the result of not connecting the indicated use case to another use
case on the use case diagram. To resolve the warning, draw a line from the use case to any
use case using the Connect function.

ERROR System boundary labeled ‘x’ has no components.

This error message indicates the named system boundary does not have any use case object
defined in its composition. A system boundary is used to group objects. To resolve the error,
either delete the system boundary or add components using Define.

ERROR Stereotype not defined for relationship between use cases ‘x’ and ‘y’.

For relationships between a pair of use case symbols, a stereotype must be specified,
indicating the type of relationship. A name is optional. To resolve the error, find the
relationship and set the stereotype using the Change Item function.

The Visible Rules

227

SEQUENCE DIAGRAMS

Sequence Modeling Overview
A sequence diagram is a component of the Unified Modeling Language (UML). It is a type
of iteration diagram that describes how objects collaborate in some behavior. It is drawn in a
grid-like fashion where the vertical axis represents time, while the horizontal axis represents
the participating objects.

Sequence Graphics
Sequence diagrams have one basic symbol, an object, represented by a box where the name is
in the form ObjectName:ClassName. A dashed line, known as a lifeline, extends from the
bottom of the object to the bottom of the sequence diagram. Adornments can appear along
the lifeline:

Activation, represented as a thin rectangle, indicates when an object is active.
Deletion, represented by a large X at the end of an object lifeline, is used to indicate when an
object is destroyed.

Each object must be based on a class. The object name is optional.

In addition, lines are used to connect object lifelines to indicate message passing. There are
several types of messages that can be used:
• Procedure call, a solid line with filled arrowhead.
• Flat flow of control, a solid line with stick arrowhead.
• Asynchronous stimulus, a solid line with half-stick arrowhead.
• Return, a dashed line with stick arrowhead.
• Self-delegation, an arc line.

Each message must be based on a method in the target class.

Analysis for Sequence Diagrams
Visible rules check for two classes of errors:
• Syntax errors. These are errors that would make your use case diagram impossible for

Visible Analyst to understand.
• Connection errors. These indicate symbols are improperly associated with other

symbols. Different rules apply depending on the type of symbols connected.

Analysis Error Messages

ERROR There are ‘x’ unnamed note(s).

The Visible Rules

228

This error is the result of not labeling note symbols on one of several types of UML diagrams.
To resolve the error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed object(s).

This error is the result of not labeling objects on your sequence diagram. To resolve the error,
find and label them using the Change Item function.

ERROR There are ‘x’ unnamed message(s).

This error is the result of not labeling messages on your sequence diagram. To resolve the
error, find and label them using the Change Item function.

ERROR Object ‘x’ is not used. There are no messages attached.

This error is the result of not having messages attached to an object lifeline on a sequence
diagram. To correct the error, connect two object lifelines with a message line.

WARNING Object ‘x’ is based on an abstract class.

An object used on a sequence diagram is based on an abstract class. Since abstract classes
cannot be directly instantiated, a derived class should probably be used instead.

WARNING Message ‘x’ uses a virtual method.

A message used on a sequence diagram is based on a virtual method. Since virtual methods
are meant to be overridden, a method in a derived class should probably be used instead.

ERROR Message ‘x’ uses a pure virtual method.

A message used on a sequence diagram is based on a pure virtual method. Since pure virtual
methods cannot be executed, a method in a derived class should be used instead.

ERROR Message ‘x’ refers to a method that does not exist in the derivation tree of

class Y.

The indicated message is based on a method that does not exist in the indicated class or one of
its base classes. To correct the problem, select the item and use the Change Item function.

The Visible Rules

229

COLLABORATION DIAGRAMS

Collaboration Modeling Overview
The collaboration diagram is a component of the Unified Modeling Language (UML). It is a
second form of iteration diagram that shows an interaction organized around the objects in the
interaction and their links to each other. Unlike a sequence diagram, a collaboration diagram
shows the relationships among the object roles. On the other hand, a collaboration diagram
does not show time as a separate dimension; so the sequence of messages is specified using
sequence numbers.

Collaboration Graphics
Collaboration diagrams have one basic symbol, an object, represented by a box where the
name is in the form ObjectName:ClassName. Each object must be based on a class. The
object name is optional.

In addition, lines are used to connect objects to indicate message passing. Each message is
represented by a shore line along side the object link line. There are several types of
messages that can be used:
• Procedure call, a solid line with filled arrowhead.
• Flat flow of control, a solid line with stick arrowhead.
• Asynchronous stimulus, a solid line with half-stick arrowhead.
• Return, a dashed line with stick arrowhead.
• Self-delegation, an arc line.

Each message must be based on a method in the target class.

Analysis for Collaboration Diagrams
Visible rules check for two classes of errors:
• Syntax errors. These are errors that would make your use case diagram impossible for

Visible Analyst to understand.
• Connection errors. These indicate symbols are improperly associated with other

symbols. Different rules apply depending on the type of symbols connected.

Analysis Error Messages

ERROR There are ‘x’ unnamed note(s).

This error is the result of not labeling note symbols on one of several types of UML diagrams.
To resolve the error, find and label them using the Change Item function.

The Visible Rules

230

ERROR There are ‘x’ unnamed object(s).

This error is the result of not labeling objects on your collaboration diagram. To resolve the
error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed message(s).

This error is the result of not labeling messages on your collaboration diagram. To resolve the
error, find and label them using the Change Item function.

ERROR Object ‘x’ is not used. There are no messages attached.

This error is the result of not having messages attached to an object link on a collaboration
diagram. To correct the error, add a message to an object link line.

WARNING An object used on a collaboration diagram is based on an abstract class.

Since abstract classes cannot be directly instantiated, a derived class should probably be used
instead.

WARNING Message ‘x’ uses a virtual method.

A message used on a collaboration diagram is based on a virtual method. Since virtual
methods are meant to be overridden, a method in a derived class should probably be used
instead.

ERROR Message ‘x’ uses a pure virtual method.

A message used on a collaboration diagram is based on a pure virtual method. Since pure
virtual methods cannot be executed, a method in a derived class should be used instead.
ERROR Message ‘x’ refers to a method that does not exist in the derivation tree of

class Y.

The indicated message is based on a method that does not exist in the indicated class or one of
its base classes. To correct the problem, select the item and use the Change Item function.

ACTIVITY DIAGRAMS

Activity Modeling Overview
An activity diagram is a component of the Unified Modeling Language (UML). It is a special
form of a state diagram in which the states represent the performance of actions or

The Visible Rules

231

subactivities. Transitions are triggered by the completion of the actions or subactivities. It
represents a state machine of a procedure itself.

Activity Graphics
Activity diagrams use a set of six symbols.

Action State
An action state is represented by a rectangle with round corners.

Decision/Merge
A decision is represented by a diamond with one incoming transition and two or more
outgoing transitions.

Synchronization Bar
A synchronization bar is represented by a black bar with one or more input transitions and one
or more output transitions. A synchronization bar is used to signal parallel activities.

Start
The start is represented by a filled circle. It is used to indicate the starting point of the
activity.

End
The end is represented by a filled circle inside a hollow circle. It is used to indicate the end
point of the activity.

Swimlane
A swimlane is represented by a box containing action states. Swimlanes are used to organize
responsibilities for actions. The name appears at the top of the box.

In addition, lines are used to connect action states to indicate a transition, represented by a
solid line with a stick arrowhead. It is labeled by a transition string of the form ‘event
signature [guard condition]/action expression’.All components of the transition string are
optional.

Analysis for Activity Diagrams
Visible rules check for two classes of errors:
• Syntax errors. These are errors that would make your use case diagram impossible for

Visible Analyst to understand.
• Connection errors. These indicate symbols are improperly associated with other

symbols. Different rules apply depending on the type of symbols connected.

The Visible Rules

232

Analysis Error Messages

ERROR There are ‘x’ unnamed note(s).

This error is the result of not labeling note symbols on one of several types of UML diagrams.
To resolve the error, find and label them using the Change Item function.

ERROR There are ‘x’ unnamed swimlane(s).

This error is the result of not labeling swimlanes on your activity diagram. To resolve the
error, find and label them using the Change Item function.

WARNING Activity diagram ‘x’ is not associated with a class, use case, or activity.

This warning is the result of not exploding a class, use case or activity to the indicated activity
diagram. To resolve the warning, open a class, use case, or activity diagram, select an
appropriate object, and use the explode feature to attach to the indicated activity diagram.

The Visible Repository

233

Chapter 5

The Visible Repository

AN ORGANIZED PRESENTATION OF PROJECT DATA
The Visible repository adds database management and data definition capabilities to Visible
Analyst. The Repository functions interactively with diagramming and rules to automatically
create an organized database of project information for each project as it is developed. A
project repository is automatically updated and maintained during all of your work sessions,
and it can be accessed at any time to manually add, delete, edit or review entries. Reports
showing repository entry information can also be printed in a variety of formats.

The repository is accessible by selecting Define from the Repository menu. The following
highlight some of the functions of the repository:
• All objects drawn on diagrams of methodology projects or added to the planning

hierarchy are automatically entered into the repository and are addressable using the label
field at the top of the dialog box.

• You can manually make additional entries into the repository by assigning a label and
entering information into a blank repository dialog box.

• You can page through the repository dialog boxes to display all database entries for the
selected project.

• You can edit most fields in the repository dialog boxes.
• You can define new object types and fields for objects.
• You can define a view specification for an entity.
• You can set up search criteria and search through a selected portion of the repository.
• You can enter part of a label and perform a “wildcard select” to locate the first matching

label in the repository, or a “wildcard find” to display all repository entries that have
labels that begin with the characters you entered.

• You can write some repository fields to a specified DOS file, or read data from a DOS
file into those fields.

• You can read and write repository information to and from the Windows Clipboard.
• You can set up report criteria and print only the selected group of repository records.

REPOSITORY BASICS

Accessing the Repository
The repository can be accessed in four ways:

The Visible Repository

234

• You can access the Repository menu by selecting the Define function. If no diagram
object is active, Visible Analyst presents a blank repository dialog box, as shown in
Figure 5-1. You have several options at the blank dialog box; these are explained in the
pages that follow. If a diagram object is selected, you are presented with the repository
entry for that object.

• You can double-click on a named diagram object to display its repository entry.
• You can right-click on a diagram object and select Define from the pop-up menu to

display the repository entry for the object.
• You can double-click on an object in the object browser to display the repository entry

for the object.

 Figure 5-1 Blank Repository Dialog Box

The Visible Repository

235

Hyperlinks
In all the descriptive-type fields in the repository, such as Process Description, Notes, and
Scenario, you can add a link to a document outside the Visible Repository using a hyperlink.
To insert a hyperlink, simply enter a URL or file name with its full path specification (both
UNC paths and drive letters can be used). Examples are www.visible.com and
\\VS\Develop\planning.doc. If the hyperlink is recognized as having a program association in
the registry, it is displayed in blue and underlined. When the cursor is moved over the link, it
will change to a pointer; clinking on the link loads the appropriate document.

Understanding the Repository Dialog Box
The repository dialog box for each entry provides you with information and functional
selections, as shown in Figure 5-1. Detailed descriptions of these repository dialog box items
are provided in the following pages. All entries contain multiple pages of information, as
described below.

The Repository Dialog Box Buttons
The repository dialog box buttons (see Figure 5-2) are always displayed at the bottom of the
box, although not all buttons are enabled at all times. You can use them to control activities
within the Visible Analyst repository for your project. As always in Windows, you can use the
keyboard shortcut by holding down the ALT key and pressing the underlined letter to execute
the button function. The button functions are shown below.

 Figure 5-2 Repository Dialog Box Control Buttons

SQL For view objects, this activates the Generated SQL for View window.

This window displays the SQL that will be generated for the current view
when you click the SQL button on the Repository Define dialog box. The
button is only active when the entry type is a view.

Dialect This activates the RDBMS SQL Dialect dialog box. From there, you can
 change the current SQL dialect.

Delete This deletes the currently displayed entry from the database. Whenever

you delete a repository entry, all associated entries are automatically
updated. For example, if you delete a data flow, Visible Analyst deletes any

The Visible Repository

236

references made by other entries to the deleted flow. Note: Any entry may
be deleted from the repository provided that it has no diagram locations.
(An entry has locations when it appears on diagrams or when it is
referenced in the composition field of another entry; only diagram locations
are relevant here.) If an entry has diagram locations, these must be
eliminated before the entry can be deleted.

Clear This clears the display of an entry and displays a blank dialog box or

eliminates all edits you performed that have not yet been saved. If you
edited the entry prior to clicking Clear, you are prompted to confirm
clearing your changes without saving them. Clearing the dialog box allows
you to Search for an existing entry or to add a new entry.

Next This displays the next sequential repository entry that meets the

repository search criteria you set. The ordering of repository entries is
alphanumeric by label.

Prior This displays the previous sequential repository entry that meets the

repository search criteria you set.

Save This saves all changes to an entry; the dialog box entry remains displayed.

The date created and date last altered information are updated as applicable.

Exit This or the ESC key exits the repository and clears the dialog box from the
screen. If edits were made, you are prompted to save the changes or ignore
them.

Search This initiates a search of the repository for another item. It is explained
 in detail below.

Expand This allows you to expand the displayed size of certain fields. Fields
Contract normally displaying four lines are expanded to display 15 lines so that you

can work with a larger section of the field at one time. When the field is
expanded, the button reads Contract. You can move around within the edit
box in the usual Windows manner. The Alias, Composition, Notes, Values
& Meanings, Process Description, Module Description, Related to, and
Location fields may be expanded and contracted like this.

Jump This allows you to immediately jump to another repository entry that is

referred to in the current one. When the cursor is positioned on the line
containing the name of another repository entry, clicking Jump allows you
to quickly jump to the repository entry for the first item listed on that line.
You can also execute the jump by double-clicking on that line. On lines that

The Visible Repository

237

contain the names of more than one repository item, moving to an item
beyond the first requires that you highlight that item before clicking Jump.
If edits were made, you are prompted to save the changes or ignore them
before the jump is executed. From the destination entry, you may continue
to jump wherever you wish; you are not obligated to return to your original
location in the repository. To load a diagram referenced in the location field,
highlight the diagram and click Jump.

Back This button provides a means of moving to the previous repository entry.

You can then continue to move backward displaying previous repository
entries.

File This allows you to insert text from a DOS file at the cursor position or to

copy highlighted text to a DOS file. It is explained in detail below.

Copy This button provides a means of copying the current object.

History This provides a means of moving back to a previously displayed repository

object. A list is kept of every object definition that has been displayed. If
you click this button, the history dialog box appears and you can move
between entries by double-clicking an entry or by highlighting the entry and
pressing the ENTER key. The maximum is 500 objects.

Help (?) This displays context-sensitive help about the repository. You can also

press F1 to activate the help system.

Search Criteria This allows you to specify how the repository is to be searched. It is
 explained in detail below.

Other buttons that may be displayed on the Define dialog box are:

Primary Key If the current object being examined is an entity type, the primary key

button is displayed to the left of the Composition/Attributes field. The
procedure for adding keys is explained in Defining a Primary Key later in
this chapter.

Attributes This button, displayed to the left of the Composition/Attributes field,
Details provides a means of populating the composition of a repository

entry with components and physical information. If the current object is a
class, it also provides a means of adding attributes and methods.

The Visible Repository

238

Add When the Entry Type is a Class, or when the Classic User Interface is
turned off, an Add button is displayed beneath the Attributes Details button.
You can use this button to quickly add details. When you begin typing in
the field next to the Add button, the button is enabled and the repository is
checked for an object that matches the name you typed. If a match is found,
the type, length, and null field are set. Click the Add button to add the
attributes to the Attributes field. If the current entry is a class, the object is
added as a local element if it does not already exist. Otherwise, it is added
as a global object. A local object is a blue icon; a global object is yellow.

Repository Searches
You can search a project repository in several ways. The easiest way is to click the Search
button when the repository dialog box is displayed. You can then enter the name (or part of
the name) of the desired item into the Search box (see Figure 5-3). Visible Analyst
incrementally searches as you type. When Visible Analyst finds your item, click Select to
display the repository entry for that item.

 Figure 5-3 Repository Search Dialog Box

The Visible Repository

239

 Note
2 If your search key (the full or partial name) is very broad, it can take a long time

to fill the search list box with all of the matching repository entry names. In this
case, Visible Analyst does as much as it can in ten seconds and then returns
control to you. Periodically, Visible Analyst continues to add matching items to
the list box when it senses idle time; you see the hour glass cursor when this
takes place. If you want to select an item near the end of the alphabet in such a
full list box, there might be a delay before the item displays.

Another way is to enter a full or partial entry name in the dialog box label field and click the
Search button or press ENTER. The search box displays with an incremental search already
completed on the full or partial name you entered.

Yet another way to search is to enter a full or partial item name and affix an “*” to the end of
the name. Click the Search button or press ENTER to search for the entered text and accept
and display the first item found that matches the name. This is called a “wildcard select.”

If the search list box contains objects that belong to classes (either modules or local data
elements), the class of the item is displayed in parenthesis following the item. If you want to
change the sort order so that all members of a class are grouped together, click the Class
button. The list is resorted in class order. To revert to member order, click the Member button.
Although less obvious, both the Next and Prior buttons execute searches. They don’t search
on an entered name, but on a name alphanumerically greater or lesser, respectively, than the
currently displayed item.

There are three more specialized uses of the Search function. These are mentioned in the
sections entitled Composition, Creating Clusters, and Domains, below.

All of the above searches are subject to the search criteria you enter.

Repository Search Criteria
You can set up criteria to be applied when searching for repository entries. Upon entering the
repository, you can click Search Criteria and the window shown in Figure 5-4 is displayed.
Three sets of criteria may be selected, all of which operate concurrently to determine the
subset of the repository to be accessed. The criteria currently in effect are displayed on the
title line of the dialog box. Note that until you exit Visible Analyst and return to Windows, the
search criteria are maintained and are present the next time the repository is accessed.

The Visible Repository

240

Figure 5-4 Search Criteria Dialog Box

The Searches Affected category determines which searches are to be implemented. If you
select All, then all searches are limited by the criteria, including wildcard selects, manually
entered complete labels, and next and prior searches. If you select Next/Prior Only, then the
search criteria applies only to next and prior searches.

The Entry Characteristics category of search criteria allows the repository to present All
entries (effectively disabling this set of criteria), Undefined entries (those for which you have
not yet entered any descriptive information), or entries that have No Location references.

The Scope category allows you to limit searches by diagram type. Searches can be conducted
on the repository entries specific for data flow, functional decomposition, structure chart,
entity relationship, class, or state transition entries, or on all entries in the repository
regardless of diagram type. The list of entry types changes when this is done, displaying the
entry types that correspond to the selected diagram type.

The Entry Types category defines the type of the entries that are presented during searches.
You can specify All entries, a compound type like All Entity Types, or you can specify a
specific entry type to be searched for.

Repository Search Criteria Default
When working in the Repository, the search criteria defaults to the current diagram type.

Copying Data To and From DOS Files
This function allows you to copy information to or from the Values & Meanings,
Composition, Notes, Process Description, Macro Description, Modules Contained or Module
Description fields. You can copy the fields to a DOS ASCII file; you can then read the
information from the DOS file into another field. This is an easy way to copy information into
multiple entries without retyping it. To copy data in a repository field to a file, highlight the

The Visible Repository

241

information you want to copy and click the File button. The dialog box asks you the name of
the file and where you want it stored.

To copy data from a file to a repository field, place the cursor where you want the data
inserted and click the File button. The dialog box asks you the filename and where it is stored.
If you perform the insert from a file immediately after copying a repository field to DOS file,
Visible Analyst defaults to that DOS file name.

Copying Data To and From the Windows Clipboard
Visible Analyst allows you to copy repository information to or from the Windows Clipboard.
To copy to the Clipboard, highlight text in any edit control in the repository dialog boxes and
press the keyboard shortcut for Copy displayed in the Visible Analyst Edit menu.

To enter data from the Clipboard, position the cursor where you want the text to go and press
the keyboard shortcut for Paste displayed in the Visible Analyst Edit menu.

Repository Object Menu
In addition to the buttons defined on the Repository dialog box, you can use the right mouse
button to activate the repository object menu for each of the repository fields. When you click
the right mouse button over a field, the menu gives you a list of options that can be performed
on the current field. The SHIFT+F10 keyboard shortcut can be used to activate the repository
object menu.

Enterprise Links
If the current object being examined has enterprise links to other projects, a marker is
displayed to the right of the object name. If you double-click on the marker, a list of enterprise
links is displayed. In addition, if the current project is a satellite project, the name of the
enterprise project is displayed to the right of the Entry Type field. Refer to the Enterprise
Modeling chapter for more information.

Read-Only Indicator
If you do not have rights to make changes to the current object, RO (Read Only) is displayed
to the right of the Entry Type field. Read-only access is established by adding an object to a
division and revoking the Modify Items right. Refer to Enterprise Modeling for more
information.

Understanding Repository Fields
The names of fields that identify and describe each repository entry are listed on the pages of
the Define dialog box. The fields include a combination of data that is entered automatically
when a diagram is saved and data that is entered manually during repository editing sessions.

The Visible Repository

242

 Figure 5-5 Repository Dialog Box, Page 1, Description Tab

The Visible Repository

243

Figure 5-6 Repository Dialog Box, Page 2, Physical Characteristics Tab

The Visible Repository

244

Figure 5-7 Repository Dialog Box, Page 3, Links Tab

The Visible Repository

245

Figure 5-8 Repository Dialog Box, Page 4, Extended Attributes Tab

Different repository entry types have different combinations of dialog box tabs and fields in
which data and descriptive information can be entered and stored. For example, pages 2 and
4 of the basic repository form provide location and relationship information and specifications

The Visible Repository

246

for PowerBuilder/VISION extended attributes. These two pages are similar for most entry
types. For some entry types, additional pages can be displayed:
• When the entry type is an entity, the next five pages contain keys, foreign keys, triggers,

check constraints, and physical information.
• For views, the next five pages provide table, column, join, clauses, and option

information.
• When the entry type is a relationship, there are additional pages that contain foreign key

and cardinality information.
• When the entry type is a tablespace, an additional page contains property information.

Table 5-1 lists the repository information fields for all entry types except view objects. View
objects are discussed in detail later in this chapter.

Table 5-1
Possible Repository Information Fields

Alias Extended Attributes Physical Characteristics*
Associator Element Foreign Keys* Priority
Attached Entities/Classes Friends Process #
Attributes Function Description Process Description
Cardinality* Keys* Referential Integrity*
Check Constraints* Label Related To
Class Characteristics Links To Relations
Column in Key Locations Relationship
Composition Long Name Scenario
Concurrency Macro Description Statement Type
Data Mod(s) Methods Tablespace
Description Module Description Trigger
Discriminator Values & Meanings Modules Contained Values & Meanings
Entry Type Notes

The following paragraphs provide a detailed description of these fields, except for those
marked by an asterisk (*). Asterisked fields are described later in this chapter.

Label
This is the key field by which every repository entry is accessed. It can be up to 128
characters long, and the first character must be a letter. An entry that refers to an object on a
diagram maintains the identical label that appears on the diagram. Entries that are manually
entered into the repository can be assigned any label that does not already appear in the
repository. The label for any repository item (including entities and relationships) can be
changed so long as the item does not appear on any diagram and does not appear in the
composition field of another item.

The Visible Repository

247

You can access any repository item using its label as described under Repository Searches
and from a diagram. If the entry searched for is not in the repository, Visible Analyst assumes
that you wish to add a new entry and your cursor is moved into the Entry Type field.

Entry Type
The content of this field indicates the type of repository entry. Normally, this field cannot be
changed if the entry being displayed was added to the repository automatically by Visible
Analyst (in order to guarantee consistency between the project diagrams and the database).
Entry types that are automatically added to the repository include all data flow types except
miscellaneous and all other rules-recognized entry types. All entry types except alias,
relationship and information cluster can also be manually keyed into the repository.

Also, if the entry type is defined as a data element, data structure, generic couple, control
couple, or data couple, it can be changed until you enter additional descriptive information in
the Composition or Values & Meanings fields or until you enter physical information for a
data element. This lets you change either a data element to a data structure and vice versa, or
any type of couple to any other type of couple or to an interface table row before the entry is
saved.

Table 5-2
Repository Entry Types by Diagram Type

Data Flow Types Structure Chart Types
 Data Structure Module
 Data Flow Library Module
 Process Macro
 Source/Sink Library Macro
 External Entity Data-only Module
 Miscellaneous Control Couple
 Data Element Data Couple
 Domain Generic Couple
 Data Store Information Cluster
 File Data ITR
Entity Relationship Types Control ITR
 Relationship Generic ITR
 Data Element Program
 Cluster Functional Decomposition Types
 Domain Function
 Entity Process

The Visible Repository

248

Table 5-2
Repository Entry Types by Diagram Type

 Associative Entity Class
 Attributive Entity Class
 Tablespace Data Element
 View Relationship
State Transition Types Entity Life History Types
 State All entity types
 Event Event
Activity Types Module
 State Collaboration Types
Use Case Types Object
 Actor Sequence Types
 System Boundary Object
 Use Case

Note
2 Each variety of module can have a subtype classification. These module

subtypes are used to store SQL procedural code to be generated with SQL
schemas.

2 Each class can also have a subtype classification that is used to provide
additional information about how a class is to be used. A standard class (the
default) indicates a normal class. Elemental indicates the class contains no
attributes and physical characteristics should be defined. (A data element and a
class with an element subtype are equivalent except that methods cannot be
specified for a Data Element.) Structure indicates a C style structure should be
used instead of a class. Members (or attributes) of a structure are public by
default while members of a class are private. Union indicates a C style union
should be used instead of a class. Entity, associative, and attributive indicate the
class is persistent and can be used on an entity relationship diagram.

2 Each planning statement must have a statement type that is displayed to the right
of the Entry Type field. See manual section Defining Planning Statement Types
for how to modify the list of available types.

Description
This field provides a convenient place for you to enter a brief, high-level description of the
entry being displayed. You can enter a maximum of two lines of text. When you generate
comments on columns or tables in SQL Schema Generation, this field is used. Comments are
also imported from and exported to PowerBuilder using this field.

The Visible Repository

249

Alias
This field is displayed for all data flow diagram-based repository entries except processes and
a number of entry types for other diagram types. It allows you to enter labels that refer to the
same entry/object, but that are different than the label at the top of the dialog box. For each
alias that you enter, Visible Analyst automatically creates a new repository entry of type alias.
That new entry provides a reference to the same repository entry from its label as well as its
alias. Note that any alias entry automatically refers to the original entry using its own alias
field.

Only one alias is visible in the dialog box at any one time, but you can scroll through all alias
names in the usual Windows manner. There can be up to 10 aliases for each repository entry
that has an alias field. Each line may contain one alias of up to 128 characters. The first alias
in the list is used during SQL schema generation if the Use Alias Name option is selected.

Note
2 The alias capability is not enabled for Planning Statements.

Associator Element
Appearing for relationship entries only, this field gives you the opportunity to name a foreign
key element. When the entry is saved, the repository creates an entry for this special variety of
data element. Analyze can then use this name for key analysis and synchronization.

Related To
This field is displayed for most structure chart diagram entry types. Different entry types are
allowed to relate to different data flow diagram entry types. The following list shows you the
structure chart entry types and the corresponding data flow entry types to which they may be
related.

Module Up to ten processes
Library Module Up to ten processes
Macro Up to ten processes
Library Macro Up to ten processes
Data Only Module One data flow, data structure, file, or data element
Data Couple One data flow, data element
Control Couple Any one data element
Generic Couple Same as data couple
Event A module

Only one Related To entry is presented in the dialog box at any one time unless you expand
the field. There are up to 10 Related To lines available for every repository entry that has a
Related To field. Each line may contain one entry of up to 128 characters.

The Visible Repository

250

Process #
Whenever a process entry is displayed by the repository, this field appears. It cannot be edited
from within the repository; all changes must be made on a diagram. The process number is
displayed as it appears on the project diagram.

Data Mod(s)
The Data Mod field is a specialized field that appears only for describing data only modules
included in information clusters. It cannot be edited from within the repository; all changes
must be made on a diagram. An entry for this field is automatically generated from a structure
chart diagram, and its content is the name of a data only module that has its own repository
entry.

Values & Meanings
This field lists the possible values and meanings of data elements, miscellaneous entries and
couples. Information entered into this field may be in any form that is relevant to the
application being analyzed or designed. The field may contain up to 64K characters, and only
four lines are visible in the dialog box at any one time unless you expand the field. You can
scroll through the lines in the usual Windows manner.

Discriminator Values & Meanings
If the current object is a data element that is used as a discriminator, this field contains a list
of values to identify the subtype entities. For each subtype, a value can be entered that will
uniquely identify it. By default, these values are numbers starting with 0 for the supertype.
To change the value, click on the value until an edit control appears, make your changes, then
press Enter.

Process Description
This field can be used to enter a description for a process. The description should ideally be in
some form of structured English or the equivalent, so that data element references can be
found within the field. The references provide a means for checking process incoming and
outgoing data flows. Good structured analysis techniques dictate that a process description
should exist only for the lowest level processes in a project. The field may contain up to 64K
characters, and only four lines are visible in the dialog box at any one time unless you expand
the display. Note that in the current release of Visible Analyst, data element references are not
searched for in this field.

Module Description
This field can be used to enter a description for a module or a library module or one of the
subtypes used for SQL schema generation: triggers, check conditions and stored procedures.
The description should either be source code for code generation or some form of structured
English or equivalent, so that procedures are documented for beginning processing, for calling
other modules, and for the control and data parameters being passed to and from the module.
The field may contain up to 64K characters, and only four lines are visible in the dialog box at

The Visible Repository

251

any one time unless you expand the display. Refer to the Shell Code Generation section,
below, for more uses for this field.

Macro Description
This field can be used to enter a description for a macro or library or one of the subtypes used
for SQL schema generation: triggers, check conditions and stored procedures. The description
should either be source code for code generation or some form of structured English or
equivalent, so that procedures are documented for beginning processing, for calling other
modules, and for the control and data parameters being passed to and from the module. The
field may contain up to 65K characters; only four lines are visible in the dialog box at any one
time unless you expand the display. Refer to the Shell Code Generation section, below, for
more uses for this field.

Modules Contained
The Modules Contained field is a specialized field that appears only for information clusters.
It is automatically generated from structure chart diagrams and may contain up to seven
module names. It is not editable from within the repository; all changes must be made on a
diagram. Any module name contained in this field also has its own entry in the repository.

Composition/Attributes
The Composition field replaces the Values & Meanings field whenever the repository dialog
box displays a file, data store, data flow, data structure, data only, interface table row or
entity. The field can be used to identify all of the components of the repository entry, such as:
data elements, data flows, data structures, files, data stores, and couples (all types). For some
uses, the composition field does not allow all of the above entry types. It is automatically
populated by the Split Data Flow function for DFDs, and the key synchronization function for
ERDs. Entry types with a specialized composition field are:
• Data Only Modules. This entry type only allows the composition field to contain data

elements and couples (data, control, and generic).
• Interface Table Row. This entry type allows the composition field to contain a group of

couples, but only couples of one type; for example, it may contain control couples but not
generic or data couples, or it may contain data couples but not the other types.

For every item entered into the composition field, Visible Analyst creates a repository entry
(if one with the same name does not already exist) and updates that entry’s location field. If
an item is removed from this field, that entry’s location field is updated to reflect this. These
repository entries are generally created as data elements and may be changed to data
structures. However, some entry composition fields deal only with specific component entry
types (see the previous paragraph).

If you click the Composition field or click the Attributes Details button, a dialog box opens,
allowing you to define up to 12 components and some of their properties. In addition to the
component name, you can specify its physical storage type, length and whether nulls are

The Visible Repository

252

allowed. As you enter items, the dialog box automatically scrolls as necessary to allow you to
enter more items until you reach 12. When you complete the entries, click OK to add them to
the Composition field. If you need to add more than 12 components, click the Attributes
Details button again and a new dialog box opens so that you can add more. This speeds up the
process of generating a table from an entity if you want to generate it without adding full
descriptive information for all of the data elements involved.

Item names entered into the composition field may contain up to 128 characters each and may
consist of upper or lower case letters, numbers, spaces, periods, underscore characters and
hyphens; but the first character must always be a letter. Asterisks may be used to denote
comments; all characters following the asterisk on a line are ignored. All other characters in
the field are considered delimiters and are used to separate items and components entered
into this field. A maximum of 10 items may appear in one line; any additional items are
ignored. Item names may not wrap from one line to the next.

For entities, the composition field may carry descriptors of items indicating that they are keys
or parts of keys. To indicate that a composition item is a primary key, prefix it with [PK]. To
indicate a foreign key, prefix with [FK]. An alternate key is indicated by [AK#], and a
performance index is indicated by [PI#], where # is a number that annotates the alternate
key/performance index this element is a part of. Alternate key and performance index
indication is strictly for your own reference; it is not used in any way by Analyze (they are
used, however, to generate indexes in some SQL dialects). Up to 64K characters are available
in this field; only four lines are visible in the dialog box at any one time unless you expand the
field. Keys can also be specified by clicking the Keys or the Foreign Keys tab on the Define
dialog box.

Populating a Composition
The repository Search function can be used to populate the Composition field of a repository
item. To do this, place the cursor in the item’s Composition field and click the Search button
to display the repository search dialog box. In the Search list box, locate each repository item
you want to place in the Composition field and click the Search button; the item is added to
the Select list box at the bottom. When you have found all of the entries you want, click the
Select button to enter them into the Composition field.

Defining a Primary Key
In addition to the method described above, you can define a primary key for an entity by
clicking the primary key button at the repository dialog box. Select the desired columns from
the Columns in Table list to add them to the Column in Key list. The order the columns are
selected determines the key order. To remove an item from the key, simply deselect the
column. Click OK when you are finished. Depending on the type of object being modified,
the composition field or attributes field (described below) is updated with a [PK] prefix to
indicate the primary key components. (Keys can also be defined by clicking the Keys or
Foreign Keys tab on the Define dialog box.)

The Visible Repository

253

Attributes
The Attributes field replaces the Values & Meanings field whenever the repository dialog box
displays a class. It also replaces the Composition field if the Classic User Interface option is
turned off. The field contains a list of the data members for the class showing the local data
element and type. To add, change, or remove members, click Attributes Details button, select
Add/Change from the Repository Object menu, double-click in the Composition field while
holding down the CTRL key, or click the Add button (the Add button becomes active when
you begin typing in the Add field). For each attribute, the following information can be
defined:
• Name. The name of the attribute. Each attribute of a class has a separate entry in the

repository with a type of local data element. This is an optional field. The Search button
can be used to find other local data elements in the repository.

• Type. The attribute type can be class, data element, or data structure. If the type does not
exist in the repository, a new class is created. The location field of the attribute type
contains a reference to the current class. This is a mandatory field. The Search button can
be used to display a list of valid types. If the attribute type is data element or elemental
class, its physical characteristics are displayed.

• Limit. The number of occurrences of the attribute. If this field is blank, the attribute
occurs once.

• Reference. A qualifier to indicate the access method for an attribute. Value indicates the
object defined in the Type field is used; address indicates a pointer to the object is to be
used; and reference indicates a reference to the object is to be used. The default is value.

• Visibility. Public members have global visibility. Private members are only accessible to
member functions and friends. Protected members are accessible to derived classes and
friends. Implementation members are only accessible to the class itself. The default is
private.

• Qualification. Constant indicates the member value cannot be changed. Volatile
indicates the member can be modified by something other than the program, the
operating system or hardware. Static indicates there is only one instance of the member
regardless of the number of times a class is instantiated. The default is none.

• Physical Characteristics. If the attribute type is elemental, the physical characteristics
can be set. See the section Data Element Physical Information later in this chapter for
details.

The Visible Repository

254

 Figure 5-9 Class Attributes

For every item entered into the Type field, Visible Analyst creates a repository entry (if one
with the same name does not already exist) and updates that entry’s location field. If an item
is removed from this field, that entry’s location field is updated to reflect this. These
repository entries are generally created as classes unless a data element already exists with the
same name, or the physical characteristics are defined.

As you enter items, the dialog box automatically scrolls as necessary to allow you to enter
more items until you have finished. Insert is used to insert a new attribute into the list at the
current position, while Delete removes the current attribute (the current position is indicated
by ØØ). To reorder the list, click the left mouse button on the current position indicator and
drag the row to its new position. When you have completed the entries, click OK to add them
to the Attributes field.

Item names entered into this field may contain up to 128 characters each and may consist of
upper or lower case letters, numbers, spaces, periods, underscore characters and hyphens; but
the first character must always be a letter.

The Visible Repository

255

Attached Entities/Classes
The attached entities/classes for the currently displayed relationship are listed in this field.
When an inheritance relationship is displayed, the characteristics of that relationship can be
changed (see Changing Inheritance Characteristics later in this chapter), otherwise, it cannot
be edited from within the repository; all changes must be made on a diagram. The field lists
the two entities or classes attached to this relationship. Below the second entity name is listed
the reverse of the current relationship. If either direction of the relationship has not been
named, the name of the relationship in the reverse direction is displayed as “reverse of
(opposite relationship name).” This field allows you to jump to the repository entries for any
of these entities or relationships.

Relations
For an entity or class, the Relations field displays, for each relationship attached to this entry,
the relationship name followed by the name of the entity or class on the other end of this
relationship. These sets are ordered alphabetically by the opposite entry name. When an
inheritance relationship is displayed, the characteristics of that relationship can be changed
(see Changing Inheritance Characteristics later in this chapter), otherwise the information
cannot be edited from within the repository; all changes must be made on a diagram.

This field allows you to jump to the repository entries for any of these entities, classes, or
relationships by positioning the cursor on the line containing an entity, class, or relationship
name and clicking the Jump button.

Notes
This field allows you to enter information in free form fashion for any repository entry. Up to
64K characters are available in this field, but only four lines are visible in the dialog box at
any one time unless you expand the field.

Locations
This field displays an entry’s locations; it cannot be edited. Two types of locations may be
present in this field for any entry. The first type shows the label of the diagram on which the
entry is located, followed by its diagram number in parentheses (DFDs only). The second type
shows any other entries that reference the currently displayed entry in their composition
fields. Only four lines can be viewed at any one time unless you expand the field. The
Repository Report function lists all locations.

Long Name
When a repository entry, either a local data element or a module, belongs to a class, the full
name of the entry includes the class name. The Long Name field displays this name, and in
the case of modules, includes the argument list (the argument list is required to differentiate
overloaded member functions). If you want to change the argument list for a class method,
click the right mouse button on the Long Name field and select Change (see the Methods
section later in this chapter for details). If you want to change the class to which the method

The Visible Repository

256

belongs, select Class from the Repository Object menu. To display the class definition, click
the Jump button.

Class Characteristics
Concurrency is a class property that distinguishes an active object from inactive object. An
active object may represent a separate thread of control. A sequential object is a passive
object whose semantics are guaranteed only in the presence of a single thread of control. A
guarded object is a passive object whose semantics are guaranteed in the presence of multiple
threads of control.

A persistent class exists beyond the lifetime of an executable program. This means it must be
stored on a non-transitory storage device. If the subtype of a class is set to associative or
attributive entity and the class is used on an entity relationship diagram, this field cannot be
changed.

An abstract (or virtual) class cannot be instantiated because it contains pure virtual methods.
If pure virtual methods exist for a class, Abstract is checked. If you attempt to uncheck this
field, all pure virtual methods are reset to virtual. If you attempt to check it and virtual
methods exist, they are converted to pure virtual methods.

Methods
Methods (or Member Functions) are the operations that are defined for accessing a class. The
Methods field contains a list of the functions for a class showing the name, return value,
argument list, and flags to indicate its visibility. To add, change, or remove methods, click on
the Methods field and click the Attributes Details button, select Add/Change from the
Repository Object menu, or double-click the Methods field while pressing the CTRL key.

To add a new method for a class, click the New button and type the name of the method you
wish to add. To search for methods that have already been defined in the repository, click the
Search button. The list contains all modules that have previously been defined in the
repository. If the module already belongs to a class, the class name is displayed. Note that
when you select a module that already exists, the complete definition for that module is used
including return value and argument list. Click OK to add the method name to the list of
methods for the current class. For each method, the following information can be defined:
• Returns. The return type can be a class or data element. If the type does not exist in the

repository, a new class is created. The location field of the attribute type contains a
reference to the method. This is an optional field. The Search button can be used to
display a list of valid types.

• Limit. The number or size of the parameter. If this field is blank, it occurs once.
• By. A qualifier to indicate how the return value is passed. Value indicates a copy of the

parameter is passed; address indicates a pointer to the object is to be used; and reference
indicates a reference to an object is to be used.

The Visible Repository

257

• Visibility. Public methods have global visibility. Private methods are only accessible to
other member functions within the same class and friends. Protected methods are
accessible to derived classes and friends. Implementation methods are only accessible to
the class itself. The default is public.

• Qualification. Static indicates a method can be used without a specific instance of an
object (it can only be used with static attributes (data members)). A virtual method is one
that you expect to be redefined in a derived class. A pure virtual method has no definition
and must be defined in a derived class. A class with pure virtual functions is an abstract
(or virtual) class. The default is none.

• Arguments. A list of parameters to be used by the method. This is an optional field. If a
method appears more than once with the same name within a class, it must have a
different argument list for each definition. This is known as function overloading. See the
next section for defining arguments.

 Figure 5-10 Class Methods

When a method is added to a class definition, a module entry is created in the repository. The
long name includes the class name and the argument list. The argument list is needed to
differentiate between overloaded functions.

Note
2 Because the same name can be used for more than one method, there may be

duplicate module entries in the repository, each belonging to a different class.

The Visible Repository

258

Arguments
When defining methods (member functions) for a class, the parameters to the function must
be specified. To add, change, or remove arguments, click on the Arguments button on the
Method Definition dialog box. For each argument, the following information can be defined:
• Name. The name of the parameter. This is an optional field.
• Type. The parameter type can be a class or data element. If the type does not exist in the

repository, a new class is created. This is a mandatory field. The Search button can be
used to display a list of valid types. If the parameter type is a data element or elemental
class, its physical characteristics are displayed.

• Limit. The number or size of the parameter. If this field is blank, it occurs once.
• Pass By. A qualifier to indicate how the parameter is passed. Value indicates a copy of

the parameter is passed; address indicates a pointer to the object is to be used; and
reference indicates a reference to an object is to be used. The default is value.

• Qualification. Constant indicates a parameter value cannot be changed. Volatile
indicates the parameter can be modified by something other than the program, either the
operating system or hardware. The default is none.

• Physical Characteristics. If the parameter type is elemental, the physical characteristics
can be set. See the section Data Element Physical Information later in this chapter for
details.

For every item entered into the Type field, Visible Analyst creates a repository entry (if one
with the same name does not already exist). These repository entries are generally created as
classes unless a data element already exists with the same name or the physical characteristics
are defined.

As you enter items, the dialog box automatically scrolls as necessary to allow you to enter
more items until you have finished. Insert is used to insert a new parameter into the list at the
current position, while Delete removes the current parameter (the current position is indicated
by ØØ). To reorder the list, click the left mouse button on the current position indicator and
drag the row to its new position. When you have completed the entries, click OK to update
the method name field.

Item names entered into this field may contain up to 128 characters each and may consist of
upper or lower case letters, numbers, spaces, periods, underscore characters and hyphens; but
the first character must always be a letter.

Friends
The Friends field displays a list of both friend classes and methods (or functions). A friend is
allowed access to the private data members of a class. To add friends, click on the Friends
field and click the Search button, select Add from the Repository Object menu, or double-
click on the Friends field while pressing the CTRL key. A list of classes and member
functions is displayed in the Search list box. Locate each repository item you want to place in
the Friends field and click the Search button; the item is added to the Select list box at the

The Visible Repository

259

bottom. When you have found all of the entries you want, click the Select button to enter them
in the Friends field.

To remove a friend, highlight the desired item and press the DELETE key, or select Cut or
Delete from the Repository Object menu.

Scenario
When the entry type is use case, this field provides a place for you to enter a description of the
scenario.

Planning Statement Links
In order to track the software development process from the planning stages through analysis,
design, and implementation, it is important to be able to link planning statements to model
objects to help you determine the significance of each object and to ensure that each object is
essential in supporting the organization’s business plan. The Links To field on the Links tab
of the Define dialog box allows you to maintain these relationships.

There are three methods for creating a link between a planning statement and any other
object. Either right-click the Links To field and choose Add from the Properties menu, or
drag a planning statement from the Planning Hierarchy window using the mouse. You can
also set the focus in the Links To field and press the Insert key. If you use the Add method, a
list of repository entries is presented; and you can select the desired object. If the current
object is not a planning statement, only planning statements are listed.

Once the link has been added, its name and type are displayed in the field. The link is visible
from both directions. If you are looking at a planning statement, you see the linked object. If
you are defining any other type of object, the planning statement is displayed. The linkage
rules for a statement type dictate how statements of that type can be linked to other object.
See manual section Defining Planning Statement Types for details.

To remove a link, highlight the item and then press the Delete key.

External Links
Because the software development process does not end when your models have been
completed, it is important to be able to link your model elements to the source code that
actually implements them. Using the external links feature of Visible Analyst, you can link
any model element to a file under source code control by a Microsoft SCC-compliant
provider, such as Razor.

To add an external link, right-click on the Links To field and choose Add External Link.
(You can also press the Insert key while holding down the Ctrl key.) If you have access to an

The Visible Repository

260

SCC-compliant provider, you are prompted to log in and provided a list of source files under
version control to choose from. An example of a list of source files is shown below.

Figure 5-11 Add Link to Files Under Source Code Control Dialog Box

Select the files to link, and then click OK. If you want to change the current process, click the
Change button. Note that the information in the Current Project field is unique to the
provider, and may not have meaning to you.

Once an external link has been added, you can view the properties and revisions history of the
file by right-clicking on the link and selecting the appropriate option if the provider supports
these features. If you do not have access to a provider, selecting Properties displays a dialog
box similar to the one shown below.

The Visible Repository

261

Figure 5-12 External Link Properties, Source Code Control Window

To remove an external link, highlight the link and press the Delete key.

Planning Statements
See the manual chapter Strategic Planning for a description of the planning window.

SQL View Support (IntelliViews)
Visible Analyst supports the concept of an SQL view, which can be thought of as a derived or
virtual table. A view is similar to an entity in that it has a composition but the items that
appear in the composition of a view must belong to other entities or be expressed based on
data elements used by another entity.

An SQL view is made up of two major components: a list of column names and a Select
statement that is used to filter information from the tables in the view. For each view, there is
one primary select clause that can refer to any number of sub-select clauses and an optional
union select clause. Each of these clauses can refer to other subselects or to unions. When
building a select clause, choose the tables, columns, and joins appropriate for only that clause.
Joins can be defined using a combination of key-driven joins using relationship keys and

The Visible Repository

262

expression-based joins using pseudo SQL. All expressions and clauses are entered and
displayed in a standard pseudo SQL syntax that is a functional superset of all supported SQL
syntax. An expression builder is available to help in this process. When pseudo SQL is
translated into a specific dialect’s syntax, complex operators that are not directly supported
are expanded into layers of simpler syntax to accomplish the same task. As needed,
translation generates slave views to overcome dialect limitations, such as one outer join per
view.

Note
2 You can also generate the view as a Create Table statement to facilitate data

warehouse/data mart modeling efforts.

To add a view specification to an entity, select Define from the Repository menu. At the
Define dialog box, select View from the Entity Type drop-down list to display the five
additional tabs unique to view objects:
• On the Tables tab, select the tables that are to be used by the view.
• On the Columns tab, select the columns to be used by the view.
• On the Joins tab, define the join relationships to be used by the view.
• On the Clauses tab, define where, group by, having, start with, and connect by clauses.
• On the Options tab, set flags such as restrict and with check.

Each of these tabs is described in detail below. (The Description, Locations, and Links tabs
for view objects are similar to those for other entry types.)

The Visible Repository

263

View Tables

 Figure 5-13 Define Dialog Box, View Tables Tab

• Selection. Specifies the name of the select clause that uses the tables. Each view must

have one primary selection. All other selections are referred to by the Where clause of
the primary select, by a union select, or by other non-primary selects (sub-select).

• Tables/Relationships. A graphical representation of the tables and join relationships
used by the current select clause. This window is updated each time a new entity or
relationship is added to the view. Once a table has been added, its position in the window
can be changed by clicking the object with the mouse and dragging it to a new position.

The Visible Repository

264

Move (or undock) the window itself by clicking on the title bar and moving it. Once
moved, the rest of the controls on the page are resized to use the available space. To
dock the window, move it back to its original position on the page. To prevent docking,
press the CTRL key while moving.

• Available Tables. A list of tables and their associated relationships that exist in the
current project. Highlight a table and click the ØØ button to add the table to the list of
tables used by the view. A table can be added more than once, but each instance must
have a unique alias. If a relationship is selected, and neither table exists in the view list,
both tables and a join relationship are added. If either table exists, a specific instance of
the table must be specified. You can also drag-and-drop with the mouse to add tables.

• Selected Tables. A list of tables and their correlation names (alias) that are used by the
view. To remove a table from the selected list, highlight it and click the ×× button. You
can also use drag-and-drop with the mouse to remove tables.

• Alias. Correlation name for a table. To change the alias, select a table and type the new
alias in the Alias field.

The Visible Repository

265

View Columns

Figure 5-14 Define Dialog Box, View Columns Tab

• Available Columns. A list of tables and columns that belong to the current selection.

To add a column to the list of columns used by the view, highlight it and click the ØØ
button. To add all the columns in a table, highlight the table name and click ØØ. A table
may be added more than once, but each instance must have a unique alias. To add an
expression, click the f(x) button. If the current selection is a sub-select, only one column
is allowed; if it is a union, the number of columns must match the primary selection. You
can also drag-and-drop with the mouse in two ways to add columns. Select either a table

The Visible Repository

266

name or column name from the Available Columns list and drag it to the Selected
Columns list, or select a column or group of columns from an entity in the
Tables/Relationships window and drag to the selected columns list.

• Selected Columns. A list of columns and their names that are used in the view. To
remove a column, highlight it and click the ×× button. The change the name used by the
view, highlight a column and type the changes in the Name field. To change the order of
the columns, click the up and down arrows or highlight and drag to the new position.
You can also drag-and-drop with the mouse to remove columns.

• Tables/Relationships. A graphical representation of the tables and join relationships
used by the current column. When the Columns tab is displayed, you can select a column
or group of columns from an entity in this window and drag it to the Selected Columns
list.

• Select Distinct. Click this check box to indicate that duplicate rows are not to be
returned by the select clause.

• Expression Builder. Click this button to display the Expression Builder to help you
create expressions to be used in the Filter, Group By Having, Start With, Connect by, or
Join Expression controls.

The Visible Repository

267

View Joins

 Figure 5-15 Define Dialog Box, View Joins Tab

Two types of join relationships can be defined. Key-driven joins are based on relationship
keys created on an entity-relationship diagram. Pseudo SQL relationships are created simply
by selecting join columns in a pair of tables.

• Relationship. This field lists all the join relationships for the current selection. To

change the join type or expression, choose a relationship from the list or highlight it in
the Table/Relationships box.

The Visible Repository

268

• … Button. Click this button to display the Join Relationships dialog box. Use the Join
Relationships dialog box (described later in this chapter) to add or delete relationship-
based and non-relationship-based joins.

• Join Type. Join types available are inner, left outer, right outer, or full outer.
• Join Expression. If the join relationship is not key-based, use this field to specify the

join expression. If the join is based on a relationship, the Join Expression edit control is
replaced by Additional Join Restrictions used to specify filtering clauses beyond the basic
expression used to define the join. Click the Expression Builder button to help you
define any additional restrictions. Note: This field should not be used to define a basic
join expression for relationship-based joins. This information can be determined from
the repository. In most cases, this field should be blank for relationship-based joins.

• Tables/Relationships. A graphical representation of the tables and join relationships
used by the current relationship. When a join relationship is added to the view, its
position can be changed by clicking the object and dragging it to a new position.

• Expression Builder. Click to display the Expression Builder to create expressions to be
used in the Join Expression control.

The Visible Repository

269

View Clauses

 Figure 5-16 Define Dialog Box, View Clauses Tab

• Filter. Type a filtering condition to restrict the number of rows returned by the select. If

the where clause is a sub-select, specify the name of a new selection item in the Selection
field. Use the Expression Builder to create a filter.

• Group By. Specify grouping criteria.
• Having. Specify a having clause.
• Start With. Specify a starting column in a hierarchical search.
• Connect By. Specify the connect by column in a hierarchical search.
• Union. Use this field to indicate that the current selection has a union relationship with

another selection clause. This field is valid only for top-level select clauses (primary

The Visible Repository

270

select or other union selects). When a union is specified, it is added to the Selection list
control

• Union All. If a union select is specified, click this check box to indicate if it should be a
normal union or a union all relationship.

• Expression Builder. Click this button to display the Expression Builder to help you
create expressions to be used in the Filter, Group By Having, Start With, Connect by, or
Join Expression controls. In addition to the Expression Builder, each of the clauses
control supports an “Attribute Completion” facility. If you type a table name followed by
a period (.), a list of columns is displayed. To select a column, use the arrow keys to
highlight an entry and then press the Tab key. If you type a period preceded by a space, a
list of tables is displayed, followed by a list of columns.

The Visible Repository

271

View Options

 Figure 5-17 Define Dialog Box, View Options Tab

• Check Option. Use the Check Options to ensure that data modification statements

adhere to the criteria set within the select statement defining the view. When a row is
modified through a view, the With Check Option guarantees that the data remains visible
through the view after the modification.

• Drop Behavior. This option determines where a Drop View statement is created during
SQL generation. None means do not generate the drop, Cascade means delete the view
and all dependent views, and Restrict means do not drop if there are dependent views.

The Visible Repository

272

• With Encryption. Click this check box to store the view select statement in an
encrypted format in the target RDBMS.

• Create View Even If Base Tables Do Not Exist. Base tables that a view references
usually must exist before the view can be created. Click this check box to allow the view
to be created regardless of whether the base tables exist or not. However, the view
cannot be used until the base tables are created.

• Expression Builder. Click this button to display the Expression Builder to help you
create expressions to be used in the Filter, Group By Having, Start With, Connect by, or
Join Expression controls. In addition to the Expression Builder, each of the clauses
control supports an “Attribute Completion” facility. If you type a table name followed by
a period (.), a list of columns is displayed. To select a column, use the arrow keys to
highlight an entry and then press the Tab key. If you type a period preceded by a space, a
list of tables is displayed, followed by a list of columns.

Expression Builder
When creating expressions to be used in the Filter, Group By, Having, Start With, Connect
By, or Join Expression controls, you can either enter the information manually or use the
Expression Builder to help you.

To start the Expression Builder, click the Expression Builder button when it is enabled.

An expression is made up of a set of criteria used to filter information. To build the
expressions, use the following controls:

• Prefix Op. A prefix operator used to join the criteria being defined with the rest of the

expression. The options available are And, Or, or no operator. (Optional)
• Function. The name of a function to be used. If Exists or Not Exists is specified, a

subquery name must be specified in the Subquery field. (Optional)
• Field/Subquery. The name of a column or subquery to be used in the expression. The

drop down list contains a list of the valid column names that can be used. (Mandatory)
• Operator. The relational operator used to compare the Field against a Value. If a

Function is not specified, this item is mandatory; otherwise, it depends on the function
selected. If you want to perform a comparison with any or all members in a list or
subquery, choose All or Any from the second operator control.

• Value. The value to compare Field against or the name of a subquery if All or Any were
specified in the second operator field.

• Add - Once the criteria for the subexpression has been defined, click Add to update the
entire expression. The Expression control contains all the criteria that have been defined
so far.

• Clear. Clear the current criteria controls.

The Visible Repository

273

• Expression. Displays the expression-in-progress. The caret (¸) indicates where the new
criteria will be added.

When the expression is complete, click OK to save it and return to the Define dialog box.

Join Relationships Dialog Box
The Join Relationships dialog box allows you to add and delete joins. To display the Join
Relationships dialog box, click the button next to the Relationships drop-down button on the
Define dialog box.

The Join Relationships dialog box has two tabs:

Columnar Tab
The Columnar tab allows you to add non-relationship-based joins by joining columns
together. You can also delete joins from this tab.

 Figure 5-18 Join Relationships Dialog Box, Columnar Tab

The Visible Repository

274

• Left Table. Select a table from the drop-down list to display the columns in the selected
table. Select a column from the list. You can drag-and-drop a column from one list to
the other to add a Joined Columns pair.

• Right Table. Select a table from the drop-down list to display the columns in the
selected table. Select a column from the list. You can drag-and-drop a column from one
list to the other to add a Joined Columns pair.

• Add. Click this button when you have selected a column from the left and right table list
boxes to add it to the view. You can drag-and-drop a relationship from the available list
to the Joins in View list.

• Joined Columns. The joined columns are displayed in this list box. Select a joined
column pair. Click Remove to delete the joined column pair, or click Apply to display it
in the Joins in View list box.

• Joins in View. The list of joins in the view are displayed here. Select a join and click
Remove to remove the join from the view.

 Note

22 Double-clicking on either column list adds a pair of joined columns if the same
name exists in the other column list.

Relationship-based Tab
The Relationship-based tab allows you to add relationship-based joins. You can also delete
joins from this tab.

The Visible Repository

275

Figure 5-19 Join Relationships Dialog Box, Relationship-based Tab

• Left Table. Select a table from the drop-down list.
• Right Table. Select a table from the drop-down list.
• Add. Relationships between the selected tables are displayed in the list box. Select a

relationship and click Add to add it to the view. You may also double-click on a
relationship or drag it to the Joins in View control.

• Joins in View. The list of joins in the view are displayed here. Select a join and click
Remove to remove the join from the view.

Join Tables Dialog Box
The Join Tables dialog box is displayed when you add the same relationship to a view twice.

When adding a join relationship to a view, if either one of the entities involved in the join
already belongs to the view, you must decide if the join is to use an existing instance of the
entity or create a new instance. The Join Tables dialog box is used to supply the appropriate
information.

The dialog box is divided into two parts: the upper part deals with the parent entity in the
relationship, while the lower part deals with the child entity. In each case, you must decide
whether an existing instance of the entity is to be used, or a new instance should be created. If

The Visible Repository

276

the entity is not already used, you must create a new instance. If the entity already exists but
you want to create a new instance, the name given must be unique.

Once you have selected the appropriate information, click OK to add the new join
relationship.

Data Element Physical Information
For a data element (see description, below), physical information like data storage type and
field length may be added. The repository supports the following data types for data elements
and domains.

Table 5-3
Valid Storage Types

Storage Type Name Internal

Storage Type Name Internal

Binary 8 Serial 29
Bit 1 SmallDateTime 27
Char 3 SmallFloat 23
Date 24 SmallInteger 16
DateTime 26 SmallMoney 19
Decimal 20 Sysname 32
Float 22 Time 25
Integer 15 TinyInteger 17
Interval 28 Unicode Char 11
LargeInteger 14 Unicode Long VarChar 13
Long VarBinary 10 Unicode VarChar 12
Long VarChar 7 UpdateStamp 30
Money 18 VarBinary 9
National Char 4 VarBit 2
National VarChar 6 VarChar 5
Rowid 31 Zoned Decimial 21
Notes:
The column headed by Internal# indicates the Visible Analyst internal code that
corresponds to a storage type name. If you are accessing the repository data files from a
third-party tool such as Microsoft Access, this number is offset by 53.

A number following a data element type is the number of bytes used. For example:
 Integer 4 uses 4 bytes
 LargeInteger 8 uses 8 bytes
 TinyInteger 1 uses 1 bytes

The Visible Repository

277

Physical Characteristics Repository Fields

Storage Type
Physical data storage types for elements can be selected from a list of valid logical types that
cover all the data types used by the supported SQL dialects. During SQL generation, the
logical type is translated to the native data type supported by the targeted RDBMS. If an item
in the list is marked with a ¹, this means the logical-to-physical mapping for the current SQL
dialect is wasteful. For example, if a dialect does not support a tiny integer type, it is mapped
to a small integer. If an item in the list is marked with a ², this means there is not a good match
between the logical type and the physical type. If you do not like the logical-to-physical
mappings created, you may change them by customizing the SQL dialect. See Appendix B
for details.

Length
The length field accepts the format digits, decimal digits. If the SQL dialect type is Informix
and storage type is Interval or DateTime, you can specify the range in the format largest to
smallest.

Display
This field allows you to customize the display format for the data element you are defining.
This field accepts either the actual mask representation of the display format or a previously
defined display format object. You can define a display format as a separate object in the
repository and then reference that display format in the Display field. If you do not know the
name of a display format you have already defined, you can use the Search button by placing
your cursor in the Display field and then clicking Search on the bottom of the repository
screen. This searches the repository for all display formats defined matching the text you
entered.

Picture, Default and Owner
The Picture, Default and Owner fields accept whatever text you enter into them.

Allow Null
The Allow Null field is used to indicate if an attribute is required. If yes, the attribute is
optional. If Default is selected, the system-defined default value is supplied. If Identity is
selected, this indicates the column has an identity constraint. You can also specify the seed
and increment value in the seed control.

The Visible Repository

278

 Figure 5-20 Data Element Entry with a Domain

Domains
A data element can maintain physical characteristics by specifying them on page two of the
element’s repository entry. (See Figure 5-20.) An alternative method of specifying physical
information for an element is to list the name of a domain in its storage type field. A domain
indicates the physical characteristics of a class of items. If the domain named does not yet
exist, an entry in the repository is created. (If you like, you can now Jump to the new domain
and enter information about it.) The details of the physical information can be specified on

The Visible Repository

279

page two of the domain entry. (See Figure 5-21.) Multiple data elements can reference a
domain. If a domain is used, the storage type in the domain’s repository entry can be selected
from a list of items that are already defined in the repository. If a data element references a
domain, the Length field is not accessible; it should be set in the domain entry.

 Figure 5-21 Repository Domain Entry

Selecting a Domain
The repository Search function can be used to select a domain for a data element. To do this,
display page two of the element’s repository entry. In the Type box, select Domain. Place the
cursor in the domain name edit box to the right of the Type box and click the Search button to

The Visible Repository

280

display the repository search dialog box. In the Search list box, locate the domain you wish to
use and click the Search button; the item is added to the Select list box at the bottom. Then
click the Select button and the domain label is added to the element’s repository entry.

Local Physical Characteristics
If a data element is derived from a domain, you can override certain characteristics, excluding
type and length. If the value is changed, the text appears blue to indicate this value is
different from the base domain. When SQL is generated, the local value is used instead of the
value defined in the domain.

Other Physical Characteristics Information
If physical information for a data element is defined, its Entry Type field cannot be changed.

Extended Attributes
A data element can maintain extended physical characteristics by specifying them on page
three of the element’s repository entry. You can then transfer these extended attributes and all
data model information you have defined in the repository to Powersoft’s PowerBuilder
application development system or Unify’s VISION or Visual Basic. Conversely, data model
information can be extracted from a PowerBuilder database thus populating the Visible
Analyst repository with all appropriate tables, columns, physical characteristics, extended
attributes, primary and foreign keys and validation rules.

There are several repository fields used to define a column’s extended attribute information.
These extended attributes are PowerBuilder/VISION-specific information that enhance the
definition of a column. The extended attribute screen is located on page three of an element
definition in the repository.

Header and Label
These fields contain the text to describe and identify columns and are used in the
DataWindow object. You can also specify the justification for the header field using the drop
down list box provided.

Edit Style and Type
These fields specify how column data is presented in the DataWindow objects. The Edit Style
field contains the name of the style. The type of edit style for the column is defined in the
Type drop-down list box. Currently nine edit style types are supported. For each style there
are appropriate flag settings that appear at the bottom of the extended attribute screen, as well
as other edit fields depending on the type of edit style you selected. Refer to the appropriate
documentation for more information.

If you have specific display values that the user would see and data values that are stored in
the database, these can be defined in the Values & Meanings field of the data element. The list
of values should always start with BEGIN PBLIST and end with END PBLIST. Following

The Visible Repository

281

BEGIN PBLIST is the actual list of display values in quotes and the data values in quotes,
separated by a comma. For example if you had a list of names defined as a list box and
wanted to add the specific values seen by the user and the values stored by the database, the
entry in the Values & Meanings field for the element would be as follows:

BEGIN PBLIST

‘Paul Newman’,’PN’
‘Bing Crosby’,’BC’
‘Sylvester Stallone’,’SS’

END PBLIST

User-Defined Fields
The Visible Analyst repository is extensible. New fields, called user-defined, can be defined
in a project repository allowing you to extend the information that can be stored with an
object. The field information that can be stored includes name, type and length.

Adding New Repository Fields to a Project
To add fields to a project:

Select Define User 1 Select Define User Attributes on the Options menu.
Attributes: The Define Repository Attributes dialog box appears.

Select New or Existing 2 Click New Project Default or Current Project.
Project:

• New Project Default. An attribute is defined for all
subsequent project creation operations.

• Current Project. An attribute is added only to the
current project. If a project has not been selected, this
option is disabled.

Set Field Name: 3 Type the name given to the field. The name can be up to

128 characters, but must begin with a letter.

Set Field Type: 4 Any valid Visible Analyst-supported field can be used.

Move your mouse to the drop-down arrow button at the
right and click with the left mouse button for a list of
supported types.

Set Field Length: 5 Type the size of the field length and scale, where scale is

optional indicating the number of digits to the right of the
decimal point.

The Visible Repository

282

Save the Field: 6 Click Add to save your changes. If New Project Defaults
was selected, every new project that is created contains
the field. If Current Project was selected, only the current
project is updated.

After the attributes are defined and a new project created, you can access the field(s) from the
repository definition for each object by choosing one of the two paging buttons located on the
repository dialog box at the bottom right of the screen. Each user-defined attribute is
represented in Visible Analyst as an entry in the User-Defined Attributes list on page three.

Note
2 Once these new fields are defined, you must create a new project for access to

these fields if you selected New Project Defaults. They ARE NOT accessible
with the currently selected project unless you select Add to Current Project or
you choose the Current Project option in Step 2. Another important note: if
using a network version of Visible Analyst, every user-defined object is
accessible with any subsequently created project. If you create a ‘date created’
attribute field, anyone else with access to Visible Analyst also sees that ‘date
created’ attribute field for objects in any project they create.

Changing or Removing Repository Fields
To change or remove fields:

Select Define User 1 Select Define User Attributes on the Options menu.
Attributes: The Define Repository Attributes dialog box appears.

Select New or Existing 2 Click New Project Default or Current Project.
Project:

• New Project Default. An attribute can be changed or
removed from the list of attributes created when a
new project is created.

• Current Project. An attribute can be removed from
the current project, but the definition cannot be
changed.

Select the Field: 3 Select the attribute to be changed from the list.

Change or Remove Field: 4 If the attribute is to be changed, make the appropriate

changes and then click Change. If the attribute is to be
deleted, click Remove. If you choose to remove an
attribute, the repository of the current project is modified.
This may take several minutes depending upon the size of
the project.

The Visible Repository

283

User-Defined Objects
You can define your own object types, making the Visible Analyst repository fully extensible.
This feature allows user-defined objects to be linked to any repository object and reference
other objects within the composition field of the user-defined object. You can then produce an
association matrix report depicting the link between objects. An applicable example would be
a requirement entry type. The requirement objects you define could then be linked to a
process(es) that satisfies the requirement. Other examples would be critical success factors,
business rules, goals or test plans.

To create a user-defined object:

Select Define User 1 Select Define User Objects from the Options menu.
Objects: The Define Repository Objects dialog box appears.

Select New or Existing 2 Click either New Project Defaults or Current Project.
Project:

• New Project Defaults. Choose this option to modify
the list of objects added to all new projects.

• Current Project. Choose this option to modify the list
of objects defined for the current project. If this
option is selected, objects can either be added or
removed, but the definition of existing objects cannot
be changed.

Set Object Name: 3 This is the name of the new entry type being created.

Whenever you define an object, this name appears in the
list of entry types on the initial repository definition
dialog box.

Set Field Name: 4 This name is associated with the description field of

the new entry type in the repository. Visible Analyst
automatically enters the name of the new entry type as
defined above, followed by the word Description, in this
dialog box field. For example, if you defined a new object
type called Requirement, as you enter the new object type
in the Name field, you notice the name Requirement
Description is automatically entered in the Field Name.
Now when you open the repository and define an object
of type requirement, you see the content of Field Name
listed as an actual dialog box field within the repository.
You can override this naming convention and type your
own name if you choose.

The Visible Repository

284

Set Composite Type: 5 If you choose this option by clicking your left mouse

button on the check box labeled Composite Type, you
allow any newly defined objects of this entry type to
reference other repository entry types in the Field Name
field of the repository, as described above. For every item
entered into this field a new repository entry is created, if
one does not already exist, and the location reference for
this entry is updated. See the Composition section earlier
in this chapter for more details. If Composite Type is not
checked, the defined Field Name field is considered a free
form text field with a 64K character limit.

Select the Composition 6 If you defined an object as a composite type, you are
Types Contained: given the choice of the entry types you want to include.

You may choose a single type, group type or all types.
Click the drop-down arrow button for a list of types. If
you choose all, the default creation type for an item
entered into the composition field is a data element.

For example, if you define a user-defined object called
database, and you would like to reference any entity
objects the various database objects include in the
composition, choose Composite Type by clicking the
check box provided and choose All entity types in
Contains. You can now reference all the entities that
comprise a particular database object in the Field Name
field of the object repository definition. This new field is
located on the initial definition screen for the user-defined
object you are defining.

 Select the Link 7 This option allows you to establish a link or series of
Option: links between repository objects and user-defined

objects. To choose this option, click the left mouse button
on the check box.

Choose the Link 8 This field is used to enter a descriptive name for the
Field Name: link field in the repository. This descriptive name

appears as a field in the repository for any object type you
define in the Link To: box below. In this field you choose
the user-defined object(s) that the object you are defining
is linked to.

The Visible Repository

285

Set the Link 9 This list box describes the cardinality between any linked
Cardinality: objects. The default setting is 1:1. This means that only

one user-defined object can be linked to one repository
object. There are four cardinalities allowed. The entry to
the left of the colon always refers to the user-defined
object. The entry to the right always refers to the linked
repository object.

Set the Link To: 10 This field describes the repository types that can be linked

to the user-defined object. The default is All. You can
click the drop-down arrow for a list of options.

Save the Object: 11 Click Add to save the object.

Note
2 If you modify the New Project Defaults list, you must create a new project in

order to implement newly defined User-Defined Objects. They ARE NOT valid
with the currently selected project unless you select Add to Current Project or
you choose the Current Project option in Step 2. Another important note: if
using a network version of Visible Analyst, every user-defined object is
accessible with any subsequently created project. If you create a requirement
object, anyone with access to Visible Analyst also has that requirement object
type in any project they may create.

Other Repository Information

On-page and Off-page Connectors
Structure chart on-page and off-page connectors are in the repository, although they are
invisible to you.

Creation and Modification Dates
Creation and modification dates are maintained for all items in the repository. As items are
modified, the latest-change date reflects these modifications. Note that all of these dates are
reset to the current date whenever a project is rebuilt.

Inheritance Relationship Characteristics
When an inheritance relationship exists between two classes, you can identify the
characteristics of the relationship by highlighting the desired relationship in either the
Attached Classes or Relations field and selecting Change from the repository object menu
(activated by clicking the right mouse button over the appropriate relationship). For each
relationship, the following information can be defined (see Figure 5-22).

The Visible Repository

286

• An inherited class with a public derivation means that the public members of the base
class are public members of the derived class, and protected members of the base class
are protected members of the derived class. Private derivation means both the public and
protected members of the base class are private members of the derived class. Protected
derivation means both the public and protected members of the base class are protected
members of the derived class. The default is public.

• Virtual. A virtual base class can act as an indirect base class more than once without
duplication of data members. This is useful for classes that are derived from multiple
base classes.

 Figure 5-22 Inheritance Characteristics

CLUSTERS
A cluster is an object composed of entities. Its sole purpose is to be displayed on a data model
view instead of a group of entities in order to eliminate detail and bring clarity to an otherwise
complex view. This section explains the techniques for working with clusters within the
repository. The Drawing Diagrams chapter explains the diagramming aspects of working with
clusters.

The Visible Repository

287

Creating Clusters
A cluster can be composed of entities already existing within the current project repository.
To create a new cluster, display a blank repository screen and enter the name of the cluster in
the Label field and set the Type field to Cluster.

In the Composition field, you can manually enter the names of entities you know are not
members of any other clusters, or you can use the repository search function to help you
populate the cluster. To do this, place the cursor in the Composition field and click the Search
button. The repository is scanned and the search box opens displaying all entities that are in
the free entity pool (not currently a member of a cluster). Move through the list and select an
entity to be a member of the cluster. You can select multiple entities by double-clicking on
them; they appear in the selection list at the bottom of the dialog box. You can eliminate an
entity from the select list by highlighting it and clicking the Delete button. When you are
finished, click the Select button to add them to the cluster Composition field.

After adding any other description information for the cluster, click Save and the cluster is
created.

Modifying Clusters
Entities may be added to or deleted from a cluster. To delete them, highlight them in the
cluster Composition field and press the DELETE key. Entities deleted from the cluster are
returned to the free entity pool and are available to become members of other clusters. To add
entities to a cluster, follow the procedure outlined in Creating Clusters above. You may
modify the name of a cluster at any time by changing the Label field of the repository entry
for the cluster. Clicking Save makes your changes permanent.

Deleting Clusters
A cluster is deleted like any other repository item, by clicking the Delete button in the
repository dialog box when the cluster entry is displayed. When you delete a cluster, all of its
entities are returned to the free entity pool and are available to become members of other
clusters.

REPOSITORY REPORTS
A variety of reports on repository data can be generated. The output may be sent to a printer
or to a file, whichever you have configured in your Windows Control Panel. If you are
running Visible Analyst over a relational database engine, such a Centura SQLBase, third-
party report writers can be used.

Report Functions
When you select Reports from the Repository menu the repository report dialog box is
displayed, allowing you to perform either or both of the following:

The Visible Repository

288

 Figure 5-23 Repository Report Dialog Box

Print or Define a New Report
You can define a report’s content and format. The report definition (or format) is created by
selecting the various criteria in the reports dialog box. The content may be defined as a
detailed listing, summary listing, cross reference, single entry listing, related to listing, split
flows listing, or one of several matrix reports. The different report types are more fully
described in the sections below.

Reports can be defined to include information for the entire project, a project branch (a
diagram and all of its child and grandchild, etc., data flow diagrams), or for a single diagram.
The report may also be defined to print from only one diagram type. Reports may be printed
in alphanumeric order, in entry type order, or in process number order. You can specify that
all entries, only entries with no descriptive information, or only entries with no location
references be included in the report. In addition, reports can be made on specific entry types
or entry types with certain characteristics (undefined, for example).

A report may also include all standard entries (all those other than miscellaneous), all
miscellaneous entries, or be limited to the specific entry types defined for the given diagram
type.

The Visible Repository

289

Repository Report Preview
The content of a repository report can be previewed before the report is actually printed. In
the Repository Reports dialog box, check the Preview box. After you click Print, a box
appears containing the report, and you can view the report on screen. You can also print it,
save it to a file, or abandon it. If you want the printed report to be formatted, you must return
to the Reports dialog and turn off Preview.

You can generate the report in HTML format so that it can be viewed in a browser. If you
have a browser installed, when you click Preview, the Use Browser For Preview option is
available. If you select this option, the report is displayed in your browser when it is
generated. You can do this for both standard reports and matrix reports. In the generated
HTML report, multiple entry type listings include hot links that allow you to “jump” around
the report from entity to element, back to entity, etc. When you select the Locations-
Diagrams field from the Field in the Reports dialog box, the HTML report generated includes
diagrams in JPEG format. You can click the diagram listing hot links in the HTML report to
display the JPEG diagram file in your browser.

Selecting Fields to Include in Reports
You can select the repository fields that are included in a detailed or single-entry report. Click
the Fields button to display a list of fields to include. By default, all fields are included so the
entire list is highlighted. To remove a field from the list, click the right mouse button on it.
The Invert button selects all fields that are not highlighted and deselects all those that are
highlighted.

Printer Setup for Reports
You can select the printer to use by clicking the down arrow by the Printer Name field and
selecting a printer from the list. You can also change settings for the printer driver, such as
page orientation (portrait or landscape), print to file, etc., by clicking the Properties button on
the Reports dialog box.

Predefined Reports

Saving a Predefined Report
After you define a report format, you can save the report definition by clicking the Save
Report button. If you choose to save it, you must name it. The name allows you to
subsequently print repository data according to your predefined report content. For this and
the other predefined report functions, you can scan your predefined reports and display the
report details that are defined for each in the predefined reports dialog box.

Selecting a Predefined Report to Print
Clicking Defined Report allows you to print any repository report according to your
predefined format. After you make this selection, you can select the name of the predefined
report from the list. After you choose the report, you must indicate the specific branch (data

The Visible Repository

290

flow diagrams only), or single diagram that is to be used as the scope of the report, unless the
predefined report has a scope of the entire repository. The branch or diagram name is not
saved with the other report criteria. It is done this way to give you the flexibility to save one
format usable for numerous specific diagrams or branches.

Deleting a Predefined Report
You can also delete predefined reports by clicking Delete Reports, choosing the name of the
predefined report that you wish to delete, and clicking OK.

Repository Report Formats

Detailed Listing
Detailed Listings prints repository data from all information fields in the repository, as well as
certain information captured by Visible Analyst but not displayed in the repository dialog
box. In addition to the information from the dialog box, Detailed Listings provides the
following information:

For Data Flows Source and destination information for each occurrence of the data
 flow (entry type and label).

For Processes Both input and output data flows to and from the process listed

by name.

For Structure Called-by and calls information, including passed and returned
Chart Symbols couples.

For Structure Returned-from and Returned-to information.
Chart Couples

For All Items Date created and date last altered.

Summary Listing
This report type prints only the repository data in the label, entry type, and description fields.
A summary listing may include all the same report contents that a detailed listing report has,
including process, file, module, data element, etc.

Cross Reference
For each data element, couple, data structure or entity, this report lists all entries that
reference it in a composition field and the referencing item locations.

Single Entry Listing
This selection allows printing a detailed report for a single repository entry. After making this
selection, you must choose the name of the desired repository entry for which the detailed

The Visible Repository

291

report will be printed. The Search button displays a Search Repository dialog box and works
in the same way described earlier for displaying and editing repository items.

Related To Listing
This listing reports on all structure chart items in a project repository that have been related
back to data flow diagram items and the items to which they have been related.

Entity/Attributes Detailed Listing
This report is similar to a detailed listing, except the composition field includes physical
characteristics of the component items. Each component appears on a separate line and
includes type, length, allow null, and key information.

Entity/Attributes Summary Listing
This report is similar to a summary listing except that entity types include the composition
field with physical characteristics of the component items. Each component appears on a
separate line and includes type, length, allow null, and key information. If only entity types
are included in the report, the description of each component follows the physical
information.

Business Rules Report
This report lists instances of an entity, the relationship name, and cardinality when the Project
Scope is set to Entity Relationship and you select Business Rules as the Report Type.

Split Flow Listing Generation
This report lists all parent and subflows for a data flow diagram, a branch (a diagram and its
children/grandchildren), or a complete DFD portion of a project.

Statement Hierarchy
This report lists all the planning statements in the repository in hierarchical order.

Matrix Reports
Matrix reports generates information about one class of items with respect to those in another
class, laid out as a matrix. For example, you can produce a report of what data stores occur on
which diagrams or what data elements are listed in the composition fields of which entities.

There are three types of matrix reports.
• Diagram location matrices show on which diagram or view certain objects appear.
• Composition matrices reveal what items are listed in the composition fields of which

other items. The item content is similar to what appears in a cross reference report, but
the layout is directed more specifically toward item correspondences, without additional
information about each item.

• Association matrices are more general and display the class of objects that has a certain
type of association with objects of another class. For example, you can produce a report

The Visible Repository

292

showing which entities in the data model of your project are accessed by which processes
in the process model.

The content selection for each report type is dependent upon the diagram type currently in
effect (set in the report Project Scope box). For certain association matrices, inverted matrices
with identical contents can be generated by producing the same report under a different
diagram type. When entire repository reports are in effect, some subclasses of items of objects
(e.g., library modules) cannot be selected, only the general type of object (e.g., all modules).

There are two matrix report formats that can be chosen from the reports dialog box:
• A wall chart matrix is physically as large as necessary to accommodate the data in the

report. Visible Analyst automatically segments it horizontally and vertically. You must
cut and paste the pages to produce the final displayable report chart.

• A one-page wide matrix is more suitable for binding. All rows of the report are printed
over as many pages as necessary, but each page displays only as many columns as fit on
one page. After all rows are printed, the report starts over, printing all rows and the next
group of unprinted columns. This process repeats until all columns are printed.

You can preview a matrix report by clicking the Preview check box. You can also generate
the report in HTML format so that it can be viewed in a browser. If you have a browser
installed, when you click Preview, the Use Browser For Preview option is available. If you
select this option, the report is displayed in your browser when it is generated. You can do
this for matrix reports and standard reports.

REPORT QUERIES — CUSTOM REPORTS
The custom report facility allows you greater flexibility in defining reports. On the Repository
menu, select Report Query. You enter the name of a report, select a report from the list of the
available custom reports in the custom report file “REPORTS.TBL,” or manually enter the
specification for the custom report in the Report Query Definition dialog box. When you
finish defining the new report, click the Add button to enter it into the custom reports file.
You can change an existing report query by selecting it from the list, editing it and clicking
the Save button to put the changed version into the custom reports file. If you select an
existing report query from the list and click the Delete button, it is removed from the custom
reports file. When you complete editing, click OK to generate the selected report.

The Visible Repository

293

 Figure 5-24 Repository Custom Report Dialog Box

Custom Report File Format
The custom report file is an ASCII file that contains custom report definitions. The file is in a
free format. The text is made up of “tokens;” that is, keywords separated by spaces and tabs.
Carriage returns count as spaces. The keywords are not case sensitive. Comments are
introduced by two dashes. The format somewhat resembles SQL.

After adding a new report or changing one, there is a check function, described below, that
checks the syntax of the custom report file. Examples are given later in this section.
Additional examples are in the “REPORTS.TBL” file included with Visible Analyst.

Custom Report Definition Syntax
The notations used in the report definition syntax are:
• Items marked in bold face are required.
• Items within square brackets (“[]”) are optional.
• Curly braces (“{ }”) enclose a list of items separated by the “|” character (logical OR);

you must choose one.

The Visible Repository

294

• Parameters are delimited by “%” characters.
• Italicized items are explained later.
• Extra spaces and tabs may be added as you wish to improve legibility.

Each report definition in the custom report file has the following syntax:

The report definition ends with a semicolon or with the end of file. The report name you enter
appears in the custom report Name box as a selection. For each parameter name, the report
program prompts you for the parameter value before the report executes. The parameter name
can be used in the where clause text as a string, integer or date constant.

The select clause is used to specify the report type – detail or summary; the default is detail.
The optional from repository clause is for decoration purposes only.

The optional order by clause allows you to select the sort order; sorting by name is the
default. When sorting by type is selected, an entry type list can be specified in parentheses.
The entry type list allows you to define a custom sorting sequence of entry types. It also
serves as an additional restriction – only entries of types on the list go into the report. The list
of acceptable types is the same as the valid entry types listed later in this chapter.

The optional format clause gives you the choice of printing multiple entries per page or a
single entry on each page; the default is multiple.

The default restriction is no restrictions – the entire repository is used. The restriction, if
entered, is a set of logical conditions concatenated using the logical operators NOT, AND,
OR, and parentheses. Each logical condition applies to one repository “column.” The
available columns are shown in Table 4-4.

Table 5-4
Repository Column Information

Col. # Column Name Column
Type

Comments

1 name String
2 type Set
3 description String
4 notes String
5 composition String not for data elements, domains, couples, etc.
6 location Location
7 creation date Date
8 modification date Date
9 process number String for processes only

The Visible Repository

295

Table 5-4
Repository Column Information

10 data store number String for G&S data stores only
11 storage type Set for data elements and domains
12 domain String for data elements only
13 length Integer for data elements and domains
14 picture String for data elements and domains
15 default String for data elements and domains
16 allow null String for data elements only
17 owner String for data elements only
18 from entity String for relationships only
19 to entity String for relationships only
20 reverse relationship String for relationships only
21 parent flow String for data flows only
22 alias String for non-structure chart items
23 associator element String for relationships only
24 values & meanings String for data elements, domains, couples
25 related to String for structure chart items
26 IC data module String for info clusters only
27 IC modules String for info clusters only
28 module description String for modules only
29 process description String for processes only
30 function description String for functions only
31 scenario String for use cases only
32 guard condition String for messages and events only
33 message details String for messages only
34 action expression String for events only

The logical conditions allowed for a column depend on the column type. For columns of type
string, the allowed conditions are:

column is null
column is not null
column = “constant”
column begins with “constant”
column contains “constant”

where the constant is a string and null means an empty string.

For columns of type date, the allowed conditions are:

The Visible Repository

296

column = constant | current
column > constant | current
column < constant | current
column <= constant | current
column >= constant | current
column != constant | current

The date constant must be in the Windows date format as defined in Control Panel/Regional
Settings/Date.

For columns of type integer the allowed conditions are:

column is null
column is not null
column = constant
column > constant
column < constant
column <= constant
column >= constant
column != constant

where the constant is a number. Null means that the value was not entered in Visible Analyst.

For columns of type set, the allowed conditions are:

column is null
column is not null
column = set_element
column in (set_element [, …])

For column type Set, set_element is anything valid for that column name. So for column name
“type,” set_element is any valid Visible Analyst entry type; a null value for set type columns
never occurs. Valid entry types are the entry types listed or any of the following composite
types:
 any entity type
 any module type
 any couple type
 any dfd type
 any sc type
 any erd type
 any fdd type
 any cld type
 any sttd type

The Visible Repository

297

 any use type
 any seq type
 any col type
 any act type

For the column name “storage type,” set_element is one of the Visible Analyst storage types,
listed in Table 5-4.

For the location column type, the allowed conditions are:

exists location
exists location of entry_type [“name_constant”]
exists location on diagram [“diagram_name”]
exists location on branch of “diagram_name”
exists location with source of “name_constant”
exists location with destination of “name_constant”

Entry_type is one of Analyst’s repository types (see above). Name_constant is a name of a
valid object with a storage type of entry_type in the repository. If name_constant is not
specified, the condition becomes true if a location of any object with entry_type exists in the
repository.

Examples of Custom Report Specifications
Several examples of custom report specifications are shown in Figure 5-25.

Syntax Error Checking
The Check button in the Report Query dialog box performs a syntax check of the current
report. If it is stored in the report definition file “REPORTS.TBL,” it checks the syntax there.

Check reads the report, parses it and displays various error messages (see Figure 5-26). In
those error message lines, n is the line number in REPORTS.TBL.

The Visible Repository

298

Entire repository
 report “Entire Repository”
 select * from repository;

All entries with no diagram locations
 report “No Diagram Locations”
 select Y from repository where not
 exists location on diagram;

All fundamental data elements with an
integer storage type
 report “Integer Fundamental Elements”
 select * from repository
 where type = data element and
 exists location of all entity
 types and storage type in
 (integer, smallint, tinyint);

All unidirectional relationships
 report “Unidirectional Relationships
 select * from repository
 where type = relationship and
 reverse relationship is null;

Entities with description or notes but
without composition
 report “Defied Entities Without
 Composition”
 select * from repository
 where type = all entity types and
 (description is not null or notes is not
 null) and
 composition is null

Dictionary-only undefined relationships
 report “Repository-only Relationships”
 select * from repository
 where type = relationship and
 not exists location on
 diagram and composition is
 null and description is null
 and notes is null;

All objects on a diagram
 report “Diagram Contents”
 params %Diagram Label%
 select * from repository
 where exists location on diagram
 %Diagram Label%
 order by type;

Dictionary-only entities and relationships
 report “Repository-only Entities and
 Relationships”
select * from repository
 where type in (all entity types,
 relationship) and not exists
 location on diagram
 order by type;

All processes created after a given date
 report “New Processes”
 params %Starting Date%
 select * from repository
 where type = process and
 creation date >=%Starting Date%;

 Figure 5-25 Examples of Custom Report Specifications

The Visible Repository

299

Errors decoding the report clause
 REPORTS.TBL(n)
 ‘report’ expected.
 Report name missing.
 Invalid report name.

 Restriction too long.
 Unbalanced parentheses.
 Invalid where expression.

Errors decoding the order by clause:
 REPORTS.TBL(n)

Errors decoding the params clause
 REPORTS.TBL(n)
 Duplicate parameter ‘xxx’.
 Too many parameters.
 Parameters missing.

 Missing order by value.
 Invalid order by value ‘xxx’.

Errors decoding the format clause:
 REPORTS.TBL(n)
 Missing format value.

Errors decoding the select clause
 REPORTS.TBL(n)
 Missing select value.
 Invalid select value ‘xxx’.

 Invalid format value ‘xxx’.
 Warning: ‘format single’ ignored for
 summary reports

Miscellaneous errors
 REPORTS.TBL(*)

Errors decoding the where clause
 REPORTS.TBL(n)
 Unknown parameter %xxx%.
 Unknown Column ‘xxx’.
 Unexpected ‘xxx’.
 ‘(‘ expected.
 Entry type expected.
 Storage type expected.
 String constant expected.
 Integer constant expected
 Date constant expected.
 Invalid entry types list.
 Invalid storage types list.
 Invalid condition ‘xxx’.
 Missing restriction condition.

 Fatal error: cannot open custom report file

 REPORTS.TBL(n)
 Fatal error: too many errors.
 No reports found.
 Unexpected end of file.

Final Messages from Check
 When done with parsing REPORTS.TBL file,
 Check displays statistics:

 Total nnn lines, nnn reports (nnn correct),
 nnn errors, nnn warnings.

 Figure 5-26 Report Syntax Errors Reported by Check

The Visible Repository

300

Repository Report Preview
The content of a custom report can be previewed before the report is actually printed. In the
Report Query dialog box, check the Preview Text box. After you click Print, a box appears
containing the report. You can view the report on screen. You can also print it, save it to a
file, or abandon it.

You can also generate the report in HTML format so that it can be viewed in a browser. If
you have a browser installed, when you click the Preview HTML box the report is displayed
in your browser when it is generated.

Printer Setup for Custom Reports
You can select the printer to use by clicking the down arrow by the Printer Name field and
selecting a printer from the list. You can also change settings for the printer driver, such as
page orientation (portrait or landscape), print to file, etc., by clicking the Properties button on
the Report Query dialog box.

SHELL CODE GENERATION

Overview
This Visible Analyst function allows you to generate code for the skeletons of programs in the
C and COBOL languages. The shell code generation process is substantially user
configurable.

Although the export of Visible Analyst data to IBM External Source Format™ (ESF), used in
their Cross System Product™, is done using Export on the Tools menu, it is so similar to shell
code generation that the two are covered together here. Note that since ESF was deliberately
designed to be similar to COBOL in many ways, much of what is said here about COBOL
also applies to ESF.

Scope
Shell code generation encompasses the sequence of functions or paragraphs that make up a
program, including global data definitions, descriptive comments, function calls/PERFORM
statements, and passed parameters. Information entered in text fields in the Visible Analyst
repository for a program item and for structure chart modules of various kinds produces
comments that describe these items within the generated code.

Optionally, actual source code may be entered in the module description field of a module or
macro, and this code is placed in-line with the function calls or PERFORM statements that are
generated by invocation lines. Couples or interface table rows (ITRs) used with invocation
lines generate parameters for C code.

The Visible Repository

301

Code Generation Speed and Code Size
The code generation speed is quite rapid. The actual time it takes and the volume of data
descriptions and code produced, of course, depends on the amount of information entered into
the project and upon the configuration and customization options chosen.

Target Languages
COBOL, C and ESF are currently supported. What you have available depends upon the
product configuration you purchased.

Flexibility of Use
There are numerous code generation configuration options available by selecting Code
Generation Options from the Options menu or by clicking the Options button in the Generate
Code dialog box accessed from the Repository menu. Those options are described in detail in
this section.

There are also ways to customize the code you generate for C and COBOL. This is done by
editing the files “VATYPES.H” (for C) or “COBOLTYP.TBL” (for COBOL) that are in your
Visible Analyst program directory.

Error Checking
The code generator notifies you of a number of types of errors that would cause bad or
incomplete code to be generated and notifies you of certain inconsistencies in the way you
specified information within the project repository. You are also told of other items that affect
program code, such as the way item names within the project repository may have been
changed in the generated code to conform to the rules of the target language. No attempt is
made to substitute for the target language compiler. (See Figure 5-27.)

 Figure 5-27 COBOL Code Generation Errors

The Visible Repository

302

Code Generation Requirements
There are things you can do within Visible Analyst that enhance and make code you generate
more complete. The most important of these are listed below.

Full Decomposition
The most fundamental requirement for good generated data descriptions is that all structural
data items be decomposed fully to data elements within the project repository.

Data Element
Data elements should have physical information entered about them on page two of their
repository entries or in domain items to which they refer.

Storage Type
The storage type entered is translated using one of the customization files mentioned above to
a USAGE (for COBOL), a data type (for ESF) or a native data type, typedef (for C).

Length
Length values translate to a display length for COBOL or ESF, or to one of several values for
C. The number of decimal places entered is also used.

Picture
This applies to COBOL only. Any picture you enter for a data element is used verbatim in
generated data definitions. It is your responsibility to ensure its correctness under COBOL
rules.

Default Value
Any value you have entered in the default field is translated into the code of the language you
have chosen. It is made to conform, in so far as is possible, to the data type you specified. If
there is a total conflict, however, the default value is ignored.

Structure Chart
If you do not have a structure chart already prepared in your project, neither procedure shell
code nor function/paragraph calling and parameter passing is generated. Only data definitions
are produced.

Program Item in the Repository
You should have at least one item in the project repository of type program. This gives you a
place to enter text information describing your program. In its composition field, you must
enter the name of the top module in your structure chart hierarchy. Only one module can be so
indicated for a given program. You may have more than one program in a project, each

The Visible Repository

303

indicating a different top structure chart module. If you have no program item, the entire
project is used as if it were one program and modules are ordered alphabetically.

Descriptive Text
Text entered in the various description and notes fields of repository items is used to add
comments to generated code (if you have configured the code generator to do so).

In-Line Code
If you exercise this configuration option, you can enter actual target-language code in a
module and macro description fields. When the procedure code for your program is generated,
this entered code is dropped in-line, verbatim. You are responsible for the accuracy and
“compilability” of this code.

File/Data Store Record Layouts (COBOL Only)
Files/data stores and/or entities, depending upon configuration options, generate SELECT and
FD statements and the accompanying record descriptions. The names used for these items is
taken from the file/data store or entity as entered in the repository (with adjustments made for
target-language naming rules) and appropriate suffixes added to distinguish them.

Processing and Storage Redefinition
The code generator recognizes syntax in the composition fields of data items that specify
arrays and generates COBOL OCCURS and REDEFINES clauses and their equivalent for C.
A number preceding an item or a group of items enclosed in curly braces (‘{‘, ‘}’) constitutes
the OCCURS value. If a vertical bar (‘|’) precedes an item, that item is a redefinition of the
previous item in the composition field. These notations do not allow nested constructs (nested
sets of braces or redefines of groups of items); separate data structures should be used instead.
A REDEFINES item can have an OCCURS value.

For example, if the Composition field of item “str” is:

2 x1 + 3 { x2 + x3 } x4 | x5 | x6 + x7 + x8 | 5 x9

The resulting generated code is shown in Figure 5-29.

The Code Generation Process
To initiate shell code generation, select Generate Code from the Repository menu and then
choose COBOL or C from the dialog box. For ESF, select Export from the Tools menu and
then ESF from the dialog box.

First, the code generator expands all structural data items as far as they have been
decomposed in Visible Analyst. If a structural item is used as a part of more than one higher-
level item, it is expanded in each instance where it is used. Next, it makes a program header
from comments in the program repository item. Then, for COBOL, Visible Analyst generates

The Visible Repository

304

file SELECT statements and FILE SECTION data declarations. After that, it generates global
(for C) WORKING STORAGE (for COBOL) data definitions.

C COBOL
struct str_t
 {
 char x1[2];
 char x2[3];
 char x3[3];
 union
 {
 char x4;
 char x5;
 char x6;
 };
 char x7;
 union
 {
 char x8;
 char x9[5];
 };
 };

01 str.
05 x1
05 x2
05 x3
05 x4
05 x5 redefines x4
05 x6 redefines x4
05 x7
05 x8
05 x9 redefines x8

pic x(1) occurs 2 times.
pic x(1) occurs 3 times.
pic x(1) occurs 3 times.
pic x(1).
pic x(1).
pic x(1).
pic x(1).
pic x(1).
pic x(1) occurs 5 times.

 Figure 5-28 C Array and COBOL OCCURS Examples

The Visible Repository

305

C COBOL
struct name_t
{
 char first-name[,,,]l
 char middle-init[…];
 char last-name[…];
}
struct address_t
{
 char street[…];
 char city[…];
 char state[…];
 char zip-code[…];
}
struct customer_t
{
 struct name_t name;
 struct address_t;
 char phone_number[…];
}
struct customer_t customer;
char report-date[…];

01

01

customer.
05 name.
 10 first-name
 10 middle-init
 10 last-name
05 address.
 10 street
 10 city
 10 state
 10 zip-code
05 phone-number

report-date

PIC. . . .
PIC. . . .
PIC. . . .

PIC. . . .
PIC. . . .
PIC. . . .
PIC. . . .
PIC. . . .

PIC. . . .

 Figure 5-29 Generated C and COBOL Code Examples

Following that, Visible Analyst (for C code) produces function prototypes and then it
generates code for executable modules (paragraphs for COBOL, functions for C), one for
each module in your structure chart set. PERFORM or function call statements are produced
for each invocation line and, for C, calling parameters and function return types are produced
for couples and ITRs. Finally, if so configured, it drops in-line code entered in module and
macro description fields and creates debug statements.

All along, the code generator produces error and information statements, some in the
generated-code listing file and the rest in a file that you can review on the screen and,
optionally, print.

Code Generation Output
For C and COBOL, the shell code generator leaves you with a compiler-ready ASCII file in
your transient file directory for each program in the project. (This is the TRANS directory
under the Visible Analyst program directory unless you changed it.) The file is named with

The Visible Repository

306

the first eight characters of the program name in the project repository plus the extension .c or
.cbl, respectively. For ESF, there is a file in the same directory with the project root as the file
name plus the extension .esf. It contains project information and code, including an :appl tag
for each program for ESF. You also have the above-mentioned error and information
statements, if you chose to print them or save them to a file. If your copy of Visible Analyst
has prototyping capability, you can choose to export Visible Prototyper panel files in ESF
format. You can either export a panel file in conjunction with project data or export it by
itself.

Configuration Options
There are two kinds of code generation configuration. The first is done in the Code
Generation Options dialog box. The second, really a form of customization, is done outside of
Visible Analyst. You should be careful how you enter the customizations described later. You
should change only the sections of the customization files indicated. Making other,
indiscriminate changes could make these files unreadable to Visible Analyst. If that were to
happen, you must fix them manually or copy their original, unaltered versions from your
installation media.

General Configuration
The general configuration options for shell code generation are set using Code Generation
Options on the Options menu. These selections, listed below with their default settings, give
you alternatives for the Visible Analyst items that appear in generated code and where and
how these items appear in generated output. They are distinct from the language-specific
customizations discussed later. A checked box is equivalent to Yes and an unchecked one to
No.

All Data Elements Yes
All Data Structures Yes
All Data Flows Yes
All Files/Data Stores Yes
All Entities Yes

The first six configuration options give you the opportunity to pick the repository items that
appear in your generated code. You can decide whether all items of each type are used or just
those listed in the composition fields of other items. The choices available are:
• Yes means list all items of the selected type in their places in the composition hierarchies

of superior items and create top-level data description code for any item not part of the
composition of any other item. In Figure 5-29 for example, the data element “zip-code”
that is part of the composition of the data structure “address” is at the bottom level of that
data structure. The independent element “report-date” has its own top-level data
definition. (Note that in generated COBOL, level 77 entries are not used; level 01 entries
are used instead.)

The Visible Repository

307

• No means that items not part of the composition of other items do not have data
description code generated. In the Figure 5-29 example, the data element “report-date”
would not appear.

Note

2 If top-level superior items (files/data stores, entities, data structures, data flows)
do not appear because items of that kind are set to No, the next level of
subsidiary items (elements, flows, structures) that are set to Yes appear in data
description code as top-level items.

All Data-Only Modules Yes
The meaning of No is slightly different for data only modules in the project repository. It
means only use data-only modules that are referenced by some module in the structure chart
of the current program.

Data Only Module Usage Structure
Data only modules can be interpreted one of two ways:
• The data only module is interpreted as a structure, with the data only module name itself

being the top level of the structure; and the data elements and data structures named in its
composition field are all subsidiary items at the next lower hierarchical level. To use this
interpretation, select Structure.

• The data-only module is interpreted as a collection of independent, top-level data
elements or data structures. The name of the data only module itself does not appear
anywhere in any data definition. To use this interpretation, select Elements.

Description Field in Module Comment Yes

Notes Field in Module Comment Yes

Module Description in Module Comment Yes: Comment
The text fields of programs and modules of all kinds (modules, macros, library modules, etc.)
can be selectively used or not used at all.
• Description Field – Yes means use this field as a comment to describe modules in

generated code. No means don’t use the field for anything.
• Notes Field – This is identical to the above.
• Module Description Field – If the box is checked, you can choose Comment or Code.

Comment means the same as Yes, above. Code means that you have entered source code
for the target language in this repository field. The code generator puts it verbatim into
the syntactically correct place in the generated code for this module. Function calls or
PERFORM statements generated by structure chart invocation lines appear as comments
in the code of any module where your own code is used. This is to help you keep your
code in sync with your structure chart diagrams.

The Visible Repository

308

Generate Debug Yes
Choosing Yes causes the code generator to produce a source code statement that displays the
name of the module on the system console screen. This allows you to compile and run the
generated code and watch it execute, even if the modules do not yet contain any other code.

COBOL-Specific Configuration Items
These items apply only to COBOL and they can all be selected independently. They specify
whether you want to generate COBOL FD statements for:

Files Yes
Yes means that SELECT and FD statements are generated for all files/data stores in the
project. (This presumes that the All Files/Data Stores is also set to Yes.)

Entities Yes
Yes means that SELECT and FD statements are generated for all entities in the project.

COBOL File Data Structure Location (FD)
This selection is enabled if one of the previous two items is checked. Some people like to
have full record data descriptions in the FILE SECTION. Others prefer an 01-level statement
declaring a maximum record size and placing the full data description in the WORKING
STORAGE SECTION. If Working Storage is chosen, there is a record data structure
declaration under the 01-level in the FILE SECTION, with all names below the 01-level set to
FILLER, so the COBOL compiler can compute the record length.

Language-Specific Customizations

C
There is a file in the Visible Analyst program directory named VATYPES.H that the code
generator uses to translate Visible Analyst values for storage type, length, etc., into C data
types, structures, and so forth. You can customize the way some Visible Analyst storage types
are translated by making changes to this file. If you edit VATYPES.H using an ASCII text
editor, you see that there are five categories of Visible Analyst storage types described in the
file.
• The first and third sections are fixed (not customizable).
• The second and fourth sections contain the C typedef statements that allow you to specify

the native C data types that correspond to some Visible Analyst storage types. You can
alter which native C types are generated for each Visible Analyst type. Note that you can
also replace the native C type with a structure, as described in the section below.

• The fifth section allows you to customize the C structure that is generated for some
Visible Analyst storage types. You can either change what appears between the curly
braces or you can replace the structure itself with a native C data type.

The Visible Repository

309

COBOL
There is a file in the Visible Analyst program directory named COBOLTYP.TBL that the
code generator uses to translate Visible Analyst values for storage types into COBOL USAGE
types, with appropriate picture clauses. This file comes configured with COBOL-85 USAGE
types, but you can change this.

You can customize which COBOL USAGE type corresponds to which Visible Analyst
storage type by making changes to this file. If you edit COBOLTYP.TBL using an ASCII text
editor, you can see and change the correspondences between the COBOL and the Visible
Analyst types in the file. By assigning a picture class identifier to each, generated PICTURE
clauses (produced only when you do not specify a picture yourself) are constructed to your
preference.

There are a number of other customizations that you can make to adjust the appearance of
COBOL code to your own shop standards. You can also set default values for display length
and number of decimal places, to be used when you don’t enter these values into the project
repository. All of these customization options are explained in detail in the COBOLTYP.TBL
file. You should examine the file before generating code to be sure that the values currently
set meet your needs.

ESF
There are no customizable options for ESF. The ESF data types that correspond to Visible
Analyst storage types are listed in the table below. The BYTES value for each data type is
also in the table. Note that the BYTES value for some data types depends on the length value
entered in the physical characteristics of a data element entry in the Visible Analyst
repository. Note also that if a length is not entered, the default BYTES value is used. Further
note that ESF data types marked as n/a are translated to the ESF type HEX.

The conversion from Visible Analyst length to ESF BYTES value for some data types is as
follows:

DECIMAL: BYTES = length / 2 + 1<
FLOAT: BYTES = if length <= 21, 4 else 8
CHARACTER: BYTES = length<
VARCHAR: BYTES = length
GRAPHIC: BYTES = length * 2
VARGRAPHIC: BYTES = length * 2

The Visible Repository

310

Table 5-5
ESF Data Types

Analyst ESF
ANALYST Type ESF Type BYTES Default BYTES

Value
0 Undefined n/a
1 Integer BIN 4 4
2 Decimal PACK *,* 8
3 Float HEX * 8
4 Character CHA * 1
5 Date CHA 10 10
6 Time CHA 8 8
7 Binary n/a
8 Bit n/a
9 DateTime n/a
10 Autoinc n/a
11 Real HEX 4 4
12 Image n/a
13 Bfloat n/a
14 Money n/a
15 Note n/a
16 SmallInt BIN 2 2
17 Sysname n/a
18 Text n/a
19 TimeStamp CHA 26 26
20 TinyInt n/a
21 VarBinary n/a
22 VarChar CHA * 1
23 Zstring n/a
24 Lstring n/a
25 Lvar n/a
26 Logical n/a
27 Graphic DBCS * 2
28 VarGraphic DBCS * 2
29 Number n/a
30 Numeric n/a
31 Double Precision HEX 8 8
32 Raw n/a
33 Long Raw n/a
34 Long VarChar CHA 32767 32767
35 Long VarGraphic DBCS 32766 32766

The Visible Repository

311

Table 5-5
ESF Data Types

36 SmallFloat n/a
37 Serial n/a
* means that length is derived from the Visible Analyst length (if it exists)
n/a (not applicable) types are exported as HEX

Exporting Visible Prototyper Panels
When exporting Visible Analyst project data in ESF format, you can choose to export Visible
Prototyper panel files. You can either export a panel file in conjunction with project data or
export it by itself. If your copy of Visible Analyst has prototyping capability, there is an
active Panel File button in the Export dialog box. Clicking it displays a dialog box in which
you can select a panel file and choose whether you want to export a panel file, repository data,
or both. Note that if you don’t select a panel file for the current export, no panel file is
dumped, regardless of what you may have done in the past.

Parameter
Currently, parameter passing in generated code is only supported for the C language. COBOL
supports parameter passing in multi-program systems, but these are not yet supported by
Visible Analyst.

You should attach couples to the invocation lines on your structure charts when you want to
indicate parameters being passed. The ways they should be used to properly interface with the
code generator are:
• Downward-pointing (along the invocation line) couples represent parameters passed to a

function.
• An upward-pointing (opposite to the invocation line) couple indicates the return value

from a function. Only one of these is allowed by the code generator and its type becomes
the type of the function. If one of these return couples is not present, the function is of
type “void.”

• To represent a parameter that is passed by reference and can be changed in the calling
function by the called function (for example, a passed address), use a bi-directional
couple.

• An ITR can be used to represent a group of couples. Using ITRs is encouraged. It not
only cuts down on the volume of detail that appears on your structure charts, but also
maintains a consistent parameter order and number in all calls to a given function.

The first invocation of a function that has the maximum number of couples of all invocations
of that function is used to produce a C function prototype for the function. If other calls to that
function are incompatible with this prototype, error messages are produced to call this to your
attention.

The Visible Repository

312

SQL SCHEMA GENERATION
SQL DDL (Data Definition Language) syntax can be generated for all entities in the
repository for a project. Dialects supported include:

Access 97 Oracle 7x, 8x
ANSI 92 Paradox 7x, 8x
CA Datacom 8x Progress 7x, 8x, Native 7x, Native 8x
Centura SQL Base 5x SYBASE SQL Anywhere 5x
DB 2/2, 2x, 5x, 6x, 7x SYBASE SQL Server 04x, 10x
DBASE IV Teradata SQL V2 2.1.0
Informix 7x Unify 2000
Ingres 6x User Defined
InterBase 4x, 5x Vax RDB 6x
MS SQL Server 4x, 6x, 7x,
 2000

Watcom 3x
xdb 1x

Netware 1x XML

Statements supported include:
• CREATE TABLE with options indicating primary, foreign and unique keys, tablespace,

and column characteristics including data type, default value, and nullability.
• CREATE UNIQUE INDEX for primary and unique constraints, when required by the

selected dialect including additional dialect-specific characteristics.
• CREATE INDEX for performance indexes.
• COMMENT ON for tables and columns.
• CREATE TABLESPACE with options indicating SQL dialect-dependent physical

characteristics.
• CREATE STORED PROCEDURE for dialects such as Rdb, Oracle Server, Informix

and SQLServer. Any text stored in the module description field for an entry in the
repository comprises the body of the stored procedure during SQL generation.

• CREATE TRIGGER to generate SQL triggers corresponding to those created in the
project repository and ones generated to enforce referential integrity.

• CREATE SYNONYM to pass on an entity alias to the SQL engine as an alternate name
for a table.

• CREATE SCHEMA or authorization ID to define a name space within a given set of
tables. You are prompted for the name you wish to use.

• ALTER TABLE statement is used if a foreign key references a table that has yet to be
created in the DDL script.

The Visible Repository

313

• CONSTRAINTS statements are generated if this option is selected from the options
dialog box. A constraint name is generated for primary and foreign keys and/or check
constraints with the following syntax:

primary keys PKC_<TableName>hex number
foreign keys FKC_<RelationshipName>hex number
alternate keys AKC_<TableName>hex number
column constraint <ConstraintModuleName>hex number

• CREATE VIEW, with options for a column list, select statement. Under certain
conditions, generation produces multiple CREATE VIEW statements for a single view
object in the repository. Most conditions causing spawned views are related to
deficiencies in the expressiveness of a DBMS select statement. Deficiencies such as
restricting an outer member2 from participating as an inner member of an inner join or
prohibiting multiple outer joins within a given select statement cause the generation of
supporting views. Another potential source of supporting views occurs when bridging
differences between the logical data model and its physical implementation. The options
controlling denormalization can cause tables to be folded within other tables. When table
folding occurs, the contents of a logically-specified view must be converted to account
for the redirection and renaming of logical columns from one table to another. Views are
used to ease this transition.

The dialect you wish to use can be selected from the SQL Dialect from Options menu or by
clicking the Dialect button on the Repository Define dialog box.

You can generate an SQL schema with the Generate SQL function list under the Repository
menu. Visible Analyst analyzes the repository and produces the schema, displaying the names
of items it is examining on the status line.

If errors are found, they are displayed on the screen (see Figure 5-30); you can save them to a
file, print them or ignore them. The errors may be entities without keys, entities with
improperly specified keys, an invalid physical data type for a composing data element, or a
number of other errors. If you have previously run the Analyze functions for key analysis and
key synchronization and have resolved all errors found, you are much less likely to get errors
at the schema generation stage.

2 Outer member refers to the table of an outer join that only contributes values to the resulting
relationship when a row in it matches the criteria of the join expression. The table appearing
on the right-hand side of a left outer join is the outer member.

The Visible Repository

314

 Figure 5-30 SQL Schema Generation Errors

Visible Analyst creates as much of the schema as it can, leaving out items for which it finds
errors. The schema displays on the screen (see Figure 5-31); you can save it to a file, print it
or cancel it. If errors are found, you can cancel it, correct the errors, and generate a corrected
schema at a later time.

 Figure 5-31 Generated SQL Schema

Other features of SQL schema generation include:

The Visible Repository

315

• The ability to generate a schema for only a portion of a data model.
• Generation of key constraint names.
• An option to replace an attribute name with an alias, for those who wish to maintain

alternate (physical) names and use them in schemas.
• An option to generate tablespaces and tablespace references from tables and indexes.
• Storing check constraints, triggers, stored procedures (all three are various ways of

enforcing validation rules) and enhanced referential integrity information in the
repository, and including them in generated schemas.

• Generating UNIQUE constraints for alternate keys.
• Ascending and descending information for primary and unique key column ordering and

created indexes.
• Generation of the IDENTITY clause for SQLServer 6.x, 7.x, 2000, and System 10/11

when the repository “Allow Null” property specifies the identity constraint.
• An option to place quotes around column and table names (this may be necessary if your

name contains characters that conflict with the target RDBMS, or the name is a
keyword).

• An option to ignore the denormalization settings for the relationships included in the
schema.

• An option to choose the type of referential integrity generated, either Declarative that
uses the Foreign Key clause of the Create Table or Alter Table statements or Trigger
Wizard that generates an appropriate trigger for each dependent table. (If you set the
Referential Operation to No Check for a relationship, no referential integrity is generated
for the relationship.)

When generating XML, a Document Content Description (DCD) is generated that can be read
by eXcelon from Object Design. You can also generate XML for Visible Developer, Visible’s
software component design and code generator.

When generating a Uniface schema, the following options are available:
• If you want to generate domains, you should use the Template option for version 6.x of

Uniface, and the v5.2 Domains option for all other versions.
• If you generate a schema, you have the option to Overwrite, Replace, or Clean an existing

Uniface Conceptual Schema. Overwrite modifies only the objects that appear in the
generated schema. Replace deletes the entire schema and replaces it with the generated
schema. Clean overwrites existing objects and deletes those items that are not referenced
in the generated schema. For more information, refer to the publication Uniface CASE
Bridge Cookbook.

 Note

2 Uniface schema is generated from the Export option on the Tools menu.

The Visible Repository

316

Generating a Schema for Part of a Project
To generate a subset of a project’s complete schema:

Open Dialog Box: 1 Select Generate Database Schema from the Repository
 menu to display the Database Schema Generation dialog
 box (Figure 5-32).

 Figure 5-32 SQL Schema Generation Information

Choose (Scope of 2 On the Schema tab, select “Use one or more existing
Schema): diagrams” and then select the diagram options that
 is then enabled. Select one or more diagrams to include
 in the schema.

Select Options: 3 Select table, statement and index options on the Table tab;
 then complete the Name tab.

The Visible Repository

317

Click OK: 4 Click OK to generate the SQL.

You may want to check the “Suppress external reference warning messages” box. Items
within the view(s) selected might reference entities not included in the schema. The generator
is not able to produce DDL if it encounters a key reference outside the scope of the selected
views and has not been directed to ignore it. If you do want foreign keys within the schema to
be able to reference items not included in the schemas, you should check the “Allow FK
references outside of these diagrams” box. The schema generates properly, but issues
warnings to you when those references occur unless you suppress them.

Adding SQL Schema Generation Information for Entities and
Relationships
This information is attached to the repository entry of an entity (table) or relationship. To add
to it, the Repository Define dialog box for the entity/relationship must be open on your screen.
• To determine the SQL dialect currently in use, click the Dialect button on the Define

dialog box to display the RDBMS SQL Dialect dialog box. To change the dialect, click
on a dialect in the list, select the version if necessary, and click OK.

 Figure 5-33 RDBMS SQL Dialect Dialog Box

The Visible Repository

318

For entities, Repository Define dialog box tabs display key, foreign key, trigger, table and
column check constraint, and physical information for the entity. For relationships,
Repository Define dialog box tabs display referential integrity and cardinality information for
the foreign key. This information is displayed by clicking the appropriate tab at the top of the
Repository Define dialog box (see Figure 5-34 below).

Figure 5-34 Define Dialog Box SQL Schema Generation Information Tabs

Table and Column Check Constraints
Any table may have an arbitrary number of check constraints attached to it. All of these check
constraints are generated, along with their associated search conditions, with the schema. The

The Visible Repository

319

check constraints are stored as separate entries in the repository and can be referenced from
multiple entities.

Attaching a Check Constraint to a Table
• Click the Check Constraint tab.
• To attach a constraint, type the name of the constraint in the Table Check Constraints box

and click Add. If the constraint exists in the project repository, the search condition for it
displays in the box. If it is not currently in the repository, a new constraint is added to the
repository; you can edit it later and add the search condition to its Module Description
field and any other information you desire.

You can also add, edit, and delete check constraints (as well as triggers and stored procedures)
directly to the repository.
• Bring up a blank repository dialog box using Define from the Repository menu. Name

the check constraint and select Module as the entry type. Click the Save button to add the
module to the repository. At this time, the module subtype box appears to the right of the
Entry Type box, allowing you to define the module as a check condition, trigger or stored
procedure. Add any other descriptive information you wish, such as SQL procedure code
in the Module Description field, and click Save again.

• You can also use the repository search function to attach one or more existing check
constraints to the table. You can view the search condition for each of these by
highlighting them in turn in the Select Check Constraints box.

• To detach a constraint from the entity, highlight it in the Check Constraints box and click
Delete. As in the Composition field in the Define dialog box, if you delete a check
constraint and there is no other descriptive information added for it, it is deleted from the
repository.

• To edit information in the repository entry for the selected check constraint, click the
Jump button.

When you are finished:
• Click Save to save your changes. Changes you made are reflected in the SQL Schema

Generation Information dialog box. (To abandon your changes, click Clear.)
• Check constraints for columns are added identically, except that only one constraint per

column is allowed.

Adding Key Information for a Table
To specify key information for a table:
• Click the Key tab. Information can be entered here to tell the schema generator what it

should do with repository primary and alternate key data and performance indexes.
• Highlight different keys in the Key Number box to display or enter information for the

various alternate keys and performance indexes that exist for the current entity.

The Visible Repository

320

If your SQL dialect allows it, you can name the indexes that are generated from primary and
alternate keys and performance indexes.
• Enter the name in the Index Name boxes. The primary key index can have a name, as

well as each alternate key and performance index. If you want Visible Analyst to
generate a name for you, check the Generate Name box. If you leave the Index Name box
empty and the Generate Name box unchecked, no index is included in the schema.

You can change the columns that are part of the primary or alternate keys or a performance
index.
• To add a component of the key, highlight a column in the Columns in Table list and use

the ×× button to make it part of the current key.
• To remove a component of the key, highlight a column in the Columns in Key list and

use the ØØ button to move it back to the list of available columns.
• To change the position of a key column, highlight a column in the Columns in Key list

and use the up or down arrows to change its position.

You can add ascending and descending information for primary and unique key column
ordering and created indexes, if your SQL dialect allows it.
• Highlight a column in the key for which you want to add it.
• Click Descending if the column should be sorted in descending order, otherwise it is

sorted in ascending order. If your SQL dialect doesn’t allow such a specification, the
button is disabled.

You can add physical storage and index type information about an index by clicking the
Physical Characteristics tab.

When you are finished:
• Click Save to save the key definition, or click Clear to abandon your changes.

Adding Foreign Key Information for a Table
To specify foreign key information:
• Click the Foreign Key tab if the current entry is an entity or a relationship. Information

can be entered here to tell the schema generator what it should do with repository foreign
key data.

• Highlight different relationships in the Relationship box to display or enter information
for the various relationships that exist for the current entity.

Referential integrity information, telling the SQL engine what to do when database
information is deleted or updated, can be added for each foreign key.
• Click the buttons next to On Delete and On Update to indicate the action you want taken

for each. Any actions your SQL dialect does not allow are disabled. If you select No
Check, a referential integrity constraint is not generated for the relationship. These

The Visible Repository

321

options are from the parent perspective (if you delete a row from the parent table, how
are the rows in the child table affected).

• If you use the Trigger Wizard to generate referential integrity constraints, click the
buttons next to On Insert (Or Update) Of Child to indicate the action you want taken
when the child table is modified. The only valid options are Restrict and No Check. If
your SQL dialect does not support triggers, these options are disabled.

Key Reference information, telling the SQL engine how columns from the child table
correspond to key columns in the parent table, can be added for each foreign key.
• Click Primary Key to indicate that the foreign key columns in the child should

correspond to the primary key in the parent, or click Alternate Key to indicate that they
should be associated with an alternate key. If an alternate key is selected, choose the
appropriate number.

• Highlight a column from the Available Columns list and then click on the corresponding
parent key column. Repeat this procedure for each component of the foreign key.

• Click Migrate to add a key column from the parent to the child.

Cardinality information instructs the SQL engine how to resolve column name conflicts for
supertype relationships that have any form of denormalization specified.
• Syntax displays the numerical cardinality that was specified when the relationship was

added to a diagram.
• Click Suffix Instead of Prefix to indicate column names should be made unique by

appending text to the column name.
• Click Prefix/Suffix Names to modify the list of prefixes/suffixes that should be used

when generating SQL to uniquely identify columns. The number of entries in the list
should match the numerical cardinality. If no cardinality is specified, the number of
columns generated corresponds to the number of entries in the list.

When you are finished:
• Click Save to save your changes. Any changes you made are reflected in the composition

field of the child entity. If you select a different relationship, any pending changes are
automatically saved. Click Clear to abandon your changes without saving.

Adding Trigger Information for a Table
A table can have an arbitrary number of triggers attached to it. The triggers are stored as
separate entries in the repository and can be referenced from multiple entities. Any actions
your SQL dialect does not allow are disabled. Triggers need not be specified in the repository
if their only purpose is to implement referential integrity (RI). The Trigger Wizard will
automatically generate complete trigger definitions to enforce RI. However, if additional
integrity constraints, other than RI, must coexist with RI triggers, refer to Combine Generated
Trigger Code with User Triggers in Appendix C.

To specify trigger information:

The Visible Repository

322

• Click the Triggers tab.
• Attach and detach triggers to an entity as with check constraints, above.

 Note

2 This only functions if the SQL dialect in effect supports triggers.

• Highlight an attached trigger in the Trigger box to view the information specified for that

trigger, or to change it. The action text entered in the Module Description field of the
trigger’s repository entry displays in the Trigger Text box.

• Click Update and/or Insert and/or Delete to specify the action that causes the trigger to
fire. Your SQL dialect may allow multiple actions to fire a trigger or it may require a
different trigger for each action.

• Click Before or After to tell the SQL engine when to fire the trigger relative to the
action(s) specified.

• In the Scope box, click Table or Row to indicate whether the trigger is to fire once for an
update (or insert or delete) of the table or once for each row that is updated.

If the Update button is checked, you can specify for which columns in the table an update
fires the trigger. Initially, the names of all columns in the table are listed in the No-Update
Columns box.
• Highlight one or more column names in the No-Update Columns box and click the ××

button to move them into the Update Columns box.
• Highlight one or more column names in the Update Columns box and click the ØØ

button to move them into the No-Update Columns box.

If you want to edit information in the repository entry for the selected trigger:
• Click the Jump button. Changes you made are saved, as if you clicked OK.

Note
2 When defining the body of a trigger, you are free to use built-in macros supplied

by the Trigger Wizard, or you may create your own. See Appendix C,
Customizing the Trigger Wizard, for details.

When you are finished:
• Click Save to save your changes. Click Clear to abandon your changes.

Adding SQL Schema Generation Tablespace Information
Some SQL dialects support the concept of a tablespace, which is an allocation of space on a
physical media for the storage of tables and indexes (SQLServer 7.x uses the term file group,
while other versions of SQLServer use the term segment).

The Visible Repository

323

Adding Physical Storage Information for a Table
To specify the physical storage characteristics of a table, including the tablespace to which a
table belongs, click the Physical tab on the Repository Define dialog box.

For each table or index, the following information can be maintained (not all SQL dialects
support all options):
• Tablespace. The name of the tablespace where the table or index is to be stored. If the

name specified does not exist in the repository, a new tablespace object is created. You
can use the search button to find tablespace objects that have already been defined.
(SQLServer 7.x uses the term file group, while other versions of SQLServer use the term
segment.)

• PctFree. The percentage of space reserved for future updates.
• PctUsed. The minimum percentage of used space.
• IniTrans. The initial number of transaction entries allocated within each data block.
• NoSort. Indicates that the rows are stored in ascending order and therefore the rows do

not have to be sorted when creating the index.
• Initial. The size in bytes of the tablespace’s first extent.
• MaxTrans. The maximum number of concurrent transactions that can update a data

block allocated to the table.
• Next. The size of the next extent to be allocated to the tablespace.
• MinExtents. The total number of extents allocated when the tablespace is created.
• MaxExtents. The maximum number of extents that can be allocated for the tablespace.
• PctIncrease. The percent by which each extent after the second grows over the previous

one.
• Freelists. The number of free lists for each of the free list groups.
• Freelist Groups. The number of groups of free lists.

DB2 2 Properties
• Primary Tablespace. Identifies the tablespace in which the table will be created. The

tablespace must exist and be a REGULAR tablespace. If no other tablespace is specified,
all table parts will be stored in this tablespace.

• Long Column Tablespace. Identifies the tablespace in which the values of any long
columns (LONG VARCHAR, LONG VARGRAPHIC, LOB data types, or distinct types
with any of these as source types) will be stored.

• Index Tablespace. Identifies the tablespace in which any indexes on the table will be
created. This option is allowed only when the primary tablespace specified in the IN
clause is a DMS tablespace. The specified tablespace must exist and be a REGULAR
DMS tablespace.

• Data Capture. Indicates whether extra information for data replication is to be written
to the log. None indicates that no extra information will be logged, while Changes
indicates that extra information regarding SQL changes to this table will be written to the

The Visible Repository

324

log. This option is required if this table will be replicated and the Capture program is
used to capture changes for this table from the log.

DB2 5, 6, 7 Properties

• Partitioning Key. Specifies a key used when distributing the rows of a table across
physical media. Visible Analyst lists the performance keys assigned to the table as
possible choices. Only performance keys whose columns represent a subset of the
primary key should be selected as a partitioning key. Please refer to the section “Adding
Key Information for a Table” for directions on building a Performance Key. A column
must not appear more than once in the key. No LOB, LONG VARCHAR, or LONG
VARGRAPHIC column may be used as part of a partitioning key. If not specified, and
this table resides in a multiple partition nodegroup, then the partitioning key is defined as
follows:
Ø If a primary key is specified, the first column of the primary key is the partitioning

key.
Ø Otherwise, the first non-long column (LOB or long column type) is the partitioning

key.
Ø If none of the columns satisfies the requirement of the default partitioning key, the

table is created without one. Such tables are allowed only in tablespaces defined on
single-partition nodegroups.

• Using Hashing. Specifies the method applied to partitioning keys to yield the insertion
location for a newly added row. Hashing is the only method currently available.

• Not Initially Logged. This option is useful for situations where a large result set needs
to be created with data from an alternate source (another table or a file) and recovery of
the table is not necessary. Using this option will save the overhead of logging the data.

SQLServer Storage Options for Indexes
When the SQL engine generates DDL for SQLServer (either 4.x, 6.x, 7.x, 2000 or System
10/11), physical characteristics can be specified for each index that is created. To specify the
physical storage characteristics of an index, click the Physical tab.

For each index, the following information can be maintained:
• Segment. The name of the segment where the index is to be stored. If the name specified

does not exist in the repository, a new tablespace object is created. You can use the
search button to find tablespace objects that have already been defined. (Visible Analyst
uses the generic term tablespace to refer to a physical storage object. SQLServer 7.x uses
the term file group, while other versions of SQLServer use the term segment.)

• Clustered. Create a clustered index where the physical order of the rows is the same as
the indexed order of the rows. Only one clustered index is allowed per table.

• Ignore Duplicate Keys. If an insert or update operation would result in a duplicate key,
do not perform the operation and discard the data. If this option is not set, the operation
fails.

The Visible Repository

325

• Sorted Data. Indicates that the rows are stored in sorted order. Not valid for SQLServer
7.x.

• Fill Factor. A percentage that specifies how full each data page is made when creating a
new index on existing data.

• Duplicate Rows Check. Specifies whether duplicate rows should be allowed when
creating the index. This option is only valid for clustered indexes. Not valid for
SQLServer 7.x.

• Pad Index. Specifies the space to leave open on each page (node) in the intermediate
levels of the index. This option is useful only when Fill Factor is specified because it
uses the percentage specified by Fill Factor.

• No Recompute Statistics. Specifies that out-of-date index statistics are not
automatically recomputed.

Oracle 7 Tablespace Properties
Visible Analyst generates CREATE TABLESPACE statements during SQL generation if the
current dialect is Oracle and any tables or indexes reference a tablespace object in the
repository. For each tablespace, the following pieces of information can be maintained:
• Datafile Name(s). The name(s) of the datafile(s) that comprise the tablespace.
• Datafile Size. The size of the data file. If this option is omitted, the data file must already

exist.
• Reuse. Reuse an existing file. If the file does not exist, it is created. If this option is not

checked, the file must not already exist. This option is only significant when used with
the size option. If you omit the size option, the file must already exist.

• Initial. The size of the tablespace’s first extent.
• Next. The size of the next extent to be allocated to the tablespace.
• Minextents. The total number of extents allocated when the tablespace is created.
• Maxextents. The maximum number of extents that can be allocated for the tablespace.
• Freelists. The number of free lists for each of the free list groups.
• Freelist Groups. The number of groups of free lists.
• Offline. Do not allow access to the tablespace after it is has been created.

Oracle 8
Oracle 8 includes all the Oracle 7 properties plus the following:
• Logging. Specifies whether creation of the index will be recorded (LOGGING) or not

recorded (NOLOGGING) in the redo log file. Table and index objects inherit the value
assigned to the tablespace when it is unspecified. The system default for this property
when unspecified for the tablespace is LOGGING. It affects whether the direct loading
of data using SQL * Loader writes insert operations to the redo log file.

• Cache. (Table/tablespace only) CACHE specifies that the data will be accessed
frequently, therefore the blocks retrieved for this table are placed at the most recently
used end of the LRU list in the buffer cache when a full table scan is performed. This
option is useful for small lookup tables. NOCACHE specifies that data will not be

The Visible Repository

326

accessed frequently; therefore, the blocks retrieved for this table are placed at the least
recently used end of the LRU list. The default is NOCACHE.

Although Oracle 8 does not support the CACHE property for tablespaces, it may be specified
on the repository tablespace object. When specified as a property of a tablespace, any table
associated to this tablespace will derive its default cache value from the tablespace.

SQLServer Segment Properties
Visible Analyst generates SP_ADDSEGMENT and SP_EXTENDSEGMENT statements
during SQL generation if any tables or indexes reference a tablespace object in the repository.

For each segment, the following information can be maintained:
• Logical Device Name. The database devices where the segment is to be located.

DB2 Tablespace Properties
For each tablespace, the following information can be maintained:
• Tablespace Type. Regular indicates the tablespace is to be used for all data except

temporary tables. Long is for storing long or LOB columns. Temporary indicates the
tablespace is used for storing temporary tables.

• Managed By. The tablespace is to be managed either by the System (SMS) or the
Database (DMS).

• Nodegroup. Specifies the nodegroup for the tablespace. The nodegroup must exist. The
only nodegroup that can be specified when creating a TEMPORARY tablespace is
IBMTEMPGROUP. The NODEGROUP keyword is optional. If the nodegroup is not
specified, the default nodegroup (IBMDEFAULTGROUP) is used unless TEMPORARY
is specified and then IBMTEMPGROUP is used.

 Note

2 If the Tablespace Type or the Managed By button is disabled, this means that an
entity definition references the tablespace and any changes that you make would
cause a conflict. For example, if an entity uses the tablespace as a Long
tablespace, you cannot change the type to Regular.

• Container Name(s). The name(s) of the container(s) that comprise the tablespace.
• Pages. The size of the container in 4K pages. This option is only valid for DMS

tablespaces.
• Container Type. File indicates the container is an absolute or relative filename while

Device indicates it is a device. This option is only valid for DMS tablespaces.
• Extentsize. The number of 4K pages that are written to a container before skipping to

the next container.
• Prefetchsize. The number of 4K pages that are read from a table when data prefetching

is being performed.

The Visible Repository

327

• Overhead. The I/O controller overhead and disk seek and latency time, in milliseconds.
(Used to calculate the cost of I/O during query optimization.)

• Transferrate. The time to read one 4K page into memory, in milliseconds. (Used to
calculate the cost of I/O during query optimization.)

• Bufferpool. The name of the bufferpool used for tables in this tablespace. The
bufferpool must exist. If not specified, the default bufferpool (IBMDEFAULTBP) is
used. This nodegroup of the tablespace must be defined for the bufferpool.

Informix Tablespace (dbspace) Properties
Informix supports the concept of a dbspace, an allocation of space on a physical media for the
storage of tables and indexes. Visible Analyst, which calls these objects tablespaces, adds
dbspace and storage information to CREATE TABLE statements during SQL generation if
any tables or indexes reference a tablespace object in the repository.

For each tablespace, the following information can be maintained:
• Pathname. If Informix SE is checked, the pathname contains the fully qualified

filename in which you want to store the database table.
• Extent. The length in kilobytes of the first extent for the table.
• Next. The length in kilobytes for each subsequent extent.
• Lock Mode. The granularity used for locking a table, either Page or Row.
• Fill Factor. A percentage that specifies how full each data page is made when creating a

new index on existing data. This value is used as a default for all indexes on the table;
you can specify a different fill factor for each index.

COMPARE MODEL AGAINST SCHEMA
When generating a database schema, it is sometimes useful to be able to compare a model to
an existing database to examine the changes that have been made. To perform the
comparison, select Compare Model Against Schema on the Repository menu. You can use
the current settings, or change your generation options including scope and content.

Once the comparison is complete, the Differences dialog box is displayed.

The Visible Repository

328

Figure 5-35 Differences Between Model and Schema Dialog Box

Objects are displayed in a tree structure with colors used to indicate differences. Items in
green are new to the model and do not exist in the database. Items in blue exist only in the
database and have been deleted in the model. Items in red are different. You can use the
Next and Previous buttons to scroll through the differences. Click Show Only Differences to
eliminate items that are the same in both the model and the database. To save the comparison
information to an HTML file, click Save.

Note
2 A number of different factors determine the results of the comparison. One of

the most important is the set of generation options that are used when the
comparison is started. If the options are changed between the time the original
model was generated and when the comparison occurs, you could get
unexpected results. For example, if the database schema was created with the
option set to replace spaces with underscores and then you perform the
comparison with the option turned off, table names and columns may not be
identified properly.

The Visible Repository

329

DATA DESCRIPTION SPECIFICATION GENERATION
Visible Analyst supports the generation of Data Description Specifications (DDS) for the
IBM AS/400. DDS is generated for all entities in the repository and is similar to SQL schema
generation (see above). To generate DDS, select Generate DDS from the Repository menu.
Visible Analyst scans your project repository and generates the DDS. You can view both the
generation errors and the generated DDS, with the option to save or ignore either.

At this time, generation of views in DDS syntax is not supported.

GENERATING STRUCTURE CHARTS FROM THE
REPOSITORY
COBOL program data can be imported from the Application Browser product and stored in
the Visible Analyst repository. Structure charts can be created from that imported and stored
information.

To use this feature:
• Import Application Browser information using Import.
• Choose Draw VIRTUAL Chart from the File menu.
• Name the diagram when the dialog box requests it.

Visible Analyst scans the repository for structure chart information on a virtual diagram and
adds it to a new diagram. The new chart is displayed.

Regenerating Existing Structure Charts
• Open a structure chart diagram.
• Choose Regenerate Chart from the Diagram menu.
• The structure chart is redrawn from the information on the open diagram and any other

relevant information in the repository. Save it to make it permanent.

The Visible Repository

330

Local Area Networks

331

Chapter 6

Local Area Networks

MULTI-USER ACCESS TO PROJECTS
The LAN version of the Visible Analyst adds powerful multi-user capabilities to the basic
functionality of Visible Analyst. It offers program access to a potentially unlimited number of
users operating over a local area network, while creating little or no noticeable system
degradation. With it, projects may be created in such a way that many project team members
can concurrently work on different parts of a system design and/or data model, while
maintaining a common set of project files, including a common repository.

There are two network versions of Visible Analyst available. The Novell LAN version uses
the file and record locking mechanisms within Novell NetWare. The Generic DOS LAN
version supports networks other than Novell networks. Any network that performs standard
DOS file locking is supported.

Typically, program data and executable files are stored in the \VA directory or its
subdirectories on the network file server. There they can be protected against unauthorized
access by limiting Visible Analyst privileges to only those users who have been:
• Granted access to the network.
• Granted access (All Rights are necessary) to the \VA directory.
• Granted access to each individual Visible Analyst project.
• Granted rights to modify a project, as opposed to the right to view only.

It is available for all Visible Analyst tool set configurations.

LAN OPERATING CHARACTERISTICS
The operating characteristics of the LAN version of Visible Analyst are virtually identical to
those of the single user version, except that you must be logged onto the network prior to
accessing the program and starting a work session. Once logged onto the LAN, you have all
of the same capabilities that apply to each Visible Analyst tool described throughout this
manual. You also have other features and capabilities described below.

Local Area Networks

332

LAN Visible Analyst Features and Capabilities

Unlimited Access to Program and Project Files
The number of network users that may access Visible Analyst is limited only by the number
of nodes purchased. A “node” is defined as “concurrent access by a user.” For example, three
nodes equals the ability to have three users concurrently accessing Visible Analyst. You may
assign as many users as you wish to access Visible Analyst, but only three users may run it at
any given time.

Limited Access to Diagrams and Repository Entries
Only one user may access a particular diagram or repository entry at any one time, to prevent
conflicting edits being entered for a diagram or its project repository entries. The only
exception to this rule is if a user opens a diagram in read-only mode. In this case, one user can
modify a diagram, and any number of users can open the same diagram for viewing only.

Security
Access to program and project files is limited to users defined as having access to the
network, access to the \VA directory, access to each particular project and granted rights to
modify a project, as opposed to the right to view only.

Messaging System
The Visible Analyst messaging system allows all users to communicate easily over the
network. The messaging feature gives access to NetWare’s messaging while using Visible
Analyst and is invoked with function key F5. The Generic LAN version does not support the
Visible Analyst messaging system.

Current Activity and Error Message Help Windows
The Current Activity function on the File menu allows you to review the activities of Visible
Analyst users working on the same project. It also provides a description of the activity each
user is performing within the project. The Error Details window allows you to identify users
who are working with project files you are attempting to access.

Novell NetWare Compatibility
The LAN version of Visible Analyst is fully compatible with the network configuration and
protocol requirements of Novell Advanced NetWare v1.0 and higher. Workstations that
access Visible Analyst over the LAN must be running DOS 3.1 or higher.

All descriptions and instructions provided in this chapter assume that NetWare is already
installed, networked workstations or PCs are already connected, users are already
knowledgeable in the procedures required to log on and off the network, and the LAN Visible
Analyst program is already installed (refer to Getting Started). Additional information and
procedures describing how to setup the \VA directory, how to define user security at the

Local Area Networks

333

project level, and how to use Visible Analyst’s networking features are provided in the
following pages.

NetWare MAP ROOT Command
The LAN version of Visible Analyst supports the NetWare MAP ROOT command. This
means that if you have used this command to map a drive letter to a server directory, Visible
Analyst recognizes it and acts accordingly.

Preventing Editing Collisions
There are no inherent restrictions on the number of network users that may access Visible
Analyst or Visible Analyst projects concurrently. However, there are restrictions that allow
only one user to access a specific diagram or repository entry at any one time. This restriction
prevents editing collisions; that is, prevents conflicting edits from being entered into the same
diagram or repository entry by different users.

If a potential conflict is detected, Visible Analyst prevents the function from being initiated.
You are alerted to the nature of the conflict and the user(s) involved (as shown in Figure 6-4
later in this chapter). For example, global changes that are normally carried throughout
multiple diagrams in the same project are inhibited in some instances, such as when a global
change impacts multiple diagrams and one or more of those diagrams is currently being
accessed by others.

Local Operation
Projects may be stored on a local workstation drive instead of the network drive by specifying
the appropriate data path when the project is created. Note, though, that any project stored on
a local workstation drive can never be accessed by another workstation; the project becomes a
single-user project.

RUNNING ON THE NETWORK
Before proceeding, be sure that the initial steps in Visible Analyst installation process have
been completed as described in Getting Started. If you are using the DOS Networks version,
you must define users who access Visible Analyst. (See Assigning Access Rights later in this
chapter.) The Netware version of Visible Analyst is accessible to all users defined under
NetWare; you need not redefine NetWare users, but you must decide how you wish to
implement NetWare-level security and the process of creating projects. Appropriate steps for
addressing each of these LAN considerations is provided in the following pages.

Defining Default Path Settings
For the LAN version of Visible Analyst, default settings can be accessed from one centralized
location so that all users start with the same setup information. These defaults can later be

Local Area Networks

334

overridden by users. This is most useful to set a network drive and path preferences for
projects and temporary files generated by Visible Analyst.
• Edit the VAW.INI file, located in the Visible Analyst installation directory.
• Insert the statement “Default Data Path=” for project files, and insert the appropriate

drive and directory.
• Insert the statement “Transient Data Path=” for temporary files, and insert the appropriate

drive and directory.

When a user accesses Visible Analyst from a node on the network for the first time, Visible
Analyst creates a new initiation file named VAW#.INI, where # is the number the network
assigns to the user’s node, and copies the contents of VAW.INI into the new file.

Implementing Security
There are two levels of project security available to network users:
• The lower level of NetWare security is the easiest to implement. It allows any user

assigned to Visible Analyst to create projects at will.
• The second level of NetWare security requires that the supervisor, or a user with

equivalent status, create a subdirectory and assign trustees to any new project before it is
created. For details, refer to Creating Projects on the Network later in this chapter. We
recommend that you choose between the two levels, though multiple variations are
possible. If the two levels described don’t meet your needs, please contact Visible
Systems technical support.

As shipped, Visible Analyst has as the default data path for project data
<path>\VA\DATA\<root>, where <path> is any path you entered for the installation of
Visible Analyst and <root> is the project root. In this way each project resides in its own
subdirectory. For example, project LIB would reside in <path>\VA\DATA\LIB. We strongly
recommended that you leave this default data path setting as shipped as it makes security
much simpler to implement and facilitates switching between levels of security. However, it
can be changed when you create a project if you so desire. (For the remainder of the chapter,
any directory levels above the VA directory are ignored, but you must consider them when
you create directories, etc.)

Implementing the Lower Level of NetWare Security
Selecting this level of security allows any user who becomes a trustee of the VA directory the
ability to create a project. Any user who creates a project, in addition to the supervisor, may
then assign other users access to that project (see Project-Level Security – Assigning Project
Access Rights later in this chapter). Note that this security is operable only within Visible
Analyst; control is not implemented at the DOS command level. As a result, any user with
knowledge of how to access files under DOS may modify or delete any Visible Analyst
projects.

Local Area Networks

335

To implement the lower level of NetWare security, simply make each user accessing Visible
Analyst a trustee with all rights to the VA subdirectory on the install-to drive. By default,
assigning a user as a trustee gives that user all rights to that directory and all lower-level
directories.

Implementing the Second Level of Security
This level of security provides all of the security of the lower level and adds security at the
DOS command level. This means that there is no way for an unauthorized user to modify or
delete any project information. When implemented, the supervisor or someone with
equivalent rights must assign users to each project before the project is created.

For NetWare Versions Earlier Than 3.0
To implement the second level of security, be sure that all of the following are applied:
• For each user who is to access Visible Analyst, make that user a trustee of the VA

subdirectory on the install-to drive. By default, assigning a user as a trustee gives that
user all rights to that directory.

• Revoke the Modify and Parental rights for each user for the VA subdirectory.
• For each user who is to access Visible Analyst, make that user a trustee of the VA\DATA

subdirectory on the install-to drive.
• Revoke all rights for each user for the VA\DATA subdirectory.

For NetWare Versions 3.0 or Later
These NetWare versions implement inheritance rights. To implement the second level of
security, be sure that all of the following are applied:
• For each user who is to access Visible Analyst, make that user a trustee of the VA

subdirectory on the install-to drive. By default, assigning a user as a trustee gives that
user all rights to that directory.

• Revoke the Access Control, Modify and Supervisory rights for each user for the VA
subdirectory. (If you want a user to be able to rename a project, do not revoke the Modify
rights.)

• Revoke all Inheritance rights except Supervisory for the VA\DATA subdirectory on the
install-to drive.

Assigning Access Rights
Users who access Visible Analyst can be assigned one of three levels of security: system
manager, project manager, or user. A system manager has full rights to all projects in Visible
Analyst, can maintain user information, and assign project rights to users. A project manager
can create projects, and assign users to the projects they create. A user can access Visible
Analyst and be granted rights to projects, but cannot create new projects. If you installed
Visible Analyst using the Novell version (Visible Analyst automatically installs the Novell
version if your network is listed in the Windows Control Panel as Novell Netware OS at
installation time), initially you must have the supervisor (or someone with security equivalent
to the supervisor) log into Visible Analyst and assign at least one system manager. By default

Local Area Networks

336

any user who can access the Novell server can start Visible Analyst without having been
granted specific access rights; but they can only be a user and do not have rights to any
existing projects or to be able to create new projects. If you are using the DOS Networks
version, you must create user IDs and passwords to secure Visible Analyst access to only
those users who have been defined. To access Visible Analyst for the first time, log in as
supervisor with no password.

To assign user access privileges to Visible Analyst:

Select Users: 1 Select Users from Tools menu to display the Add User

dialog box (see Figure 6-1).

 Figure 6-1 Add User Dialog Box

2 If you want to change the information about a previously
 defined user, highlight the desired user ID in the list.

Enter the User ID: 3 Enter the user name to be used to log on to Visible

Analyst. If you are using Netware, this name should be
the same as the user name used for login. This field can
only be changed by a system manager.

Enter the User Name: 4 This is an optional field used to further describe the user.

Enter the Password: 5 The password is used by the DOS Networks version to

further enhance security. If a password is defined, both
the user ID and password must be provided when starting
Visible Analyst.

Local Area Networks

337

Select the User Type: 6 Select the user type to be assigned to this user. This field
 can only be changed by a system manager.

Save Your Changes: 7 Click Save to record your changes, Erase to cancel the
 changes and clear the selection, or Delete to remove the
 user from the list.

Creating Projects on the Network
The steps involved in creating projects on the network depend on the security level you have
chosen, as described earlier in this section. With the lower level of NetWare security, any user
with access to Visible Analyst may create projects. With the second level of security, two
steps must be taken prior to a project being created with Visible Analyst, as described below:
• The supervisor, or a user with equivalence, must create a subdirectory for the project.

Under the recommended data path setting this would be VA\DATA\<root>, where
<root> is the project root of the project to be created. For example, if a user wants to
create a project with the root LIB, the supervisor must create the subdirectory
VA\DATA\LIB on the file server.

• Any user who is to be assigned to the project must be assigned as a trustee to the
subdirectory created in the step above. Note that even after doing this, users must still be
assigned to projects from within Visible Analyst.

 Note

2 Only system managers and project managers can create projects.

Project-Level Security
The LAN version of Visible Analyst gives only the network supervisor and the user who
creates a new project the capability to assign network access privileges to the project. Access
may be assigned to any users having access to the directory where the project is stored.
Access can be limited to viewing project information.

To assign user access privileges to any Visible Analyst project that you create:

Select Modify User List: 1 Select Modify User List from the File menu.

Select the Access 2 Select Add, Delete or Modify Rights from the
Function: submenu.

• If you are adding users, Visible Analyst displays a
dialog box listing the IDs of network users and user
groups not currently assigned access to the project.

Local Area Networks

338

• If you are deleting users, Visible Analyst displays a
dialog box listing the IDs of network users who are
currently assigned access to the project.

• If you are modifying user rights, Visible Analyst
displays a dialog box listing the IDs of network users
who are currently assigned access to the project and
the rights each has to access the project. (See Figure
6-2.)

 Figure 6-2 Modify User Rights Dialog Box

Review the Displayed 3 Add or delete network users or user groups as desired.
List of Users and Make Note that until users have been added to a project, these
Desired Changes: functions are disabled. Note further that initially, users
 have all rights to a project.

Modify Users Rights 4 To modify the rights of any user who should have
to the Project: less than full access to the project, select Modify User

Rights and click the ID of a user or group. The rights
currently available to that user or group are checked in the
list at the bottom of the dialog box. (See Figure 6-2.)
Review the rights of the project users and toggle
individual rights on or off by clicking on them. For
example, if the only item checked on the list is View

Local Area Networks

339

Diagram, that user can look at a diagram but cannot make
changes. These rights can be changed later if necessary.

Note

2 To restrict user access to individual objects or diagrams, you must use divisions.
 See Creating Divisions in the Enterprise Modeling chapter for details.

MESSAGING
Visible Analyst provides access to NetWare’s messaging capability. The feature allows you to
communicate with other network users from anywhere within Visible Analyst. Note that
messaging is available to all network users, regardless of whether or not they currently have
Visible Analyst active; messaging is a function of NetWare rather than Visible Analyst. You
can therefore send a message from your workstation once logged onto the network, or you can
send a message from anywhere in Visible Analyst. The Generic LAN version does not
support the Visible Analyst messaging system.

To send or receive a message while in Visible Analyst:

Initiate Message 1 Press the F5 function key at your workstation to
Sending with the initiate a message. Visible Analyst responds by
F5 Key: displaying the Send A Message dialog box. See Figure

6-3.

 Figure 6-3 Send Network Message Dialog Box

Enter the ID of the 2 Type the user ID of the recipient network user in the To
User To Receive box. Then type your message in the Message box. Each
Your Message: message is limited to 40 characters. Click OK to send the
 message.

Local Area Networks

340

If a Network Message 3 Messages sent to your ID from another user
is Received: automatically appear in a network message box on your

screen if the program NWPOPUP.EXE is running. You
must instruct Windows to start this program when
Windows starts running. A message does not interfere
with work you are doing. Note that messages sent to you
appear on all workstations where you are logged in.

REVIEWING PROJECT ACTIVITY
Whenever a Visible Analyst project that is stored on the network is selected at a workstation,
you can display the current activity and the project history. The Current Activity function on
the File menu displays who is currently accessing the project. The current activity function
presents a list of all users who currently have the project selected and what functions they are
performing. The current activity is updated by Visible Analyst every 10 seconds. The Project
History function, also on the File menu, presents a list of diagrams and the users who last
edited each of them.

LAN HELP FUNCTION
Occasionally while using the LAN version of Visible Analyst, you may attempt to access a
diagram or repository entry that is already selected by another LAN user. Since only one user
may access any diagram or repository entry at any one time, you receive an error message that
explains that the diagram or repository entry is currently being edited; and you are prompted
to click OK to continue. You also have the opportunity to access the LAN help function by
clicking the Details button. Visible Analyst responds by displaying a window titled Error
Details (see Figure 6-4). The Error Details window displays the ID of the network user who
currently has the item selected, as well as the network station (the physical address that the
workstation occupies on the network). Note that if a conflict exists with more than one other
user, the Error Details window appears only for the first user who accessed the diagram or
entry. Once you know the user accessing the item you want, you can send a message to that
user. The Generic LAN version does not support the Visible Analyst messaging system.

Local Area Networks

341

 Figure 6-4 Typical Network Help Details Window

While performing various Visible Analyst activities, you may be interrupted by messages
indicating that you cannot perform a selected function due to a potential editing collision. In
these instances, you can access the LAN help function described above and determine the user
currently working with the function you tried to select. Again, you can send a message to that
user if you wish.

Local Area Networks

342

Visible Analyst Tools

343

Chapter 7

Visible Analyst Tools

GENERAL INFORMATION
Visible Analyst includes a Tools menu (see Figure 7-1) that allows you to perform data
conversion and copying functions at the project level. These functions are an important part of
the overall “housekeeping” tasks that should be used to backup and maintain the organization
of your project files.

 Figure 7-1 Tools Menu

• Backup allows you to back up a Visible Analyst project to one or more floppy disks, to a

local hard disk or, for the LAN version, to a directory on a file server.

Visible Analyst Tools

344

• Restore allows you to restore a Visible Analyst project from one or more floppy disks,
from a local hard disk, or from a file server.

• Copy Project allows you to duplicate a Visible Analyst project.
• Delete Project allows you to eliminate a Visible Analyst project.
• Rename/Move allows you to change the name (root) that was previously defined for a

project, or to rename the directory where its files are stored, or to move the project files
to a different directory.

• Export allows you to convert data repository files for a project into ASCII format for use
in other programs such as a database management system or into one of a number of
other export formats.

• Import allows you to load data into a project data from an ASCII file or from one of a
number of other import formats.

• Rebuild allows you to convert a project from an earlier Visible Analyst version format to
the current format or to recreate a project that may be corrupted due to a power failure
while Visible Analyst is in use, etc.

• Enterprise Copy Allows you to copy a division between an enterprise project and a
satellite project.

• Enterprise Tag Maintenance allows you to remove the link between an enterprise
project and a satellite project.

• Copy Diagram allows you to copy a diagram or a branch (a data flow diagram and all of
its children/grandchildren). This command allows copying similar-methodology diagrams
and branches from one project to another. All data repository information associated with
the diagram(s) is also copied into the new project.

• Delete Diagram allows you to delete a diagram or a branch.
• Users allows you to define user security information, including user type. For the single-

user and generic DOS network versions of Visible Analyst, you can define user names
and passwords.

• Prototyper allows you to start the Visible Prototyper. If you purchased this tool, you can
work with the prototyping and simulation capabilities.

BACKING UP A PROJECT
The Backup selection on the Tools menu creates backup copies of all files for the currently
selected project. If the drive selected in the dialog box is a floppy drive, a DOS-formatted disk
must be inserted into the drive. The formatted disk does not have to be blank; it may contain
unrelated data, or it may contain data for the same project or other projects being backed up.
If it does contain data for the same project, you are prompted to indicate whether or not you
want the project data on the disk to be overwritten. Also, if the disk you are copying to
becomes full, you are prompted to insert additional disks to complete the backup.

If the backup destination is a hard disk, such as a file server, any valid drive and path
specification can be entered. If the destination drive becomes full, Visible Analyst asks you to

Visible Analyst Tools

345

specify a new location for the backup. When you enter one, the backup continues from where
it left off, with the remaining data going to the new location.

Notes
2 It is very important to remember that, if a backup is split between two disks or

directories, as in the previous paragraph, you must not manually consolidate the
files into one directory. Project files that have to be split between the two
locations have the same name and manually consolidating all of the backup files
into a single directory overwrites one of the files, thus losing backed up data
permanently.

2 Anytime a project is backed up, it should be restored only by the Visible Analyst
Restore tool. Do not attempt to restore Visible Analyst projects using DOS
commands such as COPY. The Visible Analyst project master file is not updated
correctly.

2 If you run the Backup tool while one or more diagrams are being edited, the
diagrams are closed and you are prompted to save any change before the backup
procedure begins.

RESTORING A PROJECT
The Restore selection on the Tools menu allows you to restore a project that has been
previously backed up. When the project restore is performed, all diagrams and repository
entries for the defined project are copied from the backup drive or directory.

If multiple floppy disks were used to backup the project, you are prompted to insert each disk
in the order that the backup was performed to restore the project. If the backup was split over
multiple hard disk directories, you are prompted to enter the path where the next group of
backed up files resides. If the hard disk being copied to already contains data for the project
being restored, the data read from the backup disk overwrites the existing hard disk project
files.

Note
2 In the multi-user version, anyone may restore a project. However, only those

who have been granted rights can access it thereafter. If a project was created by
a single-user version of Visible Analyst with security turned off, Visible Analyst
does not know who created it. Thus, when restored into a LAN version, Visible
Analyst doesn’t have creator information. As a result, only a system manager,
supervisor, or another user assigned supervisor equivalence is able to access it
until access rights have been granted to others.

Visible Analyst Tools

346

COPYING A PROJECT
The Copy Project selection on the Tools menu allows you to duplicate an existing project,
providing a means to recreate a project without having to redraw the diagrams. It therefore
provides a convenient and time-saving method for starting new projects that are similar to
existing ones. For example, you can select a project and copy it to a new project root, then
revise and edit the duplicated files to develop unique project entities. The new project files
become another stored Visible Analyst project that can be manipulated in the same manner as
any other Visible Analyst project.

Before any copy is initiated, you are prompted to define a new project name for the duplicate
project, a new description and a location in which to store. The new root name provides a
calling label for the duplicated project files. Note that all project files are copied to the new
project root, including any existing repository files.

DELETING A PROJECT
The Delete Project selection on the Tools menu allows you to eliminate the current project
from Visible Analyst. It is useful as a housekeeping function to erase project files that are no
longer needed. Note that any project that you delete is erased completely, including all
repository entries. Before any deletion is executed, Visible Analyst prompts you to confirm
the project being deleted. This helps prevent erasing the wrong project; however, it is
recommended that you back up all project files using the Backup tool described above,
including those that you are about to delete. This allows you to maintain a project archive, and
lets you restore any project at any time.

Deleting Projects with No Project Files
It sometimes happens that someone deletes the data files for a project from DOS instead of
doing it from within Visible Analyst. The result is that the project is still listed in the project
master file, but cannot be accessed because the data files are gone. To delete a dangling
project from the master file, open the Select Project dialog box from the File menu. Select the
project name you want to delete from the list or type its name into the Project Name box, then
click Remove. The project name is removed from the project master file after confirmation.

Note
2 This function is not a substitute for the Delete Project function. It should only be

used in the circumstances described above.

RENAMING OR MOVING A PROJECT
The Rename/Move selection at the Tools menu allows you to change the name or description
of an existing project and/or to move it to a different directory. This is another tool that can be

Visible Analyst Tools

347

helpful when performing housekeeping functions for your Visible Analyst files. When
renaming a project, only the one-to-four character root is changed. The project and diagram
labels remain the same. If you have decided that the project root should also be the name of
the subdirectory in which project files are to be placed, this directory name is also changed.

REBUILDING A PROJECT
The Rebuild selection on the Tools menu allows you to recreate project files. This may
become necessary for either of the following situations:
• If your Visible Analyst program software has been updated from an earlier version, you

may have to rebuild existing project files to convert them to a format that is compatible
with the new version. Visible Analyst prompts you to perform the rebuild whenever you
access a project for which a rebuild is required.

Note

2 If a project was created with a version of Visible Analyst prior to version 3.1,
contact Visible Systems for assistance.

• If a project becomes corrupted due to a power outage while Visible Analyst is in use, a

bad disk sector, etc., you may be able to salvage all or part of the project files by
performing a rebuild. Visible Analyst helps prevent loss of project data during these
situations; therefore, this type of rebuild should rarely be necessary.

All of the creation dates and last-altered dates are reset to the current date whenever a project
is rebuilt.

EXPORTING REPOSITORY DATA
The Export selection at the Tools menu allows you to convert data repository files for a
selected project into ASCII formatted data files for use by other programs. For example, you
can export repository information into a file that can be accessed by a database management
program.

Visible Analyst Tools

348

Figure 7-2 Repository Export Dialog Box

You can export ASCII data from the repository in one of several formats:
• A relational format that is compatible with most relational databases.
• A proprietary VSC format that is compatible with the ASCII dump used with prior

versions of Visible Analyst and other Visible Systems modeling tools.
• KnowledgeWare (IEW/ADW) format, discussed together with the KnowledgeWare

import, later in this chapter.
• ESF format, discussed in the section on Shell Code Generation in The Visible

Repository.
• SQL format, discussed in the section on SQL Schema Generation in The Visible

Repository.
• Powersoft PowerBuilder format.
• IBM AS/400 DDS format, described later in this chapter and also in the section on Data

Description Specification Generation in The Visible Repository.
• Visible Prototyper export.
• RDBMS Catalog export, discussed in the section on SQL Schema Generation in The

Visible Repository.
• GDPro format.
• ERwin format.
• CompuWare OptimalJ format.

Visible Analyst Tools

349

These export formats are selected from the export dialog box, except for SQL and DDS that
are generated from selections on the Repository menu.

Relational Database Repository Exports
In database terminology, a relation is a common field or fields shared by two different files or
tables. The repository in Visible Analyst is a relational database, with files a set of tables
containing information about a project linked together by relations. The repository export
function converts the internal representation used by the database engine to a delimited text
file, as well as eliminating information either proprietary or simply not useful to you. The
relation linking the exported files together is an ID number that uniquely identifies each
object in the repository.

Export files are named by the project root plus file description method. For example, files in a
repository export of a project named LIB would be named as shown below.

LIBROBJ.DTA Primary object file. One record for each distinct entry in the
 repository.

LIBATTR.DTA Attributes file. Each repository object has properties that are

described in this file such as descriptive information, notes, and
composition values. Attributes that require more than one record
have an associated sequence number. See the table below for a list
of valid attribute types.

LIBDIAG.DTA Diagram file. Each diagram exists as a separate record.

LIBDLOC.DTA Location file. Each object location exists as a separate record.

LIBCLOC.DTA Connected location file. Each pair of connected object locations

exists as a separate record.

LIBRELA.DTA Related object file. Each object that is related to another object,

such as an alias entry, exists as a separate record.

LIBRELL.DTA Related list file. Each object that is related to a related object, such

as columns for a trigger that belongs to an entity, exists as a
separate record.

Relational Export File Layout
Files created by the Export program are in delimited ASCII format. This means:
• Fields are separated by commas.
• Character fields have trailing spaces removed and are surrounded by double quotes.

Visible Analyst Tools

350

• Numbers are converted to their ASCII representations.
• Null character fields are denoted by “”.
• Fields contain no right or left padding.
• There is no alignment on decimal points.
• Each record ends in a carriage return and a line feed.

Relational Export File Structure
The structure of any database files created from data exported from the repository must be set
up to accommodate the maximum field lengths possible for exported data. The field names,
field types and maximum field lengths for each file are listed in Table 7-1.

Table 7-1
Relational Export File Structures

Structure for: - ROBJ.DTA
Field Field Name Type Width Dec
1 ObjectNameLC Character 128 0
2 ObjectType Numeric 4 0
3 ObjectID Numeric 4 0
4 DivisionID Numeric 4 0
5 ClassID Numeric 4 0
6 VersonID Numeric 4 0
7 ObjectName Character 128 0
8 ObjectSubtype Numeric 2 0
9 ObjectOwnerID Numeric 4 0
10 CreationDate Date 10 0
11 CreationUserID Numeric 4 0
12 ModificationDate Date 10 0
13 ModificationUserID Numeric 4 0
14 AssociatedNumber Numeric 4 0
TOTAL 314

Structure for: C ALTTR.DTA
Field Field Name Type Width Dec
1 ObjectID Numeric 4 0
2 AttributeType Numeric 4 0
3 Sequence Numeric 4 0
4 AttributeLine Character 254 0
TOTAL

 266

Visible Analyst Tools

351

Table 7-1
Relational Export File Structures

Structure for: C DIAG.DTA
Field Field Name Type Width Dec
1 DiagramType Numeric 2
2 DiagramName Character 40 0
3 DiagramID Numeric 4 0
4 VersionID Numeric 4 0
5 ObjectOwner Numeric 4 0
6 AlphaDesignator Character 40 0
7 LineStyle Numeric 2 0
8 PageSize Numeric 2 0
9 DiagramProcNum Character 40 0
10 CreationDate Date 10 0
11 CreationUserID Numeric 4 0
12 ModificationDate Date 10 0
13 ModificationUserID Numeric 4 0
TOTAL 166

Structure for: C DLOC.DTA
Field Field Name Type Width Dec
1 ObjectID Numeric 4 0
2 LocationNumber Numeric 2 0
3 DiagramID Numeric 4 0
4 UpperLeftX Numeric 4 0
5 UpperLeftY Numeric 4 0
6 LowerRightX Numeric 4 0
7 LowerRightY Numeric 4 0
TOTAL 26

Structure for: C CLO.DTA
Field Field Name Type Width Dec
1 ObjectID Numeric 4 0
2 LocationNumer Numeric 2 0
3 ConnectedID Numeric 4 0
4 ConnectedLocNum Numeric 2 0
5 ConnectionStyle Numeric 2 0
TOTAL 14

Structure for: C RELA.DTA

Field Field Name Type Width Dec

1 ObjectID Numeric 4 0
2 AttributeType Numeric 4 0
3 Sequence Numeric 4 0
4 RelatedID Numeric 4 0

Visible Analyst Tools

352

Table 7-1
Relational Export File Structures

5 Item1 Numeric 4 0
6 Item2 Numeric 4 0
TOTAL 24

Structure for: C RELL.DTA
Field Field Name Type Width Dec
1 ObjectID Numeric 4 0
2 AttributeType Numeric 4 0
3 Sequence Numeric 4 0

4 RelatedID Numeric 4 0
5 AssociatedID Numeric 4 0
6 Item1 Numeric 4 0
7 Item2 Numeric 4 0
TOTAL 28

Note

2 A number of attribute type fields contain multiple pieces of information
separated by hex characters. In Table 7-2 below, these separators are indicated
by the notation <n> where n can be a number between 1 and 10.

Table 7-2
Attribute Types Used in: ATTR.DTA

Type Description Layout
0 Description “Text”
3 Values & Meanings “Text”
4 Composition “Text”
5 Modules Contained “Text”
6 Process Description “Text”
7 Module Description “Text”
8 Function Description “Text”
9 Notes “Text”
12 Physical Information “Storagetype<1>StorageLength

<2>DecimalPlaces<3>DefaultValue<4>
PictureClause<5>Owner<6>AllowNull”

18 Process Number “Text”
19 Invocation Type “Text”
20 DM Information “Type”
21 Unique Index “IndexName<1>IndexType”
22 Performance Index “IndexName<1>IndexType”

Visible Analyst Tools

353

Table 7-2
Attribute Types Used in: ATTR.DTA

Type Description Layout
23 Relationship “ControllingKey<1>Flags<2>

FromToCard<3>ToFromCard<4>
OnDelete<5>OnUpdate<6>
FromToCardText<7>
ToFromCardText<8>ConstraintName”

26 Parameter “Text”
27 Class Information “Cardinality<1>CardText<2>Flags”
28 Database File “FileName, Size, Reuse”

Sequence is Database type*1000+
 Sequence where DatabaseType equals
1 for Oracle and
 2 for SQLServer
“Indextype, SortedData, FillFactor,
IgnoreDupKey,
 DupRow” for SQLServer
Sequence is Database Type *1000+
 SequenceType where Database Type
equals 1 for
 Oracle and 2 for SQLServer, and
SequenceType is 0 to
 define physical information for the
table, 100+ key
 number for unique keys, and 200+
index number for
 performance indexes. (Key number for
the primary key
 is zero.

100 User Object
Definition
projectcontrolrecord

“ObjectTypeName<1>LinkSupport<2>
LinkToType<3>LinkToCard<4>
LinkDisplayName<5>CompSupport<6>
CompType<7>CompDisplayName”

101 User Attribute
Definition
projectcontrolrecord

“AttributeName<1>StorageType<2>
StorageLength<3>StorageDecimal”

1000+ User Attribute “Text”
2000+ User Object Line “Text”

Visible Analyst Tools

354

Table 7-3
Attribute Types Used In: RELA.DTA

Type Description Layout
1 Alias Sequence – ORder number of Alias entry

RelatedID – ObjectID of Alias entry
2 Related To Sequence – Order number of related entry

RelatedID – ObjectID of related entry
10 Associator Element RelatedID – ObjectID of associator
11 Data Only Module RelatedID – Object of data only module
15 Trigger RelatedID – ObjectID of trigger

Item1 – Trigger Flags
AssociatedID ObjectID of trigger column (RELL.DTA)

16 Check RelatedID – Object of check
AssociateID – ObjectID of check column (RELL.DTA)

21 Unique Key Sequence – Key number
RelatedID – ObjectID of column
Item1 – Sequence number that specifies the order of the
 column in the key
Item 2 – Index order (0 = ASC, 1 = DESC)

22 Performance Index Sequence – Key number
RelatedID – ObjectID of column
Item1 – Sequence number that specifies the order of the
 column in the key
Item2 – Index order (0 = ASC, 1 = DESC)

23 Relationship Sequence
 0 –From Entity
 1 – To Entity
 2 – From-To-Relationship
 3 – To-From Relationship
 4 – Discriminator
 5 – From Role
 6 – To Role
 7 – From Qualifier
 8 – To Qualifier
RelatedID – ObjectID of related item (RELL.DTA)
The following is set only if sequence is 1.
AssociatedID – Column that is part of the key
Item1 – Sequence number that specifies the order of the
 column in the key
Item2 – Index order (0 = ASC, 1 = DESC)

25 Friend RelatedID – ID of friend class or module
29 Database Phys Inf. Sequence – See definition in ATTR.DTA

RelatedID – ObjectID of Tablespace

Visible Analyst Tools

355

Table 7-3
Attribute Types Used In: RELA.DTA

Note 1: The User Object Definition and User Attribute Definition attribute types are only
used with the system object projectcontrolrecord.
Note 2: For Trigger, Check, and Relationship attribute types, there will be records in both the
RELA.DTA and RELL.DTA tables.

VSC-Format Repository Exports
When you perform an Export with VSC format selected, Visible Analyst dumps a project data
repository to an ASCII format file. The file name of the resulting ASCII file is root + .AD
where root is the project root. A layout of the resulting ASCII file is shown in Table 7-4. All
fields except those describing the number of description, notes, location, etc., field records are
enclosed in double quotes.

Table 7-4
STRUCTUR.DBF File Structure

Field Field Name Type Width Dec
1 FIELD_NAME Character 10 0
2 FIELD_TYPE Numeric 2 0
3 FIELD_LEN Numeric 3 0
4 FIELD_DEC Numeric 3 0
TOTAL 18
Note 1: Describes the format of the structure files.

The export file is a variable record length file that is divided into three sections. The first
section is the header that is a single record that gives basic information about the file contents.
The next section defines the user attributes and objects that are contained in the project. The
third section contains the repository objects, each defined as an Object Block. The Object
Block is comprised of an Object Header followed by zero or more Field Blocks and an Object
Footer. The order of the Field Blocks within the Object Block is not important except that the
KEYS, CHECK, and TRIGGER fields must be present after the COMPOSITION or CLASS
COMPOSITION Field Block in the specification.

Note
2 A number of fields contain multiple pieces of information separated by hex 01

characters (which appear on your screen as “smiley faces” when using DOS
utilities), <crlf> indicates a carriage return line feed sequence.

Visible Analyst Tools

356

Table 7-5
Repository Export VSC Format

Record 1 – Header Record “project root”, “File creation date”, “File creation
time”[,User Attribute Count [, User Entry Type
Count]]<crlf>

User Attribute Information “user defined name”, type, length, description<crlf>
Note: The number of records is indicated by the User
Defined Count in the header record

User Entry Type Information “user entry type name”, LinkSupport, “LinkToType”,
LinkToCardinality, “LinkDisplayName”,
CompSupport, “CompType”,
“CompDisplayName”<crlf>
LinkSupport = digit 0 – no support, 1 – supported
LinkToType = VRE standard or aggregate type
LinkToCardinality = digit 0 – 1:1, l – l:m, 2 – m:1,
 3– m:m
LinkDisplayName = Text name for the define
 dialog box
CompSupport = digit 0 – no support, 1 – supported
CompType = VRE standard or aggregate type
CompDisplayName = Text name for the define
 dialog box
Note: The number of records is indicated by the User
Entry Type Count in the header record.

Subsequent Records Object Header
Item ID record

ENTRY “Entry Key”, “Entry Type | User Defined
 Name”, “Additional Information” [, “[Time Stamp
]”] <crlf>

Entry Key [Class Name ::] Entry Name [::: [Parameter Key]]
This is the ‘ENTRY LABEL’ in the Repository. Class
Name is the name of the class that owns the object.
This is an optional field. Entry Name is the key field
that is used in the Define dialog box as the primary
name. Both Class Name and Entry Name are ASCII
fields up to 128 characters in length. Parameter Key is
used for Module types to define the argument types
that uniquely identify an instance of a function. Each
argument type is an object in the repository of type
class, data element, or data structure, and is followed
by an ampersand (&) if the parameter is passed by
value or reference, or an asterisk (*) if it is passed by
address. There is no limit to the number of parameters
a function may contain. The colons are required even
if there are no parameters.

Visible Analyst Tools

357

Table 7-5
Repository Export VSC Format

if there are no parameters.
Note: It is possible for there to be duplicate keys (this
can happen if there are files and data flows with the
same name).

Entry Type This is a number that indicates the type of entry as
follows:
0 = Data element
1 = Process
2 = File, Data Store
3 = Source/Sink, External Entity
4 = Data Flow
5 = Miscellaneous
6 = Alias
7 = Data Structure
8 = Domain
14 = Function
15 = Module
16 = Library Module
17 = Macro
18 = Library Macro
19 = Data Only Module
20 = Info Cluster
21 = Data Couple
22 = Control Couple
23 = Generic Couple
24 = Data Interface Table Row
25 = Control Interface Table Row
26 = Generic Interface Table Row
28 = Program
34 = Entity
35 = Associative Entity
36 = Attributive Entity
37 = Relationship Name
38 = Cluster
40 = Relationship Line
43 = Local Data Element
45 = Class
46 = State
47 = Event
48 = Tablespace
50 = View Object

Visible Analyst Tools

358

Table 7-5
Repository Export VSC Format

52 = Actor
53 = Use Case
54 – System Boundary
55 = Object (Instance of a Class)
56 = Message (Instance of a Class Method)

SubType If entry type is greater than 65535, then the low order
word contains the entry type as described above, and
the high order word contains the subtype. This
optional field applies only to module types and classes
and is used to denote the following special classes:

Module Subtypes
0 = Standard
1 = Stored Procedure
2 = Check Constraint
3 = Trigger

Class Subtypes
0 = Standard
5 = Structure
6 = Union
7 = Element
8 = Entity
9 = Associative Entity
10 = Attributive Entity
13 = Domain
14 = View

User Defined Name This is the name of the user defined entry type and it
replaces the Entry Type.

Additional Information For aliases, this field contains the owner entry key and
the owner entry type separated by hex 01 characters.

For relationship name and relationship line entries,
this field contains the From Entity name, To Entity
name, From-To Relationship name and To-From
Relationship name, separated by hex 01 characters.

For structure chart items appearing on a virtual
diagram:
For Invocation Lines, special compound type of all
information necessary to create a virtual diagram
location as follows:

Visible Analyst Tools

359

Table 7-5
Repository Export VSC Format

location as follows:
 Type, bounding box, source module, destination
 module (separated by hex 01 characters).
 type = Invocation_Normal[0x01],
 Invocation_Data[0x02],
 Invocation_Lex[0x03]
 (bounding box = 1sx, 1sy, 1ex, 1ey)
Note: The modules referenced in this record must
also be included in the same import file.
In all other cases this field is empty.

Time Stamp This optional field holds the Create and Modify dates
for the object. It is used for import only. The format is
Create Date followed by Modify Date, separated by
hex 01 characters, as follows:
 yyyy-mm-dd, yyyy-mm-dd (separated by hex 01
 characters)

Object Footer END ENTRY <crlf>
Object Fields FIELD “Field Type Name”, Number of Records<crlf>

The basic format for all object fields is a header that
specifies the name of the field and the number of lines
in the body of the field. Many types use “plain text”
that is defined as a list of lines each with a single
quoted string with a maximum line length of 254
characters after processing. Standard Analyst Text
means that the field uses the same format per line as
the Analyst define screen field bearing the same name.
Entry names can be up to 128 characters in length.
Names in fields use Entry Key format unless the Entry
key information is redundant; i.e., Local data elements
listed in a class composition must be part of that class.

ADM DATA Type, min, max, average<crlf>
Type is the ASCII number for K (key), M (multiple),
or G (group).

ALIAS “Standard Analyst Text” <crlf>
There may be up to 10 aliases per entry.

ASSOCIATOR “Standard Analyst Text” <crlf>
A relationship can have one associator and can be up
to 128 characters in length.

ATTR: “Standard Analyst Text” <crlf>
User-defined attribute entries. The actual Field Type is
“ATTR:User Attribute Name”. There is one of these

Visible Analyst Tools

360

Table 7-5
Repository Export VSC Format

“ATTR:User Attribute Name”. There is one of these
for each user attribute used on the object.

CHECK “Column Name”, “Check Constraint Name” <crlf>

CLASS COMPOSITION “Local data element”, “Type Name”, Array Limit,
Flags <crlf>
The Type Name is an object in the repository of type
Class, Data Element, or Data Structure. Both Local
data element and Type Name can be up to 128
characters in length.
Three pieces of information are in the flags fields. One
item from each of the following categories is ORed
together:
Reference
 Address [0x80]
 Reference [0x100]
 Value [0x00]
Visibility
 Implementation [0x18]
 Private [0x10]
 Protected [0x08]
 Public [0x00]
Qualification
 Constant [0x400]
 None [0x000]
 Static [0x800]
 Volatile [0x200]

CLASS DATA Cardinality, “Cardinality Text”, Flags <crlf>
Cardinality can be one of the following values:
 One [0x01]
 One or many [0x02]
 Many [0x03]
 Zero or One [0x04]
 Zero or Many [0x05]
Cardinality text can be up to 20 characters in length.
Three pieces of information are stored in the flags
field. One item from each of the following categories
is ORed together (Persistent and Abstract are
optional):
Currency
 Active [0x06]

Visible Analyst Tools

361

Table 7-5
Repository Export VSC Format

 Guarded [0x20]
 Sequential [0x00]
 Persistent [0x4000]
 Abstract [0x8000]

COMPOSITION “Standard Analyst Text” >crlf>
This field can be used with objects that support com-
position; that is, data structures, entities, data stores.

DATA ONLY MODULE “Standard Analyst Text” <crlf>
This field is used with an information cluster entry,
and can be up to 128 characters in length.

DBFILES Database Type, “File Name”, Size, Reuse <crlf>
This field is used with a tablespace entry to specify
either the data files that comprise the tablespace or the
logical device name. Database Type is 1 for Oracle
and 2 for SQLServer.

DBPHYSINFO “Tablespace Name”, Database Type, Sequence, Index
Type, Additional Information <crlf>
This field is used with either an entity or a tablespace
entry to specify physical storage information. There
can be one DBPHYSINFO object for each entity,
unique key, and performance index defined.
Tablespace Name should be blank {“”} if the current
entry is a tablespace.
Database Type is 1 for Oracle, 2 for SQLServer, 3 for
Informix, 4 for DB2.
Sequence is 0 to define physical information for the
table, 100+ key number for unique keys, and 200+
index number for performance indexes. (Key number
for the primary key is zero.)
Index type can be one of the following values:
 Sorted [0x00]
 Hashed Ordered [0x10]
 Hashed Scattered [0x20]
Additional Information for Oracle:
No Sort, PCTFree, PCTUsed, INITrans, MAXTrans,
InitialExtent, NextExtend, PCTIncrease, MINExtents,
MAXExtents, FreeLists, FreeListGroups, Offline
Additional Information for SQLServer indexes:
SortedData, FillFactor, IgnoreDupKey, DupRow

Visible Analyst Tools

362

Table 7-5
Repository Export VSC Format

DESCRIPTION “Standard Analyst Text” <crlf>
This is a short description for the entry. Up to two
lines of information can be specified.

DIAGRAM LINES lsx, lsy, lex, ley, line)style, terminator_style, color,
start_symbol, end_symbol, next_segment,
associated_line, loop_height<crlf>

DIAGRAM SYMBOLS left, top, right, bottom, text_type, associated_object,
font_name, format_information, color, text<NL>

FRIEND “Friend Name” <crlf>
This field is used with classes to specify either classes
or functions that are friends of the current object. See
the description for Entry Key for the format.

FUNCTION DESCRIPTION
KEYS

“Standard Analyst Text” <crlf>
Key Type, Key Number, “Key Name”, Column Count
<crlf>
“Column Name”, Order <crlf>
Key Type is either 21 for unique keys or 22 for
performance indexes.
Key Number is either zero for the primary key or non-
zero for alternate keys and performance indexes.
Column Count indicates the number of columns in the
key.
Order indicates the sort order of the column and is
either zero for ascending or one for descending.

LINK “Standard Analyst Text” <crlf>
User-defined object link references. The actual Field
Type is “LINK:User Object”. There is one of these for
each user object referenced by the object.

LOCATION Diagram Type, “Diagram Name”, Upper Left X,
Upper Left Y, Lower Right X, Lower Right Y,
Associated Line Count <crlf>
“Associated Line Name | Parent Flow Name”, Start X,
Start Y, End X, End Y, Direction <crlf>
This field is a list of all diagram locations for the
object. Each diagram location consists of a header line
followed optionally by either a parent flow name
record for data flows or list of associated lines for
other objects.
Diagram Type can be one of the following values:
 Data Flow 1
 Structure Chart 2

Visible Analyst Tools

363

Table 7-5
Repository Export VSC Format

 Entity Relationship 3
 Unstructured 4
 Decomposition 5
 Class 6
 State Transition 7
 Entity Life History 8
 Use Case 9
 Sequence 10
 Collaboration 11
 Activity 12
Diagram Name can be up to 40 characters long. Each
diagram within a diagram type must have a unique
name. If the name is prefixed by hex 9B, the diagram
is a virtual diagram imported from Application
Browser.
Associated Line Count is the number of lines attached
to the object on the indicated diagram.
Associated Line Name is the name of the attached
line; it can be up to 128 characters long.
Direction can be one of the following values:
 Input 49
 Output 48
 or
 Couple Down 48
 Couple Up 49
 Couple Bidirectional 50

MODULE DESCRIPTION
MODULES CONTAINED

“Standard Analyst Text” <crlf>
“Standard Analyst Text”<crlf>
This field is used with an information cluster entry.
There can be up to seven modules each up to 128
characters long.

NOTES
PARAMETER

“Standard Analyst Text” <crlf>
“Name, “Type Name”, Array Limit, Flags
The Type Name is an object in the repository of type
Class, Data Element, or Data Structure. Both Name
and Type Name can be up to 128 characters long.
Two pieces of information are stored in the flags field.
One item from each of the following categories is
ORed together:
Pass By
 Address [0x80]

Visible Analyst Tools

364

Table 7-5
Repository Export VSC Format

 Reference [0x100]
 Value [0x00]
Qualification
 Constant [0x400]
 None [0x000]
 Volatile [0x200]

PHYSINFO Data Type, Length, Decimal, “Default Value”,
Picture”, “Owner”, Allow Null <crlf>
OR
Data Type, “Domain Name”, “Owner”, Allow Null
<crlf>
This field is used with data elements or classes with an
elemental subtype. The first version is used if the
entry does NOT reference a domain.
Default Value can be up to 20 characters long.
Picture can be up to 18 character long.
Owner can be up to 8 characters long.
Allow Null is either ASCII 89 (Y) or 78 (N).

PROCESS DESCRIPTION
PROCESS NUMBER
RELATED TO

“Standard Analyst Text” <crlf>
“Standard Analyst Text” <crlf>
“Standard Analyst Text” <crlf>
This field is used with structure chart items to create
an association with data flow diagram items. For
modules, there can be up to 10 processes listed; for
couples, there can be one data element listed; and for
data only modules, there can be one data store, data
structure, data element, or data flow listed. Each
related to item can be up to 128 characters long.

RELATIONSHIP Header
Controlling Key, Flags, From-To Cardinality, To-
From Cardinality, On Delete, On Update, “From-To
Cardinality Text”, “To-From Cardinality Text”,
“From Role Name”, “To Role Name”, “From
Qualifier Name”, “To Qualifier Name” <crlf>
OR
Controlling Key, Flags, From-To Cardinality, To-
From Cardinality, On Delete, On Update, “From-To
Cardinality Text”, “To-From Cardinality Text”,
“Discriminator Name” <crlf>
Group/Prefix
Group Number, “Prefix 1”, “Prefix 2”,…<crlf>

Visible Analyst Tools

365

Table 7-5
Repository Export VSC Format

Foreign keys “Foreign Key Column Name”, <crlf>
This field is used with a relationship line entry to
supply information used during SQL Generation. A
relationship field consists of one header, one
group/prefix line, and one line for each column of the
foreign key. The second form of the header is used
with supertype/subtype and inheritance relationships,
while the first form is used with all other relationship
types.
Controlling key is zero to indicate the primary key is
used in the owner entity, while any other number
indicates an alternate key number.
Four pieces of information are stored in the flags field.
One item from each of the following categories is
ORed together:
Relationship Type
 Normal [0x0]
 Inheritance [0x01]
 Aggregation [0x03]
Denormalization Option
 None [0x0]
 Collapse Child [0x80000]
 Duplicate Parent [0x10000]
 Duplicate Parent and Retain [0x180000]
Identifying [0x2000]
Use Suffix [0x200000]
Cardinality can be one of the following values:
 One [0x01]
 One or Many [0x02]
 Many [0x03]
 Zero or One [0x04]
 Zero or Many [0x05]
On Delete and On Update can be one of the following
values:
 Cascade [0x01]
 Restrict [0x00]
 Set Default [0x03]
 Set Null [0x02]
Cardinality text can be up to 20 characters long.
Discriminator, Roles and Qualifier names can be up to
128 characters long.

Visible Analyst Tools

366

Table 7-5
Repository Export VSC Format

Group Number is used with supertype/subtype
relationships to indicate how relationships are grouped
together. Relationships drawn with the same start
point on the supertype should have identical group
numbers.

TRIGGER “Trigger Name”, Operations, Fire time, Scope, # of
associated columns <crlf>
The values to use are:
Operation – Note that some dialects allow you to
specify more than one operation.
 Update [0x01]
 Insert [0x02]
 Delete [0x04]
Fire Time
 Before [0x00]
 After [0x08]
Scope
 Table [0x00]
 Row [0x10]
For TRIGGER field records, the above structure is
used. For each associated column there is one
associated column record, as follows:
“Column Name” <crlf>

VALUES AND MEANINGS “Standard Analyst Text” <crlf>

VIEW SELECT SQLDialect, SQLStatement<crlf>
SQLDialect is one of the supported dialect IDs.
SQLStatement is the RAW dialect-specific SQL
statement for the view, it is a standard analyst text
string that may take as many additional lines as
necessary. This field is SUBORDINATE to the
VIEW SPECIFICATION and should be used only if
the view specification is not available.

VIEW SPECIFICATION This field defines how a view is built from its base
entities. It has some basic flags and a list of Sub
Query Select (SQS) definitions that make up the view.
Each SQS has a header line with a number of entity
lines and join lines following it.
Leader line.
MSCFlags, SQSCount<crlf>
SQS header line.

Visible Analyst Tools

367

Table 7-5
Repository Export VSC Format

SQSName, Union, Distinct, Filter, GroupBy, Having,
StartWith, ConnectBy, EntityCount, JoinCount<crlf>
Entity line.
BaseEntity, JoinAlias, DP_ULX, DP_ULY, DP_LRX,
DP_LRY<crlf>
Join line.
FirstEntity, SecondEntity, JoinRelation, JoinType,
JoinExpression<crlf>
Filter, GroupBy, Having, StartWith, ConnectBy, and
JoinExpression are all pseudo SQL strings that use
Visible Analyst standard syntax and have embedded
column and SQS references. See the VIEWSPEC
repository definition for definition of the named
values. The strings are in expanded format.

Note
2 Bounding boxes for structure chart types refer to “virtual diagram” positions.

The virtual diagram is a temporary object created by import so that invocation
lines can exist in the repository without an associated diagram. Virtual locations
disappear when the associated objects are added to real diagrams. Virtual
locations are not visible when editing repository items.

Table 7-6 lists the record item definitions.

Table 7-6
Record Item Definitions

diagram_type A number representing the diagram type:
 1 = Data Flow
 2 = Structure Chart
 3 = Entity Relationship
 4 = Unstructured
 5 = Decomposition
 6 = Class

7 = State Transition
 8 =Entity Life History
 9 =Use Case
 10 =Sequence
 11 =Collaboration
 12 = Activity

Visible Analyst Tools

368

Table 7-6
Record Item Definitions

notation If the diagram type is data flow, the notation used to draw symbols:
 1 = Yourdon
 2 = Gane & Sarson
 4 = SSADM
 5 = MJtrica
If the diagram type is entity relationship, the notation used to draw
relationships:
 1 = Crowsfoot
 2 = Arrow
 3 = Bachman
Note: If IDEF1X notation is specified in view_level, this setting
indicates the alternate relationship notation.

view_level The level of detail to be displayed on an ERD:
 1 = Entity name only
 2 = Entity name and primary key
 3 = Entity name and all attributes
 8 = Use IDEF1X notation
 16 = Expand associator elements (IDEF1X only)
 32 = Display discriminators (IDEF1X only)
 64 = Display entity name outside box (IDEF1X only)
The level of detail to be displayed on a class diagram:
 1 = Class name only
 2 = Class name and attributes
 3 = Class name, attributes, and methods

view_details Display physical characteristics on an ERD:
 1 = Display physical name
 2 = Display data type
 4 = Display null option
 8 = Replace domain references with actual physical type
 16 = Use alias name instead of actual name
Level of detail to display on a class diagram:

1 = OMT Notation
5 = UML Notation

 8 = Display public attributes
 16 = Display private attributes
 32 = Display protected attributes
 48 = Display data type
 128 = Display initial value
 256 = Display public methods
 512 = Display private methods

Visible Analyst Tools

369

Table 7-6
Record Item Definitions

 1024 = Display protected methods
 2048 = Display argument list
 4096 = Display virtual method tag

lsx X-coordinate of starting point.
lsy Y-coordinate of starting point.
lex X-coordinate of ending point.
ley Y-coordinate of ending point.
line_style Style of the line:

 1 = single solid (default)
 2 = bold solid
 3 = extra bold
 4 = double
 5 = wide double
 6 = dotted
 7 = dashed
 8 = bold dashed
 9 = dashed arc
 10 = solid arc
 13 = generic couple
 15 = data couple
 16 = control couple
 17 = data connection
 18 = control connection
 19 = loop
 20 = dashed elbow
 21 = solid elbow
 22 = supertype
 23 = overlapping supertype
 24 = aggregation
 25 = supertype elbow
 26 = overlapping supertype elbow
 27 = aggregation elbow
 28 = object link
 29 = object lifeline
 30 = note link
 31 = object link elbow
 32 = note link elbow
Types 13 through 19 should only be used on a structure chart.

terminator_style Adornment that appears at the startpoint/endpoint of a line.
Dataflow, structure chart, decomposition, and state transition

Visible Analyst Tools

370

Table 7-6
Record Item Definitions

 1 = solid arrow at endpoint
 2 = open arrow at endpoint
 3 = solid arrow at startpoint and endpoint
 4 = open arrow at startpoint and endpoint
 5 = lexical inclusion at endpoint
 6 = decision diamond at endpoint
 7 = lexical inclusion and decision diamond at endpoint
 11 = single stick arrow
 12 = single half-stick arrow
For entity relationship and class diagrams, one number from each
column must be added together.

 Parent Cardinality Child Cardinality
 0 = undefined 0 = undefined
 256 = one 1 = one
 512 = one or many 2 = one or many
 768 = many 3 = many
 1024 = zero or one 4 = zero or one
 1280 = zero or many 5 = zero or many

color Pen color used to draw line, stored as a Red-Green-Blue (RGB) value
where each component can have a value from 0 to 255.
(((BYTE)(R) | ((WORD)(G)<<8)) | (((DWORD)(BYTE)(B))<<16)))

start_symbol Number of symbol to which the starting point of the line is connected.
If zero, the starting point is not connected to a symbol.

end_symbol Number of symbol to which the ending point of the line is connected.
If zero, the ending point is not connected to a symbol.

next_segment If this field is non-zero, this indicates the line number of the next
segment in a multi-segment line. Segments should be listed
sequentially. The line_style and terminator_style for all segments
should be the same. If the line is connected to symbols, only the
start_symbol field in the first segment and the end_symbol field in the
last segment need to be set.

associated_line On a structure chart, if the line_style is 13, 15, or 16, this field
indicates the line number to which the couple is associated. If this
value is less than zero, it indicates a return couple, otherwise it is a
passed couple.

loop_height On a structure chart, if the line_style is 19 (loop), this field indicates
the height of the loop.

left X-coordinate of upper left corner of box that completely contains the
object.

Visible Analyst Tools

371

Table 7-6
Record Item Definitions

top Y-coordinate of upper left corner of box that completely contains the
object.

right X-coordinate of lower right corner of box that completely contains the
object.

bottom Y-coordinate of lower right corner of box that completely contains the
object.

symbol_type Object type as stored in the repository:
Data Flow Diagram
 1 = Process
 2 = File or Data Store
 3 = Source/Sink or External Entity
Functional Decomposition Diagram
 14 = Function
Structure Chart
 15 = Module
 16 = Library Module
 17 = Macro
 18 = Library Macro
 19 = Data-Only Module
 20 = Information Cluster
 21 = On-page Connector
 22 = Off-page Connector
Entity Relationship Diagram
 34 = Entity
 35 = Associative Entity
 36 = Attributive Entity
 50 = View Object
Class Diagram
 45 = Class
State Transition / Activity Diagram
 46 = State
Entity Life History Diagram
 47 = Event
Use Case Diagram
 52 = Actor
 53 = Use Case
 54 = System Boundary
Sequence/Collaboration Diagram
 55 = Object
 56 = Message

Visible Analyst Tools

372

Table 7-6
Record Item Definitions

foreground_color Pen color used to draw symbol, stored as a Red-Green-Blue (RGB)
value where each component can have a value from 0 to 255.
(((BYTE)(R) | ((WORD)(G)<<8)) | (((DWORD)(BYTE)(B))<<16)))

background_color Brush color used to paint symbol background. Stored the same as
foreground color.

associated_diagram Name of the diagram that is associated with this symbol. This entry is
used to create linkages between levels on a dataflow diagram,
connected pages on a structure chart or class to state transition
relationships. If no linkage exists, this field should be NULL ("").

drawing_instruction Internal drawing instruction for non-methodology symbols. For all
others this should be NULL ("").

symbol_name The name of the symbol. or NULL (“”). If this field is set, there
should not be a name for the object in the DIAGRAM TEXT section.

process_number The process number for the symbol. or NULL (“”). If this field is set,
there should not be a process number entry for the object in the
DIAGRAM TEXT section. This field is only valid for process
numbers.

text_type A number indicating the type of text:
 -1 = process/data store number
 1 = symbol label
 2 = line label (primary)
 3 = line label (secondary - used only for relationships)
 4 = information cluster – module
 5 = information cluster - data module
 6 = caption

associated_object Number of symbol or line to which this text entry is associated.
font_name Name of font used to draw label.
format_information Formatting options for text:

 S# = point size, where # is replaced by a number
 B = bold
 I = italic
 U = underline
 C = text is centered in bounding box

text This field contains the entry label. Embedded carriage returns are
replaced by ASCII 31.

ConstraintType One of
VRCNST_CHECK 0
VRCNST_DEFAULT 1
VRCNST_NULL 2

Visible Analyst Tools

373

Table 7-6
Record Item Definitions

MemberName Name of a class member object.
ElementName Entry key for an elemental type.
ArrayLimit old. size of an array defined in the text composition field.

If DataType is VRT_ARRAY then this is the same as ArrayLength.
Flags VR_END_GROUP 0x00010000

VR_IN_GROUP 0x00020000
VR_AND_GROUP 0x00040000
VR_EASY_NOT_NULL 0x10000000
VR_EASY_UNIQUE 0x20000000

UseValues Bit field that defines whether the values in the record are definitions or
copied from the base type.
VRPHI_USE_NullType 0x0001
VRPHI_USE_Picture 0x0002
VRPHI_USE_Owner 0x0004
VRPHI_USE_Default 0x0008
VRPHI_USE_IdentitySpec 0x0010

DataType Analyst VRT data type.
VRT_UNDEFINED 0

VRT_BIT 1
VRT_VARBIT 2
VRT_CHAR 3
VRT_NATIONAL_CHAR 4
VRT_VARCHAR 5
VRT_NATIONAL_VARCHAR 6
VRT_LONG_VARCHAR 7
VRT_BINARY 8
VRT_VARBINARY 9
VRT_LONG_VARBINARY 10
VRT_UNICODE_CHAR 11
VRT_UNICODE_VARCHAR 12
VRT_UNICODE_LONG_VARCHAR 13
VRT_LARGEINT 14
VRT_INTEGER 15
VRT_SMALLINT 16
VRT_TINYINT 17
VRT_MONEY 18
VRT_SMALLMONEY 19
VRT_DECIMAL 20
VRT_ZONEDDECIMAL 21

Visible Analyst Tools

374

Table 7-6
Record Item Definitions

VRT_FLOAT 22
VRT_SMALLFLOAT 23
VRT_DATE 24
VRT_TIME 25
VRT_DATETIME 26
VRT_SMALLDATETIME 27
VRT_INTERVAL 28
VRT_SERIAL 29
VRT_UPDATESTAMP 30
VRT_ROWID 31
VRT_SYSNAME 32
VRT_USER_TYPE_1 33
VRT_USER_TYPE_2 34
VRT_USER_TYPE_3 35
VRT_USER_TYPE_4 36
VRT_USER_TYPE_5 37

VRT_ARRAY 253
VRT_LIST 254
VRT_DOMAIN 255

Length Length of the object, type specific in meaning. For bit and floating
point types it is a number of bits, for decimal types it is the number of
significant digits, for date types it is a special packed value, for all
other types it is a number of characters.

Decimal The number of decimal places to the right of the decimal point. For
floating point types it is the scale.

DefaultValue Constant expression in pseudo SQL that defines the a default for this
type.

Picture COBOL picture clause.
Owner User field.
AllowNull NULL Y

NOT_NULL N
NOT_NULL_WITH_DEFAULT D
IDENTITY I

IdentitySpec Seed, Increment
DefaultName Constraint name for the default clause
NullName Constraint name for the Null clause
BaseTypeName Entry Key for the base elemental object that is a basis for this type.
ArrayLength Size of the array for VRT_ARRAY

0 Dynamic, >0 Actual fixed size.

Visible Analyst Tools

375

An example of an exported ASCII file is shown in Table 7-7.

Table 7-7
Repository Export VSC Example

Project = BT6, Filename = “BT6.AD”
(‡ is substituted for the hex 01 character)

“BT6”,1995 10 27,”10:17:11”,1,3
PowerBuilder Extensions”,4,0,0
annotation”,0,“0”,0,“”,1,“45”,”annotation Description”
requirement”,0,“0",0,“",1,“0",“requirement Description”
“Display Format”,2,“304",1,“",0,“0",“Format:"
ENTRY “264",”40",“Entity1‡Entity2‡may have‡Is an extension of"
FIELD “RELATIONSHIP”, 2
0,8192,2,1,0,0,“",“",“",“",“",“"
0
END ENTRY
ENTRY “A Parent Flow”,“4",“"
FIELD “COMPOSITION”,, 2
“SubFlow1 +”
“SubFlow2"
FIELD “LOCATION”,, 1
1,“TopLevelDiagram",398,594,1016,861,0
END ENTRY
ENTRY “A process for top flow”,"1",""
FIELD “PROCESS NUMBER”, 1
“1.1"
FIELD “LOCATION”, 3
1,"Top Flow",700,250,1084,696,2
SubFlow1",85,273,716,336,49
SubFlow2",85,614,716,550,49
END ENTRY
ENTRY “ColumnID”,"458797",""
FIELD “PHYSINFO”,, 1
22,60,0,"","","",32END ENTRY
ENTRY “ColumnName”,"458797",""
FIELD “PHYSINFO”, 1
1,0,0,"","","",32
END ENTRY
ENTRY “Entity1",”34",""
FIELD “COMPOSITION”, 2“

Visible Analyst Tools

376

Table 7-7
Repository Export VSC Example

Project = BT6, Filename = “BT6.AD”
(‡ is substituted for the hex 01 character)

“[PK] ColumnID”“
“[PI1] ColumnName”
FIELD “KEYS”, 4
21,0,"",0,1
“ColumnID”,0
22,1,"",0,1
“ColumnName”,0
FIELD “LOCATION”, 2
3,"An ERD Diagram",350,250,932,538,1
“264",913,420,1461,813,48
END ENTRY
ENTRY “Entity2",”36",""
FIELD “CLASS COMPOSITION”, 2
“”,"ColumnID",0,0
“SupplementalID”,"ColumnID",0,0
FIELD “KEYS”, 3
21,0,"",0,2
“ColumnID”,0
“SupplementalID”,0
FIELD “LOCATION”, 2
3,"An ERD Diagram",1200,800,1782,1088,1
“264",913,420,1461,813,49
END ENTRY
ENTRY “Is an extension of”,"37","Entity1‡Entity2‡may have‡Is an extension of”
FIELD “LOCATION”, 1
3,"An ERD Diagram",913,420,1461,813,0
END ENTRY
ENTRY “SubFlow1",”4",""
FIELD “LOCATION”, 2
1,"Top Flow",85,273,716,336,1
“A Parent Flow”
END ENTRY
ENTRY “SubFlow2",”4",""
FIELD “LOCATION”, 2
1,"Top Flow",85,614,716,550,1
“A Parent Flow”
END ENTRY
ENTRY “Entity2::SupplementalID”,"43",""

Visible Analyst Tools

377

Table 7-7
Repository Export VSC Example

Project = BT6, Filename = “BT6.AD”
(‡ is substituted for the hex 01 character)

END ENTRY
ENTRY “Top Flow”,"1",""
FIELD “PROCESS NUMBER”, 1
“1"
FIELD “LOCATION”, 2
1,"TopLevelDiagram",1000,650,1384,1096,1
“A Parent Flow”,398,594,1016,861,49
END ENTRY
ENTRY “sample erd”, “41”, 3‡1‡1‡0”, “1997-05-20‡1997-05-20”
Field “DIAGRAM SYMBOLS”, 2
175,212,757,500,34,0,11141119, “”,””
1334,931, 1916,1219,34,0,11141119,””,””
Field “DIAGRAM LINES”, 1
739,350,1639,944,21,261,0,1,2,0,0,0
FIELD “DIAGRAM TEXT”, 5
365,324,567,387,1,1,”Times New Roman”, “CS12”,0,”customer”
1541,1043,1709,1106,1,2,”Times New Roman”,”CS12”,0,”invoice”
1086,275,1291,329,2,1”Arial”,”S10”,0,”generates”
1028,371,1349,425,3,1,”Arial”,”S10”,0,”is generated by”
1283,48,2407,133,6,0,”Times New Romas”,”BIS16”,255,”Sample Entity Relationship
Diagram”
END ENTRY
ENTRY “sample dfd”, “41”, “1‡2”,””
FIELD “DIAGRAM SYMBOLS”, 1
1011,315,1395,761,1,,0,11141119,”process one dfd”,””
FIELD “DIAGRAM LINES”,4
461,495,646,742,1,1,0,0,0,2,,0,0
646,742,1027,632,1,1,0,0,2,0,0,0
1377,586,1869,714,1,1,0,1,0,3,0,0
1903,3157,2895,3735,1,1,0,0,0,0,0,0
FIELD “DIAGRAM TEXT”, 4
1191,336,1214,382,-1,1,”Courier New”,”C8”,0,”1”
1161,551,1290,614,1,1,”Times New Roman”,”CS12”,0,”process”
697,572,927,635,2,1,”Times New Roman”,”S12”,0,”input flow”
1517,534,1773,597,2,2,”Times New Roman”,”S12”,0,”output flow”
END ENTRY

Visible Analyst Tools

378

IMPORTING DATA INTO THE REPOSITORY
There are several types of imports that can be done to get external data into the Visible
Analyst repository.
• Generic format that imports from ASCII files in the proprietary VSC format.
• KnowledgeWare (IEW/ADW) format.
• Excelerator “Excel” format.
• SQL format.
• AS/400 DDS (Data Description Specification) format.
• Application Browser format.
• Powersoft PowerBuilder format.
• RDBMS Catalog format.
• Uniface format.
• Unify VISION format.
• GDPro format.
• ERwin format.
• XMI format for CompuWare OptimalJ.

All are described below.

Note
2 The Import tool makes significant modifications to your project repository. For

this reason it is good practice to backup the project to which you are importing
prior to the import. In this way you can easily recover from any unintentional
project changes.

General Import Information
After you have prepared the data file contents you want to import into Visible Analyst, there
are three stages to the import: preparation, verification, and the actual import.

Preparation
You must first decide on the format of the imported data. You can choose from the formats
listed above. If you select RDBMS Catalog, you must select an SQL dialect. If you select
SQL format, you must also select the SQL dialect and type a schema name. (See Figure 7-3.)
For both RDBMS Catalog and SQL format, you have the option to infer foreign keys.

Visible Analyst Tools

379

 Figure 7-3 Import Dialog Box

Next, you must decide upon the import options, how Visible Analyst should handle imported
data vis-a-vis the information already residing in the project repository. You have three
choices:

• Overwrite All tells Visible Analyst to add everything in the import file to Visible Analyst

regardless of whatever is already there. Visible Analyst overwrites existing data or
creates new records and fields as necessary.

• Overwrite None indicates that nothing already in your repository is to be touched. Import
file information that would cause such an overwrite is ignored.

• Type List gives you a detailed means to customize the import, as described below.

Import Customization
Customization allows you to make flexible choices on what repository types and what fields
within those types are imported. Furthermore, you can specify how import data/existing data
collisions are handled. (See Figure 7-4.)

Visible Analyst Tools

380

 Figure 7-4 Repository Import Customization Settings

For each repository type (data element, control couple, etc.), you can choose whether items of
that type within the import file are to be imported by checking the Include in Import box for
that type. Note that you can set import characteristics for subtypes of the compound types
individually, regardless of the settings you make for the compound type. For example, you
can choose to import All Standard DFD types, but choose not to import Aliases and
Miscellaneous items.

For each of the above types you chose to import, you can check both the repository fields you
wish to import and whether or not you want existing data in those fields to be overwritten.

You have additional flexibility with the Merge option. The basic idea of merging is that if a
field exists in the import file and the corresponding field already in the repository is empty,
the file data is imported regardless of overwrite settings for the remaining fields of that
repository item. For a given repository type that is set to be imported and that contains three
fields, X, Y and Z, Table 6-7 explains how the Merge option affects the import of data fields
for this item. What can be seen is that if Merge is on (the default setting), Visible Analyst
brings in all data fields for an item except for those fields that contain data and for which
overwriting is prohibited. If Merge is turned off, if any field for a repository item is non-
importable because of an overwrite restriction, no fields for that item are imported. You

Visible Analyst Tools

381

should turn Merge off for a repository type only if this all-or-nothing approach suits your
needs.

When you have completed your customization settings, you can review them by selecting the
repository types in the dialog box list and noting the options set for each. (The easiest way to
do this is with the up and down arrow keys.) If you have set some import characteristics for a
compound type, say All Entity Types, and different ones for a subtype of that compound type,
say Attributive Entities, when you display the characteristics for the compound type you are
informed that those for the subtype are different.

Note
2 Customized import characteristics are saved and are applied to future imports

for which you pick Type List as the Import Option. You can modify these at the
time of future imports and the changed characteristics are saved. You can,
however, reset them all (turn all customizations off) if you wish. In the Types to
Import dialog box (see Figure 7-4), select All for the import type and toggle the
Include in Import box on and then off. All options are then reset, and you can
save this status by clicking the OK button.

Verification
Clicking OK at the Import dialog box runs the verification function to allow you to check that
the import will be carried out as you expect. There are two reports that result from verification
that you can view on the screen, print, or save to a file. You should review these carefully.
Both are described below.

Import File Error List
The Import File Error List (see Figure 7-5) shows, for all repository types, what is done to
them on import. In other words, it summarizes the import characteristics you specified. At the
top are the compound types and below them are the individual types that either are not part of
any compound type or that vary from the compound type to which they belong. At the bottom
of the report are descriptions of errors in the import file, if any. The existence of errors means
that the actual import cannot proceed until you correct them and rerun the import verification
procedure.

Visible Analyst Tools

382

 Figure 7-5 Import File Error List

Import File Overlap List
At the top of the Import File Overlap List (see Figure 7-6) is the same summary of import
characteristics as above. Below is a report that shows, for every entry in the import file for
which there is an overlap with data already in the repository, how the Import function applies
the import characteristics you specified in the customization dialog box.

 Figure 7-6 Import File Overlap List

Visible Analyst Tools

383

Importing the Data
After the verification step has run error-free, you can run the actual import. When it is
complete, you see the Import Action List (see Figure 7-7). This again shows a summary of
your import characteristics. Below that, it displays a list of every item in the import file and
how it was handled by the Import tool. If you notice that a major error in the way data was
imported, you can delete the project and restore the backup you made before beginning the
import procedure.

 Figure 7-7 Import Action List

The Import Procedure
To use the import tool:

Select Import: 1 Select the Import tool from the Tools menu.

Visible Analyst displays the import dialog box. See
Figure 7-3.

Select the Format of 2 Select the format of the import file (what application
the Import File You it comes from (SQL, IEW, etc.)) from the list box. Then
Want to Import: choose or enter the name of file you wish to import.

Visible Analyst Tools

384

Choose your Import 3 Decide which import options you want—Overwrite All,
Options: Overwrite None, or Type List—to customize your

import. If you choose the Type List option, the Modify
Type List button is enabled.

Customize the Import: 4 If you want to customize your import, click the Modify

Type List. Click OK after making your choices to save
the current selections. Click Cancel to revert to the
previously saved import customizations, if any.

Verify the Import: 5 Follow the import process. See Figures 7-5 and

7-6.

Run the Import: 6 Execute the import. When it is complete, check the

results shown on the Import Action List, as shown in
Figure 7-7. The import is now complete.

Import Formats

VSC Format Imports
The Import selection on the Tools menu allows you to load information into a project data
repository from an ASCII file. The ASCII file format required is the same as that generated by
the VSC format of the repository export. This means that you may use the VSC format to
export from one project and import into another project. You may also create an ASCII file in
this format from another application or database and import it into a Visible Analyst project.

Import from Excelerator™
Project data should be exported from Excelerator using its “E” format, the default. Files in
that format consist of a header record and data records. One E-file is created for each project.
One data record in an E-file contains one entry from the Excelerator repository. The import
from Excelerator to Visible Analyst works one project or E-file at a time.

There are several issues involved in importing Excelerator repository items into Visible
Analyst:
• Excelerator allows names no longer than 32 characters, but the uniqueness rules are less

strict than those of Visible Analyst. In Excelerator, an object name must be unique only
within its entry type (for example, a data element and a process may share the same
name). An import naming convention has been developed to resolve possible problems;
Visible Analyst appends names with the entry type name when several entries use the
same name.

Visible Analyst Tools

385

• Excelerator may have more than 70 different entry types, depending on its configuration,
and that number may grow in new versions of Excelerator. All Excelerator entry types
can be divided into three categories:

1 Entry types that have direct correspondence with Visible Analyst entry types are

converted to the Visible Analyst type. Still, some of the attributes of such entries do
not have corresponding attributes in Visible Analyst. These attributes may be lost or
be moved to the Notes field during the transfer.

Almost all of the Visible Analyst objects are among the Excelerator entry types.
Missing are couples, interface table rows, information clusters, different module
types, different entity types and domains.

2 Entry types that don’t have analogs in Visible Analyst are ignored.

3 Diagrams are entries in the Excelerator repository. Because of the great differences
between the way these two products draw diagrams, there would be so many
problems with the conversion of Excelerator diagrams into Visible Analyst diagrams
that Excelerator diagrams are ignored during import in the current release.

• Excelerator allows both an input picture and an output picture for a data element. Visible

Analyst uses whichever of these is present. If both exist, the output picture is used.

The list of the Excelerator entry types that can be imported into Visible Analyst is below.
Only entry types from the basic Excelerator product (XL/IS) are included in the list. Those
from others (XL/DB2, XL/CSP) would be ignored in any case.

Table 7-8
Entry Types Imported from Excelerator

Excelerator ID Excelerator Type Name Visible Analyst Entry Type
DAE
DAR
DAF
DAS
ELE
EXT
FUN
PPS
PRC
REC
DNR

Data Entity
Data Relationship
Data Flow
Data Store
Data Element
External Entity
Function
Primitive Process Spec
Process
Record
Data N-ary Relationship

Entity
Relationship
Data Flow
Data Store
Data Element
Exernal Entity
Module
Process Description
Process
Data Structure
Associative Entity + Relationships

Visible Analyst Tools

386

KnowledgeWare IEW/ADW Import and Export
Project data from IEW (Information Engineering Workbench) can be exported to and
imported from a set of four formatted text files. Those files are relational database files
converted into an ASCII format. The file names are fixed by IEW. The following is a
simplified description of these files:

OI.EXP The object file. It contains entry names, types and internal
 IDs.

AI.EXP The association file. It contains composition/location information and
 relationships.

PI.EXP The property file. It contains non-text (short) object properties.

TI.EXP The text file. It contains text (long) object properties: description and notes.

The import/export works on a project basis; a Visible Analyst project corresponds to a set of
four formatted text files created by/exported to IEW.

 Figure 7-8 Repository Export Log to IEW Format

Notes on Import
In IEW, a project is designated by the name of the directory in which it is stored. It is
probable that the files exported from IEW are stored in the project directory.

Visible Analyst Tools

387

• Some IEW attributes get translated to Visible Analyst data elements and some to data
structures. If an attribute is a concatenation in IEW, then it is imported as a data structure.
Only top-level attributes and concatenations go directly to the composition field of an
entity. Attributes that are members of a concatenation are placed in the composition field
of the proper data structure. Relationships that are members of concatenations are not
placed in the composition field of the data structure; they are imported as relationships.

• Local data types are not imported as Visible Analyst repository entries. They only supply
the physical characteristics for the associated attributes (data elements).

• Visible Analyst does not allow entities and relationships in the composition of a data
flow. Only data flows and attributes from an IEW flow expression can go to the data flow
composition field.

• Visible Analyst does not support exact values for a relationship’s cardinality. All values
greater than one are interpreted as “many.”

• Text fields (IEW definition and comments) get reformatted to fit 60-character lines. For
Visible Analyst entries with the composition field (entities, data structures, data flows,
etc.), the IEW definition is imported as the Visible Analyst description and is limited to
two lines.

Notes on Export
• An export from Visible Analyst in IEW format causes four files to be created in your

transient file path.
• In IEW an attribute (data element) cannot exist without being, at some level, in the

composition of an entity. Thus, free-standing data elements and data structures do not get
exported to IEW. All of the data elements and data structures from the full decomposition
of an entity (excluding associator/elements) are exported as attributes of that entity, and
data structures generate concatenations.

• In IEW an attribute can only describe one entity. Thus, each Visible Analyst data element
or data structure generates as many IEW objects as the number of entities where it is used
in the composition field.

• The physical information of data elements generate IEW local data type objects.
• Data flow decomposition is limited to data flows and data elements or data structures that

are used in the composition field of an entity.
• For Visible Analyst entries that have three text fields (description, notes and a third one –

values & meanings, process description, etc.), the description field and the third field are
concatenated into an IEW definition.

• For relationships, text fields for both relationship directions are merged to form one IEW
text field.

• IEW requires relationships to be named in both directions. The export procedure
generates the relationship name “reverse of …” for the reverse direction of a Visible
Analyst uni-directional relationship.

• IEW requires that a creator user name be attached to each object. On export to IEW, this
will be set to VAW for each object exported.

Visible Analyst Tools

388

General Notes
There are several other issues involved in moving data between the IEW repository and
Visible Analyst:
• Creation and modification dates are transported.
• IEW only allows names no longer than 32 characters, but the uniqueness rules are less

strict than those of Visible Analyst. Further, IEW has different rules for the characters
allowed in an object name. The import and export routines have naming conventions to
resolve possible problems.

• IEW objects that have direct correspondence with Visible Analyst entry types are
converted to the Visible Analyst type. Still, some of the attributes of such entries do not
have corresponding attributes in Visible Analyst. These attributes may be lost or be
moved to the Notes field during the transfer. Entry types that don’t have analogs in
Visible Analyst are ignored.

The list of the IEW objects that can be imported into Visible Analyst is shown in Table 7-9.

Table 7-9
IEW Objects for Import/Export

IEW Object IEW
Type
Code

IEW Workstation Visible Analyst Entry Type

Attribute Type
Entity Type

Relationship Type
Function
Process
Data Flow
Data Store
External Agent
Global Data Type
Local Data Type

10003
10007

20044
10058
10000
10008
10012
10002
10016
10048

Planning, Analysis
Planning, Analysis

Planning, Analysis
Planning
Planning, Analysis
Analysis
Analysis
Analysis
Analysis
Analysis

Data Element or Data Structure
Entity (fundamental, associative,
attributive)
Relationship
Function
Process
Data Flow
Data Store
External Entity
Domain
Data Element Physical Inf.

Import from SQL
The SQL import utility allows you to create a Visible Analyst data model from SQL DDL
statements. Like other utilities, you can execute it by selecting Import from the Tools menu.
The program reads the SQL file, searches for supported DDL statements, and generates
Visible Analyst entities, data elements, and corresponding relationships.

Visible Analyst Tools

389

The SQL Source File
An SQL file for import is a free-format ASCII file with the following characteristics:
• Tokens (that is, SQL keywords) are separated by spaces, tabs, and new-line characters.
• Single line comments are introduced with two dashes (—) or an exclamation mark (!).
• Multi line comments are introduced with /* and terminated by */ and you cannot have

nested comments.

Only DDL statements get Visible Analyst’s attention; all others are ignored. Each create table
statement generates an entity. Each column in the table generates data elements in the
composition field of the entity, with physical information. The create table statements can
conform to Ansi-92 standards and are dialect dependent.

There are three types of entities: fundamental, associative and attributive. Visible Analyst
determines the entity type based upon the foreign key references. If no foreign key constraints
are defined in the create or alter table statements, they can be inferred by enabling the Infer
Foreign Keys option.

Alter Table Statements
If a foreign key is referenced outside the scope of the current create table statement, most
dialects create an Alter Table Statement at the end of the schema. Visible Analyst reads these
alter table statements and generates the appropriate entities if they don’t exist and populates
the entity with the primary and foreign keys, check constraints, and unique key indexes if this
information is provided.

Check Constraints
Visible Analyst supports table and column check constraints as well as primary and foreign
key constraints on columns.

Tables/columns are allowed multiple constraints. If no name exists, the constraint is defined
using the table/column name. If there are duplicate constraint names, each instance is
suffixed with an indexed number.

Primary and Foreign Key Clauses
A primary key clause generates a [PK] prefix before the names of the data elements that are
components of the primary key in the entity’s composition field.

A foreign key clause generates a relationship bearing the name of the foreign key. In the case
of an unnamed foreign key, the relationship is named Related to. The entity in which the
foreign key clause is found is the destination entity for the relationship; the entity referenced
by the foreign key is the source entity. The relationship’s cardinality on the source entity end
is set to 1:1 and that on the destination entity end is set to 0:many. If the entity in which the
foreign key is found is an attributive entity (fully dependent on the parent entity), then the

Visible Analyst Tools

390

relationship’s cardinality on the source remains 1:1 but that on the destination entity end is set
to 0:1.

If the Infer Foreign Keys option is selected, Visible Analyst infers foreign key relationships
based upon the following criteria:
• Any columns participating in foreign key constraints defined by the schema are ignored

during the inferencing process.
• Any column that is part of a primary or unique key is included in the foreign key

candidate pool.
• When a column matches an item in the candidate pool in both name and data type

(including length and precision), it is marked as a foreign key column.
• A relationship is created between the entity containing the inferred foreign key and an

entity that contains the largest number of column matches. if there are multiple entities
that have the same number of column matches, a set of supertype relationships is created
between a pseudo parent entity named SupertypeNetworkParent_x and each of the
matching entities.

Data Element Naming Convention
The Import tool maintains the uniqueness of the generated data element names. If two or more
columns under different tables have the same name but have differing data types, the column
names are suffixed with a index numbering scheme. If the Import tool generates an element
and the data type is not supported by Visible Analyst, the element is defined as a domain and
the type is undefined.

create table table_name [ignored text]
(
 column_name storage_type [(length [, dec])]
 [[not] null]
 [[with default | default default_value]]
 [ignored text] ,

 [Primary key [primary_key_name] (column_name , …) ,]
 [Foreign key [foreign_key_name] (column_name , …)
 references table_name
 [ignored text],

 Figure 7-9 Import Format, SQL Create Table Statement

Visible Analyst Tools

391

Domains
The import tool supports an object type called domain if importing Rdb or SQLServer
dialects.

Unique Indexes
Create unique indexes generates alternate keys in an entity as long as there is a primary key
defined or the index is part of a concatenated primary key for the entity. If no primary key
exists for the entity, the unique index is referenced as a primary key.

Performance Indexes
Create indexes (that is, non-unique indexes) generate performance indexes in an entity.

Comments on Tables and Columns
Any comments associated with a particular column or table appear in the repository
description field of the object There is an upper limit of 160 characters per comment.

Stored Procedures
If your dialect supports stored procedures, Visible Analyst creates a module with a subtype
stored procedure when a stored procedure is encountered upon import. The text associated
with every stored procedure in the DDL is stored in the module description field in Visible
Analyst. If using Informix, you must have an “end procedure” statement following the stored
procedure. If using SQLServer, you must include a newline Go newline after each stored
procedure. For Rdb, you must have an “end module;” and for Oracle Server, a balanced
begin/end block is required. Currently Rdb is the only dialect to support a module. When a
module is encountered upon import, a corresponding stored procedure is created in the Visible
Analyst repository; and the text associated with the module is stored in the module description
field.

Triggers
Rdb, Oracle Server, SQLServer, Informix, and DB2 dialects support triggers. For SQLServer,
the trigger must be followed by a newline Go newline statement or an EOF. Each trigger is
associated with a table. It is always fired after; and Visible Analyst supports insert, delete or
update commands. For Oracle Server, each trigger is associated with a table. It can be fired
before or after; and Visible Analyst supports insert, delete, update with a column list and a
firing scope for either the row or table. For Rdb, the support is the same as Oracle Server
except the firing scope is specified as part of the trigger body.

Tablespace
Create Tablespace statements generates a tablespace object in the repository. If an entity or
index references a tablespace, the link is maintained. For SQLServer, the sp_addsegment()
and sp_extendsegment() stored procedures also generate a tablespace object. You must have
DBA privileges to extract physical properties.

Visible Analyst Tools

392

Views
Create View statements generate view objects in the repository. The composition field is
populated with the list of columns used by the view, and the Select statement is converted to a
database-neutral format. This allows views to be regenerated for any target database.

Identity Clause Support
SQLServer version 6.x, 7.x, 2000, and System 10/11 are the only dialects to support identity
clauses. If a numeric data type is encountered and the identity clause follows this data type in
the SQL DDL, upon import Visible Analyst creates this column with an Allow Null value of
Identity.

RDBMS Catalog Import
Data model information can be transferred between any of the supported RDBMSs and
Visible Analyst in a seamless fashion. This function populates a Visible Analyst project
database with the data model information as defined in the RDBMS. The supported RDBMSs
are Centura SQLBase, SQLServer, Oracle Server, DB2, and Informix, as well as any ODBC
compliant database. Please refer to the individual RDBMS for installation guidelines.

The information captured includes all entity and attribute definitions, any key information, as
well as views, triggers, constraints and stored procedures, if your RDBMS supports them.
Refer to Import from SQL described above for more information.

You may need DBA privileges to extract physical properties.

To import RDBMS database definitions into Visible Analyst:
• Select Import from the Tools menu, choose RDBMS Catalog and click OK.
• The Extract Database Location Information dialog box is displayed. This dialog box

queries you for your RDBMS-specific connection information such as connection string,
database name, schema name and user name. Refer to Connecting to an RDBMS Engine
in Getting Started for more information on the dialog box.

• Visible Analyst reads the RDBMS database definitions, converts them to SQL DDL, and
displays an import action list (see Figure 7-7), showing a summary of the objects to be
imported. If this import action list is correct, simply click the Import button at the bottom
of the screen; and the repository is populated with your data model information. You can
then have Visible Analyst automatically generate an ERD from the data model
information that was imported.

DDS Import
An IBM AS/400 DDS (Data Description Specification) import allows the creation of a data
model from DDS statements, and is similar to an SQL import. A DDS source file is an ASCII
file with 80-character, fixed length, column position formatted lines. The format is shown in
Table 7-10.

Visible Analyst Tools

393

Table 7-10
DDS Source File Format

Field # Columns Meaning
1 1-5 Line number.
2 6 Always “A”.
3 7 ‘*’ indicates the line is a comment.
4 17 ‘R’ = record, ‘K’ = key, ‘ ‘ = element.
5 19-28 Record/element name (10 characters).
6 30-34 Length (elements only).
7 35 Storage type (elements only):

 ‘P’ = packed dec.,, ‘S’ = zoned dec.,,
 ‘B’ = binary,, ‘F’ = float,
 ‘A’ = character,, ‘H’ = hexadecimal,
 ‘L’ = date,, ‘T’ = time>,
 ‘Z’ = timestamp.

8 36-37 Decimal places.
9 45-80 Attributes:

ALWNULL = allow null
DFT(value) = default
TEXT(‘text’) = comment
VARLEN = variable length (character).
FLTPCN(*DOUBLE) = double precision.

If the attributes for one element do not fit in columns 45-80, they can be continued on the
following line(s) in columns 45-80. Key specifications follow the element specifications.
Below is a DDS example:

00010A R PERSON TEXT(‘Entity Person’)
00020A* Elements
00030A PERSON_ID 10 A TEXT(‘Person ID’)
00040A NAME 40 A TEXT(‘Name’)
00050A INFO 400 A TEXT(‘Info’) ALWNULL
00060A VARLEN
00070A WEIGHT 6 P2 DFT(200.00)
00080A HEIGHT 4 P1 DFT(6.0)
00090A* Key Components
00100A K PERSON_ID

Visible Analyst Tools

394

Import Data from Application Browser
Data from Application Browser can be imported into Visible Analyst. COBOL code can be
put into the Application Browser Code Base and viewed in its diagrams. This import
procedure enters this COBOL information into the repository of a Visible Analyst project
created in Visible Analyst, using the Import tool from the Tools menu.

Conversion Information
COBOL Data Division items are converted into data structures and data elements. The overall
structure of the code creates structure chart items in the Visible Analyst project repository.
When you print reports on such a project, structure chart items have diagram location
references. These references appear as “|virtual”. This is because the import procedure creates
a virtual diagram in Visible Analyst while creating structure chart items from Code Base
information. You can generate structure charts from this repository information.

In addition to the procedure modules, files, data structures, and data elements created, one
data only module is created for each COBOL module (source file). It contains the 01 level
Data Division definitions. The name of this module is the COBOL source module name with
the suffix _DATA.

If a paragraph contains a PERFORM statement that executes a single paragraph, a standard
invocation is created. If multiple paragraphs are performed, for example PERFORM P1
THRU P5, a logical module is created with the name P1..P5 with a lexical inclusion
invocation to it. Invocations for the individual paragraphs are created from the P1..P5 module.
GOTO statements between these paragraphs generate control connections between the
modules in Visible Analyst.

FALLTHRU statements are usually ignored because their action is implied by the standard
method of connecting modules. However, in the case of pathological connections that jump
out and then back into the list of paragraphs executed by a PERFORM THRU block,
FALLTHRU statements are converted into control connections to show the flow through
modules outside the list.

A CALL statement in COBOL that calls an external source module generates an invocation
from the calling module to the top module of the called program module hierarchy. Any pa-
rameters used with the CALL statement in the original COBOL code is lost in the current
version of Visible Analyst.

OCCURS clauses in the COBOL source are semantically translated properly into Visible
Analyst if the OCCURS value is a simple numeric. Complex OCCURS clauses containing
DEPENDING ON, INDEXED BY, etc., are placed into the item Notes field.

Visible Analyst Tools

395

Other Conversion Information
Copy libraries used in the original COBOL source are expanded in-line and incorporated into
the Visible Analyst repository in their expanded forms.

Currently, the RENAMES statement in COBOL is not supported in Visible Analyst.

COBOL paragraph comments are placed in the Notes field of the module representing the
paragraph.

The external name for a COBOL file appears in the Notes field of the file in Visible Analyst.

A Visible Analyst data structure is created for each non-lowest-level item in a COBOL Data
Division data definition.

Lowest-level items, including non-subdivided level 01 items and level 77 items, become data
elements.

Level 88 statements have their values listed in the Values & Meanings field of the data
element with which it is associated in the COBOL source.

Naming Considerations
There are certain name transformations that occur during the import because of different
naming rules in the Application Browser and Visible Analyst. First, Application Browser
names that begin with a number are prefixed with the letter “A” to conform to the Visible
Analyst rule that names must begin with a letter. Second, a suffix is added to Application
Browser names that are used in different places with different meanings, so that they can be
distinguished in Visible Analyst. During the import, an intermediate list of names is created.
Names from the COBOL Data Division hierarchy are appended to the item name, separated
by periods. Then the names are shortened, keeping only the information necessary to make
the names unique. Because of the 128-character name length limit in Visible Analyst,
characters may be removed from the middle of the suffixes and numbers added to maintain
uniqueness within the name length limits.

Code Generation Implications
The source code of a COBOL paragraph is saved in the Module Description field of the
Visible Analyst module that is generated from the paragraph. If you later want to generate
code from the Visible Analyst project, you should first make sure you have made the correct
settings in the Shell Code Generation Options dialog box. This is accessed by selecting Code
Generation Options from the Options menu. In the box labeled Included Module Information,
be sure that the Module Description item is checked so that the Module Description field is

Visible Analyst Tools

396

included in the generated code. Also, make sure that the Code button is selected so that the
Module Definition field is interpreted as code and not just as a comment.

Powersoft PowerBuilder Interface
Data model information can be transferred between Visible Analyst and the PowerBuilder
application development system from Powersoft. This information includes entity and
attribute definitions and extended attributes, such as comments on tables and columns, and
validation rules, information that is stored in the PowerBuilder system tables.

To transfer data to PowerBuilder:
• Select Export from the Tools menu, choose PowerBuilder and click OK.

The process is similar to SQL schema generation in that you must choose the data you want to
generate. SQL DDL statements are created and are executed against the PowerBuilder system
tables. This, in turn, creates tables, columns and validation rules.

To import validation rules from PowerBuilder:
• Select Import from the Tools menu, then choose PowerBuilder format.

Note
2 The directory where PowerBuilder is installed must be included in your PATH,

because Visible Analyst must execute PowerBuilder programs to transfer data.

Centura SQLWindows Interface
Data model information can be transferred from Visible Analyst to the Centura SQLWindows
client/server application development system. This information includes entity and attribute
definitions, relationships and extended attribute information, such as comments on tables and
columns, and validation rules.

How to Use this Feature
Before transferring data to SQLWindows, you must add information about Visible Analyst to
the repository used by SQLWindows and TeamWindows. To do this:
• Select System Codes from the Tools menu of the TeamWindows Repository Manager.
• Select the CASETool item and click Edit Codes. If Visible Analyst does not exist, add it

by specifying VAW as the Code and Visible Analyst as the description.
• Apply any changes and then select ORI_EXE.
• Click Edit Codes. If Visible Analyst does not exist add it by specifying VAW as the Code

and TWX_VAW as the description.
• Apply any changes.
• You are now ready to export data from Visible Analyst.
• Start Visible Analyst.
• Start TeamWindows Repository Manager.

Visible Analyst Tools

397

• Select Import from the Version menu, set version type to CASE Import, and CASE Tool
to VAW – Visible Analyst.

• Click OK. You should see the “waiting for CASE Tool” dialog box on the screen.
• Return to Visible Analyst and select Export from the Tools menu, choosing

TeamWindows as the format.

Note
2 You must have at least Microsoft Windows version 3.1 to perform this export.

Uniface Interface
Data Model information can be transferred between Visible Analyst and the Uniface
application development system from UNIFACE. The Visible Analyst import/export is fully
compatible with Uniface v5.2. The information transferred includes entity and attribute
definitions, including short descriptions and notes fields, primary and alternate keys, and
relationships based upon the foreign key definitions. This information is stored in the
conceptual schema derived using IDF.

To transfer data to Uniface:
• Select Export from the Tools menu, choose Uniface, and click OK.

Data Model information is exported to an ASCII file in the Uniface CASE Interface Format
(CIF). This file can be imported into Uniface using the CASE load feature.

To import database definitions from Uniface:
• Choose the SQL dialect you would like the conceptual schema data types and interface

syntax to map to by choosing SQL Dialect from the Options menu.
• Select Import from the Tools menu, and choose the Uniface format.
• Select the CIF file to import. This file is created using the CASE unload feature of

Uniface to export a conceptual schema to the CASE Interface Format. You can use the
point-and-click method to highlight the file, or type the filename and PATH.

Unify VISION Export
Data model information can be transferred from Visible Analyst to the Unify VISION
client/server application development system. This information includes entity and attribute
definitions, and extended attribute information, such as comments on tables and columns,
validation rules, and user-interface design details.

To transfer data to VISION:
• Select Export from the Tools menu, choose Unify VISION, and click OK.
• If no errors are detected during the export preparation phase, you are prompted for the

location of the VISION repository in which to store the data.

Visible Analyst Tools

398

• After the export is complete, you can use the VISION Class Editor to view the exported
items. An application must be connected to a database in order to use the classes in the
Forms Designer.

Note

2 You must have at least Unify VISION version 2.0 to perform this export.
2 It is recommended that you generate SQL for the target database before

performing the VISION export so that you may use the exported objects in the
Forms Designer.

Progress 4GL
In addition to standard SQL, native Progress 4GL syntax can be imported by Visible Analyst
to create a data model. Simply set the import file type to Progress 4GL and select the
appropriate .df file to import. In addition to standard data model elements (entities, elements,
and relationships), display formats will be imported.

GDPro Interface
Object models (class diagrams) can be exported to and imported from GDPro. Information
transferred includes class diagrams, class objects, attributes, methods, and friends. It is a two-
step process.

To export from Visible Analyst:
• Select Export from the Tools menu, select GDPro and click OK.
• Start GDPro, and select Import From Visible Product from the Tools menu.
• Type the name of the file to be imported and click OK.
• The file created by Visible Analyst is called “project root”.ad and is located in the

transient data directory.

A class is created in the target GDPro system for every class, entity, associative entity, and
attributive entity defined in the VSC export file. If the class subtype is set to structure, the
ClassFormat property is set to struct. If the subtype is union, ClassFormat is set to union. All
other subtypes are created as standard classes.

Inheritance/supertype relationships are created as CLD_Generalization_Links, while all other
relationship types are created as CLD_ClassAssociations. Class diagrams and entity-
relationship diagrams are created as class views. Data elements (attributes) and methods are
only imported if they belong to a class/entity. Free standing data elements are ignored. If a
data element is used by more than one object, its definition is repeated in each class. Any
spaces that appear in the name of an object are replaced with underscores.

To import from GDPro:
• Start GDPro, and select Export to Visible Product from the Tools menu.

Visible Analyst Tools

399

• Select Import from the Tools menu, select GDPro, select the file generated in step one
and click OK.

For each class defined in GDPro, a class is created in the VSC import file. The subtype is set
according to the ClassFormat attribute.

Relationships between classes are created for both CLD_Generalization_Link and
CLD_ClassAssociation objects. Class diagrams are created for each class diagram view.
Class attributes are created as local data elements.

Table 7-11
Object Property Mappings

 Visible Analyst
Property

GDPro
Property

Class Description ClassDescription
 Notes ClassDescription (appended)
 Friend FriendDefinition
 Persistent PersistentClass
 Abstract ClassType
 Attributes ClassAttribute
 Methods Operations

Data Element Description AttributeDescription

 Values and Meanings AttributeDescription (appended)
 Notes AttributeDescription (appended)
 Type Type
 Length ArraySpecifier
 Default InitialValue
 Visibility AttributeVisibility
 Qualification AttributeScope, Constant, Volotile

Method Description OperationDescription
 Notes OperationDescription (appended)
 Visibility OperationVisibility
 Qualification OperationType
 Returns ReturnType
 Arguments Parameters

Relationship – Normal Label AssociationName
 Role Role
 Cardinality RoleMultiplicity

Visible Analyst Tools

400

Table 7-11
Object Property Mappings

 Visible Analyst
Property

GDPro
Property

Relationship – Supertype Discriminator Discriminator
 Visibility InheritanceMethod
 Virtual Virtual

 Note

2 Spaces that appear in names are changed to underscores.
2 If a global object is referenced by a class, it becomes a local object for each

class that references it. All information for that object is duplicated in each
class.

ERwin Interface
Data models can be both exported to and imported from ERwin. Information transferred
includes entities, relationships, attributes, triggers, and constraints.

To export from Visible Analyst:
• Select Export from the Tools menu, select ERwin, and click OK.
• Select the name and location of the ER1 files to be created, and click OK.

To import from ERwin:
• Select Import from the Tools menu, select ERwin, choose, the desired ER1 file, and click
 OK.

XMI Import
Static structure models (class diagrams) can be imported from an XMI document created by
other modeling tools such as Rational Rose. Before the file is imported, it is parsed for
correctness according to the UML.DTD supplied with Visible Analyst. This file must exist in
the same directory as the XML file being imported.

To import an XMI document:
• Select Import from the Tools menu, select XMI.
• Choose an XML file that contains an XMI specification, and click OK.

If the XML file is valid, classes and relationships are imported into the Visible Repository.

Enterprise Modeling

401

Chapter 8

Enterprise Modeling

ENTERPRISE MODELING OVERVIEW
Visible Analyst supports enterprise modeling by linking together projects in a parent-child
relationship. The enterprise project is a large corporate-wide project that contains data from a
number of subordinate or satellite projects. The enterprise project is used to warehouse all
information pertaining to an organization, while the satellite project contains only a subset of
the enterprise project allowing users to work with components that are important to their
development and not be bothered with the details of the entire enterprise.

Information is transferred between the enterprise and satellite projects through the use of
divisions. If you are working in the satellite project, you have access not only to the objects
defined in that project, but also to objects defined by the division in the enterprise project that
you have access to. The type of access depends on how the enterprise link was created. You
have a choice of read-only access, meaning enterprise objects cannot be modified, or
proposed change access, meaning enterprise objects can be modified but the modifications are
not reflected in the enterprise project. If a user is given proposed change access, this can be
further restricted to individual objects. Users with system manager access see a checkbox on
the divisions screen that allows them to see all of the divisions defined for the project.

The Enterprise Copy tool is used to synchronize a satellite project with the enterprise project.
There are extensive reconciliation tools to manage the synchronization process, including a
difference analysis tool that displays side-by-side the differences between an enterprise object
and a satellite object.

When viewing object definitions in the enterprise repository, the satellite projects that use the
object are noted; and in the satellite, the enterprise project is displayed. There is no limit to the
number of enterprise projects that can be maintained, nor to the number of satellite projects
that can be connected to an enterprise project.

Divisions
A division is a logical group of repository objects or diagrams that can be used to transfer data
between an enterprise project and a satellite project. Divisions can also be used to restrict
access to objects within a project. This section explains the techniques for working with
divisions within the repository.

Enterprise Modeling

402

Creating Divisions
To create a new division or to modify an existing one:

Open the Dialog Box: 1 Select Divisions from the Repository menu.

Choose a Division 2 If you want to create a new division, type the name
Name: in the Division box. If you want to change an existing

division, select it from the drop-down list. (See Figure
8-1.)

 Figure 8-1 Repository Divisions Dialog Box

Note
2 Only divisions to which you have been assigned Access Control rights appear in

the division list. See Assigning Users to Divisions later in this chapter for more
information.

Enterprise Modeling

403

Narrow the Scope of 3 If you have a large number of objects in your repository,
Available Objects: you may want to limit the number of items that appear in

the Available Objects list.

To display all objects in the repository, choose Entire
Repository.

To display all objects of a specific class or type, choose
Specific Type and then select the model type and object
type you wish to use.

To display all objects on a specific diagram, choose
Specific Diagram and then select the diagram type and
diagram you wish to use. The Available Objects list
contains all the objects on the diagram and the name of
the diagram itself.

 Note

2 If you choose Specific Diagram and no objects appear in the Available Objects
list, and the project was created with version 6.0 of Visible Analyst, you may
need to Rebuild the project or to edit the diagram for the objects to appear.

2 If there are a large number of objects in the repository, the Available Objects list
may be updated incrementally. The list is initialized and then updated every few
seconds until all objects in the selected scope have been added.

Select Members: 4 A division is made up of repository objects or diagrams.

To add items to a division, highlight the desired objects in
the Available Objects list and click ×× to move them
into the Members list.

To remove members from a division, highlight the
members in the Members list and click ØØ to move them
into the Available Objects list.

To select all items in the current list (the current list has
the focus), click Select All. To invert the selections, click
Invert. Invert is handy if you want to select everything in
a list except a few items; select the items you want to
exclude and then click Invert. Both Select All and Invert
are only applicable if the focus is on either Members or
Available Objects.

Enterprise Modeling

404

If the scope is set to a specific diagram and you select the
diagram entry, all items in the list are selected. If you then
de-select one of the objects, the diagram selection is also
de-selected. Any action that causes the diagram entry to
be selected causes all items in the list to be selected.

Update the Repository: 5 When you have finished modifying a division, select
 Add or Change:

To add a new division, click the Add button. If the
division does not already exist, it is added to the
repository.

To change the name of a division or its membership list,
click Change. If you alter the name of an existing
division, you can add a new division with same
membership list or simply change the name.

Note

2 If you have not been assigned Create Division rights, you cannot add divisions
to a project.

Assign Users: 6 To grant access to a division, click the Users button. This
allows you to assign specific users to a division, each
having a different set of rights. If a repository object or
diagram is a member of a division, only users who have
been assigned rights to that division can access the object
or diagram. See Assigning Users to Divisions later in this
chapter for more information.

Deleting Divisions
To remove a division from the repository:

Open the Dialog Box: 1 Select Divisions from the Repository menu.

Choose a Division: 2 Select the division to delete from the drop-down list.

Delete the Division: 3 Click Remove to delete the division from the repository.

If the division has enterprise links, you must remove the
link before deleting the division. See Removing
Enterprise Links later in this chapter for details.

Enterprise Modeling

405

Assigning Users to Divisions
If a repository object or diagram is a member of a division, only users who have been
assigned rights to that division can access the object or diagram.

To assign user rights:

Open the Dialog Box: 1 Select Divisions from the Repository menu and then

click the Users button on the Repository Divisions dialog
box.

Choose a Division: 2 Select the division whose user list you wish to modify

from the drop-down list.

Note
2 Only divisions to which you have been assigned Access Control rights appear

in the division list.

Select Users: 3 To add users to a division, highlight the desired items in

the Available Users list and click ×× to move them into
the Users list.

To remove users from a division, highlight the items in
the Users list and click ØØ to move them into the
Available Users list.

To select all items in the current list (the current list has
the focus), click Select All. To invert the selections, click
Invert. Invert is handy if you want to select everything in
a list except a few items; select the items you want to
exclude and then click Invert. Both Select All and Invert
are only applicable if the focus is on either Users or
Available Users.

Update the User List: 4 When you have finished modifying a user list for a

division, click Change to update the repository.

Select User Rights: 5 To change the rights of a user assigned to a division,

highlight the user. The user’s current rights are displayed
in the Rights box. When a new user is added to a division,

Enterprise Modeling

406

the division rights are set to the project rights. Users can
have the following rights in a division

Delete Diagrams. The user can delete any diagram in the
division.

Delete Items. The user can delete any item in the division.
This includes deletion from the repository and deletion
from a diagram.

Modify Diagrams. The user can add or move items on a
diagram.

Modify Items. The user can change the definition of a
repository object.

View Diagrams. The user can display diagrams in the
division, but if they have no other diagram rights, they
cannot alter the diagrams.

View Items. The user can display repository entries in the
division, but if they have no other object rights, they
cannot alter the entries.

Access Control. The user can assign other users to the
division and change their rights, and modify the division
membership list.

Note

2 If more than one user is selected, the rights displayed are a combination of all
the rights for the selected users.

Change User Rights: 6 To change the rights of the selected users, click Modify

Selected Users. To change the rights of all the users in the
division, click Modify All Users.

Enterprise Copy
Enterprise Copy is used to create the connection between one project and another. The source
project is the enterprise, while the target is the satellite. After Enterprise Copy has been
performed, the members of the synchronized division have the same definition in both
projects.

Enterprise Modeling

407

To synchronize an enterprise project with one of its satellites:

Note
2 Before starting an Enterprise Copy operation, it is a good idea to make a backup

of both the enterprise and satellite projects.

Open the Dialog Box: 1 Select Enterprise Copy from the Tools menu. The

current project is used as the enterprise project.

 Figure 8-2 Enterprise Copy Dialog Box

Choose a Division: 2 Select the division to be synchronized. If no divisions

exist, see Creating Divisions earlier in this chapter for an
explanation of the procedure.

Select a Satellite Project: 3 If this is the first time the division has been used in an

enterprise copy operation, click Find Satellite to choose a
satellite project. Otherwise, select the appropriate project
from the list of satellite projects that are already
connected to this division.

Start the Synchroniza- 4 Click Update to start the enterprise copy. If conflicts are
tion Process: detected between objects in the enterprise project and

Enterprise Modeling

408

objects in the satellite, you must select the appropriate
update action.

Select the Update 5 For each object that has a different definition in the
Actions: enterprise and satellite projects, follow the process

outlined in Selecting Update Actions to determine the
definition to be used in both projects after the
synchronization process.

Resolve Name Conflicts: 6 If there are name conflicts, follow the procedure outlined

in Resolving Object Name Conflicts.

Assign Rights to the 7 The first time a division is used in an enterprise copy
Division: operation, only the user performing the copy has rights to

the objects in the division in the satellite project. To add
other users, follow the procedure outlined in Assigning
Users to Divisions earlier in this chapter.

After the Enterprise Copy operation is complete, each object in the synchronized division has
a link between the two projects. If you examine the definition of a synchronized object by
selecting Define from the Repository menu, the enterprise object has all satellite projects
listed in the Locations field, while the satellite object notes the enterprise project in the upper
right corner of the Define dialog box. See Displaying Enterprise Links later in this chapter for
more information.

Selecting Update Actions
If the enterprise copy procedure detects an object in the enterprise project that has a different
definition in the satellite project, you must choose the definition to be used in both projects
after the synchronization process is complete.

Each object that has a conflicting definition is displayed in the Conflicting Objects list with a
default action of either a question mark (?) or Advise. A question mark means neither a source
nor a target definition has been selected. Advise indicates either the item exists outside the
division being synchronized, or the object has a different type in each project. These items
must be reviewed individually before the update process can continue. (Figure 8-3)

Enterprise Modeling

409

 Figure 8-3 Select Update Actions Dialog Box

In order to complete the copy operation, each object in the list must use either the source
definition or the target definition. When making your selections, you have the following
options:
• Select All Source Objects. All definitions from the source (or enterprise) project are

used.
• Select All Target Objects. All definitions from the target (or satellite) project are used.
• Select All Newer Objects. All objects with the latest modification date are used. If the

objects were modified on the same day, you must visually inspect the definitions to
determine the appropriate action.

• If you want to inspect the differences between an object pair, select the item from the list
and click View Differences. Once all object definitions have been selected, click OK to
continue the copy procedure.

Enterprise Modeling

410

Note

2 If an object appears in one project but not the other, it is listed in the conflict list.
If you choose the project that does not contain the object, the entry is removed
from both projects.

2 One selected action may impact another object in the list. For example, if in the
enterprise project you add a new data element as a primary key column to an
entity, and that column does not exist in the satellite, and you choose to use the
entity definition from the enterprise but the column definition from the satellite,
not only is the data element deleted but the primary key is also removed from
the entity.

Compare Objects
If the definition of an object or diagram differs in the enterprise project and the satellite
project, you must choose the definition to be used during the enterprise copy operation.

The Compare Objects dialog box displays the definitions side by side so that you can visually
inspect the differences. To use the source (or enterprise) definition, select Use Source Object.
To use the target (or satellite) definition, select Use Target Object. To defer making a choice,
select Cancel. If the item being inspected is a diagram, you can set the zoom level using the
Zoom box in the bottom corner of the dialog box. (See Figure 8-4.)

Enterprise Modeling

411

 Figure 8-4 Compare Objects Dialog Box

Resolving Object Name Conflicts
To resolve conflicts if the enterprise copy procedure detects a name conflict between the
source and target projects:

Select the Conflicting 1 From the Conflicting Names list, select the object
Object: and click View Conflict. A list of conflicting objects is

displayed indicating whether the object is in the target
project, the source project, or both.

Choose a Conflict 2 Select an object from the Conflicting Objects list.
Resolution Method: Select Delete to remove the conflicting item or

Rename to change its name. These two options are valid
if the item exists in the source project, the target project,
or both projects. If a conflicting object does not exist in

Enterprise Modeling

412

both, the Match option can be used to connect an object
from the source to an object in the target.

You must select two items from the list with the Match
option, one from the source and one from the target, and
then choose the one to be the new object in both projects.
Click OK to confirm your selections. (See Figure 8-5.)

 Figure 8-5 Conflicting Objects Dialog Box

Continue Copy 3 Click Reanalyze on the Conflicting Names dialog box to
Operation: continue with the enterprise copy. If there are still

problems, repeat steps 1 and 2 until all conflicts have
been addressed. When the list contains only conflicts that
have been corrected, click OK to continue.

Enterprise Modeling

413

Displaying Enterprise Links
If an object being examined in the repository Define dialog box has enterprise links to other
projects, a marker is displayed to the right of the object name. If you double-click on the
marker, a list of enterprise links is displayed. Each link displays the following information.
• Project. The name of the project to which this object is linked.
• Type. The type of link. Enterprise indicates the current project is the parent project, while

Satellite indicates the current project is the child.
• Synchronized. The last date an Enterprise Copy operation was used to synchronize the

projects.
• Location. The drive and directory where the linked project is stored.

Removing Enterprise Links
To remove the links between an enterprise project and one of its satellites:

Open the Dialog Box: 1 Select Enterprise Tag Maintenance from the Tools

menu. The current project is used as the enterprise
project.

Choose a Division: 2 Select the division whose members are to have their
 link removed.

Note
2 Only the link between the two projects is removed. The objects themselves

remain in both projects.

Select a Satellite 3 Select the appropriate project from the list of satellite
Project projects that are connected to this division.

Start the Removal 4 Click Remove to sever the link. You are prompted to
Process: to confirm your action.

Repeat the Process: 5 If you want to select another satellite project or another

division to update, start the process again beginning with
either step 2 or step 3. When you are finished, click Close.

After the remove operation is complete, each object in the previously synchronized division
has its link between the two projects deleted.

Database Synchronization
The enterprise modeling comparison facilities can also be used to synchronize an entity-
relationship model with a generated database. To perform the synchronization, follow the
steps below.

Enterprise Modeling

414

Create a New Project: 1 Create a new project that contains the database to be
 synchronized.

Import the Database: 2 Select Import from the Tools menu. Using either

the SQL Import or the RDBMS Catalog Import option,
create a data model based on the database.

Create a Division: 3 Create a division in the new project encompassing the

entire repository. See Creating Divisions earlier in this
chapter for details.

Perform Enterprise 4 Select Enterprise Copy from the Tools menu.
Copy: Follow the steps outlined earlier in this chapter for

synchronizing an enterprise and satellite project. When
the process is complete, the original data model is updated
to reflect any changes that were made in the database.

Remove Enterprise 5 Select Enterprise Tag Maintenance from the Tools menu
Links: to remove the links between the two projects.

Delete the Temporary 6 Select Delete Project from the Tools menu to remove
Project: the temporary project.

Note
2 If you have denormalized any relationships or used any structures such as

domains in your original data model and the target database does not support
those structures, you cannot completely synchronize the model with the
database.

Error Messages

415

Appendix A

Error Messages

INTRODUCTION
This appendix lists all Visible Analyst error messages and their explanations. The error
messages are listed in alphabetical order.

Note
2 These messages are listed in absolute alphabetical order. This means that if a

message begins with the word “The,” it is alphabetized under “The” not under
the first important word.

2 Some error messages contain the names of individual objects. In this generic
listing, these individual names have been replaced with “X”. Further, such a
message is alphabetized using the “X”.

Error Messages

416

A change is pending for this diagram - Cannot edit.
Another user has performed a global change that could affect this diagram. You
cannot access the diagram until the other user saves his or her work or aborts the
edit.

A class must be labeled before a Nest operation can be performed.

An unnamed class cannot be decomposed.

A couple may only be changed into another couple type.

Once a couple line type is created, the Change Type option limits its transformation
to other couple line types. For instance, a generic couple can be changed to a data
couple; however, the generic couple cannot be changed to a loop line.

A diagram is being inserted into the tree - This branch cannot be altered.

Another user is inserting a diagram into the tree that could affect the diagram you
have selected. The diagram cannot be edited. To determine the user ID of the person
inserting the diagram, select the Current Activity option from the File menu and find
the users with an activity of “is creating new diagram.” The person in question is
one of these users. You may contact him/her by using the message facility (press the
F5 key).

A join already exists between this pair of entities.

Only one join relationship can exist between a pair of table instances in a view. For
non-relationship based joins, you can add restrictions to the join expression either by
editing the join expression field or by dragging columns from the parent table to the
child table in the view window.

A non-couple cannot be changed to a couple.
The Change Type option in the Change Item dialog box cannot be used to transform
an invocation line or loop line type into a couple.

A non-loop may not be changed into a loop.

The Change Type option on the Change Item dialog box cannot be used to transform
an invocation line or a couple into a loop line.

A process must be added to this context diagram.

A process must be added and named before the diagram is saved when a context
diagram is requested.

A process must be labeled before a nested decomposition can be performed.

An unnamed process cannot be decomposed.

Error Messages

417

A program can only have one item as the root module.
The composition field of a program indicates the top level module of that program.
Only one module may be specified.

A relationship can be labeled only when two NAMED entities are attached.

A relationship only has meaning when attached to two entities. It must join two
entities before a relationship can be labeled and added to the repository.

A relationship cannot be connected to a view.

When a view appears on an entity relationship diagram, relationship lines cannot be
connected to the view because a view does not contain foreign keys.

A supertype/inheritance relationship already exists between this pair of objects.
Only one supertype or inheritance relationship can be drawn between a pair of
entities or classes.

A supertype/inheritance relationship cannot be recursive.

A supertype or inheritance relationship cannot be drawn such that the start and
endpoints are the same object.

A supertype relationship cannot be used with a non-fundamental entity.

A supertype relationship cannot be drawn if the child entity is either an associative or
attributive entity. These entity types imply special relationships to their parents that
are in conflict with supertype relationships. Either draw a different type of
relationship or change the entity type to fundamental.

A tree file for project “x” is damaged or missing.

When copying a portion of a project, the tree file could not be found or was
damaged. Restore the project.

A user-defined object cannot have the same name as a VAW entry type.

When creating a user-defined object, the name of the object cannot be the same as
any of the built-in Visible Analyst types. For example, you cannot create an object
named Process.

Access denied - another user is editing this diagram.

A diagram can be edited by only one user at a time. The selected diagram is already
in use.

Activity diagram ‘x’ is not associated with a class, use case, or activity.
This warning is the result of not exploding a class, use case or activity to the
indicated activity diagram. To resolve the warning, open a class, use case or activity

Error Messages

418

diagram, select the appropriate object, and use the explode feature to attach to the
indicated activity diagram.

Actor labeled ‘x’ is dangling.
The above error message is the result of not connecting the indicated actor to another
actor or use case on the use case diagram. To resolve the error, draw a line from the
actor to any use case or actor using the Connect function.

Aggregation line not added.

A construct that was originally created from a class diagram can be loaded into an
entity relationship diagram. However, aggregation relationships are not supported on
ERDs, so that relationship type is ignored.

All pure virtual methods will be reset to virtual. Continue?

If you want to change an abstract class to a concrete class, the class definition cannot
contain pure virtual methods because a concrete class can be instantiated. Visible
Analyst resets pure virtual methods to virtual in this case.

All users have been added to this project’s edit list.

All users currently defined to NetWare have been assigned to this project. There are
none left to add.

All virtual methods will be reset to pure virtual. Continue ?

If you want to change a concrete class to an abstract class, Visible Analyst resets
virtual methods to pure virtual.

An item could not be added due to space constraints.

When loading a construct, the maximum number of objects was reached before the
entire construct could be loaded.

An off-page connector with output connections cannot be used.

An off-page connector with input connections (invocation lines drawn from a
module symbol to the off-page connector) is acting as a reference to a module on
another diagram. The Page function can operate on this type of page connector. An
off-page connector with output connections (an invocation line drawn from the off-
page connector to another symbol) cannot be the object of a Page function.

Another user is currently adding this item - Create cannot be performed.

Someone has created the specified item, but it has not been saved. Click the Details
button for more information.

Error Messages

419

Another user is currently adding this item - Label cannot be used.
Another user is adding this item to the repository, but it has not been saved. Try
again later or click the Details button for more information.

Another user is currently modifying this item - Cannot be used as a subflow.

If another user is modifying a data flow repository entry, it cannot be used as a
subflow.

Another user is currently modifying this item - Edit cannot be performed.

Only one user can edit a repository entry at one time.

Another user is currently modifying this item - Split cannot be performed.

Another user is modifying the repository entry for this data flow. Split operation
cannot be performed.

Another user is editing an item that would be affected - Operation denied.

If a name change is attempted on a repository item and another user is editing a
component item, the operation is denied.

Another user is modifying the user list of this project.

Only one user at a time can change the list of users that can access a project.

Another user is performing an operation requiring exclusive project access.

This project cannot be accessed until the user currently performing an operation
requiring exclusive rights is complete. These operations include all the operations on
the Tools menu such as Backup, Restore, Copy, etc.

At least one user must be assigned to a division.

If all users are removed from a division, there is no way to maintain division
information or use the division in an Enterprise Copy operation. In addition, the user
must have Access Control rights to the division in order to modify the division
contents and user list.

At least one user must have Access Control rights to a division.

If no user has Access Control rights to a division, there is no way to maintain user
information for the division.

Attached relationship(s) exist, cannot delete this entity.

An entity cannot be deleted inside the repository if relationships are attached to that
entity on a diagram. All relationships attached to this entity on all views where it
appears must be deleted before it can be deleted.

Error Messages

420

Bad entry label.
Label does not begin with an alphabetic character.

Boilerplate not found.

The boilerplate you requested for this diagram cannot be found.

Boilerplate too big to fit on diagram.

The current boilerplate is larger than the selected diagram size. Either make the
diagram drawing area larger or change the boilerplate.

Both the Related To and Values & Meanings fields contain information.

Only one of these fields may contain a value. If you declare that this item is related
to another existing item, the values and meanings information should be specified in
the repository entry for that item.

C struct “x” has no composition defined.

A data structure exists in the repository that has nothing in its composition field.

Can’t add Check condition “x” to Repository - Name Conflict.

The name of the check condition you are trying to add to the repository is the same
as another object already in the repository. You must select another name to add it.

Can’t add Trigger “x” to Repository - Name Conflict.

The name of the trigger you are trying to add to the repository is the same as another
object already in the repository. You must select another name to add it.

Can’t change process # - Diagrams that would be affected are being edited.

A process number change affects all child diagrams in the same branch of the tree.
Another user is editing one of these diagrams so the operation is denied.

Can’t Get Device Context for Printer.
Windows was unable to access the selected printer. Verify the printer settings.

Can’t Get Repository Handle.

Visible Analyst could not find the repository for this project. Make sure that your
files have not been moved or deleted.

Can’t perform global change - Diagrams that would be affected are being edited.

Another user is currently editing a diagram that would be affected by a global change
so the operation is denied.

Error Messages

421

Can’t perform conversion, project is not in version 3.1 format.
In order to be converted to the format of the current version, a project must first be in
version 3.1 (or later) format. If you have a version of Visible Analyst older than
version 3.1, please call Visible Systems Corporation so that we can assist you in this
conversion.

Can’t perform Nest - Diagrams that would be affected are being edited

Another person is editing the diagram or a child of the diagram whose name was
selected as the object of a Nest operation. Use the Current Activity facility on the
File menu to determine the user IDs of these people. Send an appropriate message to
them using the messaging facility (press F5).

Cannot add because record already exists.

A user cannot be added to the list of valid users because the name is already used.

Cannot add this alias - It already exists as another entry.

The specified alias already exists as another entry type. All items in the repository
must be defined with unique labels.

Cannot copy portion of project that contains context diagram.

A context diagram cannot be copied into an existing project. However, the image of
the context diagram can be copied into another project by using the Construct
function on the Diagram menu. The construct should be created from the existing
context diagram and loaded into the copy-to project.

The loading of the construct into the copy-to project does not migrate the data
repository information maintained for the objects appearing on the diagram, but the
information for these objects is migrated if they are referenced by other diagrams
included in the Copy operation.

To determine whether the information was migrated, use the Define option on the
Repository menu and select each object to view its data repository definition.

Cannot delete record because it doesn’t exist.

This user has not been added to the security list, so his/her ID cannot be deleted.

Cannot get record because it doesn’t exist.

There is no security record for the user you specified.

Cannot open reports file.

The custom reports definition file REPORTS.TBL could not be opened. It has been
deleted or is otherwise unavailable. Since it is necessary to the operation you just
requested, you should copy it from your master media.

Error Messages

422

Cannot open SQLDIAL.TBL file.

The file SQLDIAL.TBL contains information on all SQL dialects supported by
Visible Analyst. It has been deleted or is otherwise unavailable. Since it is necessary
to the operation you just requested, you should copy it from your master media.

Cannot perform Spawn - Diagrams that would be affected are being edited.

The Spawn function affects all diagrams in same branch of the DFD tree, and one or
more users are editing some of these diagrams. Use the Current Activity function on
the File menu to determine the user IDs of these people and send an appropriate
message to them using the messaging facility (press F5).

Class type not specified for ‘x’.

When defining attributes for a class, the type is required.

COBOL configuration file ‘x’ cannot be opened. Can’t generate COBOL code.

The file COBOLTYP.TBL contains information on how COBOL code should be
generated. It has been deleted or is otherwise unavailable. Since it is necessary to the
operation you just requested, you should copy it from your master media.

COBOL configuration file ‘x’ contains invalid data. Can’t generate COBOL code.

The file COBOLTYP.TBL contains information on how COBOL code should be
generated. It has been improperly edited or otherwise corrupted. Since it is necessary
to the operation you just requested, you should fix the editing improprieties (if you
are certain how to do so) or copy it from your master media.

Component must have a name.
When defining components using the Add Components dialog, a name must be given
for each component. The name is used to reference the component in the repository
and is thus required.

Conflict between default VALUE and USAGE INDEX or REDEFINES for item ‘x’. The
default VALUE has been ignored.

The file COBOLTYP.TBL contains information on how COBOL code should be
generated. There is a conflict between specifications in this file and the information
you specified in the repository, or an internal inconsistency in specifications in this
repository entry. The code generator continues to generate code, but it ignores what
you specified for the default value for this item.

Conflict between picture and USAGE INDEX for item ‘x’. The picture has been
ignored.

The file COBOLTYP.TBL contains information on how COBOL code should be
generated. There is a conflict between specifications in this file and the information

Error Messages

423

you specified in the repository, or an internal inconsistency in specifications in this
repository entry. The code generator continues to generate code, but it ignores what
you specified for the picture for this item.

Conflict between picture class and the number of decimal places for item ‘x’. The
number of decimal places has been ignored.

The file COBOLTYP.TBL contains information on how COBOL code should be
generated. There is a conflict between specifications in this file and the information
you specified in the repository, or an internal inconsistency in specifications in this
repository entry. The code generator continues to generate code, but it ignores what
you specified for the number of decimal places for this item.

Connected page does not exist.

This diagram has been connected to another diagram with the Page function. The
connected diagram has been deleted.

Construct ‘x’ not found. Enter new location:.

The construct file for the construct you selected has been deleted or is otherwise
unavailable. If the file has been moved to another disk location, enter its path. If the
file no longer exists, you should eliminate the dangling construct name and prevent
recurrences of this error message. To do this, click Cancel. Then click Delete in the
Construct dialog box to eliminate the construct name that generated this error.

Construct exceeds page size.
The current construct is of easel size and cannot be loaded into the current diagram,
which is standard size. Either make the diagram drawing area larger or use a
different construct.

Could not add a user-defined type for the current field.

The import program could not add a user-defined type for this field.

Couple ‘x’ used in ‘y’ has the same C name as a module.
Couples ‘x’ and ‘y’ used in ‘z’ have the same C name.

The naming rules and name length requirements for Visible Analyst are different for
those in C. When generating shell code for C, repository item names must be
transformed into C names. It is possible for two differently named items in Visible
Analyst to end up with the same C name. This would cause problems if you try to
compile this generated code. You should change one of the names so that the
generated code name is different from that for the other item.

Database is corrupt. Run Rebuild and try again.

Something happened to the project database. Run Rebuild from the Tools menu to
restore it to normal functioning.

Error Messages

424

Date constant expected.

A date constant is required in a ‘where’ clause restriction.

Decomposition hierarchy incompatible with data flow diagrams.

Changes have been made to a set of data flow diagrams spawned from an FDD
function that are inconsistent with the set of processes descending from that function
on the FDD. The Spawn Verify function cannot reconcile them. You must manually
change one set of diagrams to match the other. To avoid this error in the future,
changes to the hierarchy of functions and processes should be made to the FDD.
Then you can let the Spawn function carry the changes to the DFDs rather than edit
them both independently.

Diagram exceeds maximum page size.
Visible Analyst could not automatically draw an editable view because all of the
items you specified to include in the view could not be included without having to
overlay symbols. You have several options:

• You can print the view to see what it looks like and decide what to do later.

• You can return to the selection process and select fewer items to include in the
view.

• You can decrease the size of the symbols in the symbol template, which might
sufficiently ease the crowding of symbols to make it possible to draw an editable
diagram.

• You can create clusters, including some of the entities on this view, and create
an unstructured cluster diagram.

• You can reduce the point size of the fonts used for the text used to label lines
and symbols before generating the view. This causes Visible Analyst to scale the
size of the symbols and lines down to match the text and squeeze more
information onto the view. The more important of the two is the text used to
label the relationships because it decreases the space between the entities.

Your best option is probably to reduce the number of entities in the view, for a view
of the current complexity is probably difficult to understand even if you create an
editable diagram.

Diagram label already used in this project - Enter another label.

Each diagram in a project must have a unique name.

DLL ‘x’ not found. Cannot import.

The DLL program file specified is missing or not in the VA directory.

Error Messages

425

DOS file name for program ‘x’ is not unique, file ‘y’ has been overwritten.
During shell code generation, the output file created overwrote an existing file.

Duplicate ‘x’ clause.

The indicated clause is duplicated in the custom report specification.

Duplicate couple ‘x’ in call between ‘y’ and ‘z’.

A couple appears twice on an invocation line between modules “Y” and “Z”. This
would cause a duplicated parameter in generated C code. Note that it is possible that
this couple appears along the invocation and is also listed in the composition of an
ITR that is attached to the invocation. In this case, its duplication would not be
obvious from looking at the diagram.

Duplicate definition for ‘x’.

When defining methods for a class, a method name can be used more than once, but
each instance must have a different set of arguments to make it unique.

Duplicate label encountered, object label not added.

During a construct load or tree copy operation, any label that could cause two
different entry types to share the same name or create a second instance of an object
limited to a single appearance on a diagram is ignored. The text of the symbols
defined with duplicate labels is removed, resulting in diagrams containing unnamed
symbols. An analysis of the project can be used to identify unlabeled symbols.

Duplicate parameter ‘x’.

There is a duplicate parameter in the ‘params’ clause of a custom report
specification.

Enterprise connections exist for this project. Should the copied project be a satellite of
the same project(s) as its source?

When copying a project that has enterprise connections, you can choose to duplicate
the connections in the new project or remove them. Answering yes maintains the
connections between the copied project and all projects that had links to the original
project.

Entity labeled ‘x’ is dangling.

This error message is the result of not connecting the indicated entity to any events
on an entity life history diagram. To resolve the error, draw a line from the entity to
any event type or structure box using the Connect function.

Entity labeled ‘x’ should have no input connections.

The entity on an entity life history diagram must be at the top of the hierarchy. To
resolve the error, remove all input connections to the entity.

Error Messages

426

Entry could not be found that matches current entry characteristics.

When searching for an item in the repository, an item with the selected entry
characteristics could not be found.

Entry type expected.

An entry type is required in the selected report query.

Error reading file.

There was a system error reading a requested file. The current task cannot proceed.

Error reading reports file.

There was a system error reading the saved reports file. The requested report cannot
proceed.

Error reading user-defined object links. Delete entry and run rebuild.

The structure containing links to user-defined objects has been damaged. You must
delete this entry and re-create the link. This may happen as a result of a power loss
during a repository update.

Error writing reports file.

There was a system error writing the saved reports file. The requested report cannot
be saved.

Event labeled ‘x’ must be of the same type as the other events at this level.

All symbols hanging from a single node must be of the same type, or be a structure
box that is used as a place holder. To resolve the error, change the symbol type of
the indicated event using the Change Item function.

Event labeled ‘x’ has more than one input connection.

The above error message is the result of connecting the indicated event to more than
one superior event/structure boxes. To resolve the error, move or delete all but one
of the lines to connect the event to one and only one superior event/structure box.

Export failed - Could not create export files.

The files necessary to store exported data could not be created. It could be that there
is not enough disk space, that you do not have rights to the destination directory, or
some system failure. You must rectify the situation before the export can be done.

Fatal error splitting view(s).

A global view could not be split into pages to print. There is probably insufficient
disk space.

Error Messages

427

File not found.
The file specified for import could not be found in the specified directory.

Files damaged, must rebuild.

The repository for the current project has been corrupted. To correct this condition,
execute the project Rebuild tool. If the problem persists, contact Visible Systems.

First character of repository name not a letter.

All repository entries must start with a letter.

Flow selected is not attached to the parent process of this diagram.

Only a net input or output flow can be Split. A flow attached to a process specified
as the target of a Nest (decompose) operation is considered a net input/output flow.

Function must be decomposed directly to processes before a Spawn operation.

Only a function, all of whose descendants on the FDD are processes, can be
spawned. If some descendants are subsidiary functions, the Spawn function cannot
proceed.

Functional decomposition error(s) encountered - Try analyze.

A Spawn Verify operation could not be performed because the structure of the
functional decomposition diagram does not match the data flow diagram set. Run the
Analyze function to determine the cause.

Illegal character - Used as a delimiter in database.

The label of an entry type such as a data flow, data store or couple, which can appear
in the composition field of another data repository entry, may contain up to 128
characters. Each can consist of any upper/lower case letter, numbers, spaces, periods,
underlines and hyphens. The first character must always be a letter. All other
characters are considered delimiter characters.

Import can not open log file, ‘x’.

The listed file cannot be opened for reading and writing.

Import DLL error in ‘x’: #y Import file format incorrect.

The import file specified does not conform to the format required. See specifications
for import files from other systems and make sure that the file was created correctly.

Import DLL error in ‘x’: #y Internal - exit and restart Visible Analyst.

The Import DLL (Dynamic Link Library) failed and its state is invalid. You may
have to close and restart Microsoft Windows in order to run the import again. Please
contact Visible Systems.

Error Messages

428

Import DLL error in ‘x’: #y Unable to open import file(s).
One or more of the import files was not found or cannot be opened.

Import DLL error in ‘x’: #y Undefined - Contact Visible Systems.

An internal error has occurred. Please contact Visible Systems.

Import file not found.

The VSC format import file was not found.

Import object type conflicts with existing object, item not imported.

The object in the import file has a type that cannot coexist with an object already in
the repository of a different type.

Import procedure aborted, x records have been imported.

If Import is canceled after the actual import has begun, the number of records
imported at the time of the cancellation is displayed.

Initialization failure - Contact Visible Systems.

The network version of Visible Analyst was not able to access the network. If the
network shell is loaded and you are logged on, contact Visible Systems.

Integer constant expected.

An integer constant is required in a ‘where’ clause restriction.

Invalid Alias Owner.

The alias owner information for an alias record is not valid or compatible with the
project in use.

Invalid condition.

There is an invalid restriction condition in a custom report ‘where’ clause.

Invalid construct name.

The name you specified for a construct contains illegal characters. Please correct and
try again.

Invalid construct name, reserved DOS device.

The entered construct name is a reserved DOS device name.

Invalid entry types list.

There is an invalid entry types list in a custom report ‘where’ clause.

Invalid format value ‘x’.

The format value indicated in a custom report ‘format’ clause is invalid.

Error Messages

429

Invalid label to use in split. - Label used elsewhere in project.

Data flow labels can be the same as data store labels, but they must be different from
process and external entity labels.

Invalid Location entry.

The entry you made in a Location field does not correspond to a repository item.
Please enter a correct value, or use the Search function to locate it and enter it that
way.

Invalid ‘order by’ value ‘x’.

The value you entered in a custom report ‘order by’ field is not a valid repository
entry label or entry type. Please enter a correct value.

Invalid path specified.

The path specified could not be created. Correct and try again.

Invalid placement of ‘|’ in Composition of ‘x’.

The logical OR operator ‘|’ is not placed in a syntactically correct position in the
field. Correct and try again.

Invalid project name.

The project name you entered contains invalid characters. Please enter a correct
value.

Invalid report name.

The report name you entered contains invalid characters. Please enter a correct value.

Invalid ‘select’ value ‘x’.

The value you entered in a custom report ‘select’ field is not “*”, “detail,” or
“summary.” Please enter a correct value.

Invalid SQL dialect format in SQLDIAL.TBL file - Reload from master disk.

The format of information in the file SQLDIAL.TBL is incorrect. Perhaps an attempt
to customize the file was done incorrectly. Inspect the file customizations for
correctness or reload the original file from the master media.

Invalid storage types list.

There is an invalid storage types list in a custom report ‘where’ clause.

Invalid VA construct file format.

The format of the file containing the construct you requested is invalid. Please
restore a correct file from a backup or delete the construct and re-create it.

Error Messages

430

Invalid ‘where’ expression.

The restriction entered in the ‘where’ clause of a custom report does not evaluate to a
valid restriction expression. Please consult the manual and correct.

Invocation(s) from Macro ‘x’ cannot be generated — not a recommended type of
connection.

A Macro should not invoke another module. Change it to a normal module.

Item named ‘x’ altered to name ‘x’ to meet COBOL rules.
Item named ‘x’ altered to program name ‘x’ to meet COBOL rules.

The naming rules for Visible Analyst and COBOL are different. When generating
COBOL shell code, the names of some repository objects may be transformed to
conform to COBOL specifications.

Item not decomposed beyond the 01 level: ‘x’.

A non-element repository item has been named but has not been decomposed at all.
A correct COBOL data declaration cannot be generated.

Item not fully decomposed to data elements: ‘x’.

A non-element repository item has not been fully decomposed to data elements. A
correct COBOL data declaration cannot be generated.

Iteration event labeled ‘x’ is dangling.

The above error message is the result of not connecting the indicated selection event
box to an entity or a structure box on an entity life history diagram. To resolve the
error, draw a line connecting the event to an entity or structure box using the
Connect function.

Key already exists.
You attempted to save a new repository item with the same name as one that is
already in the repository of your project.

Key does not exist.

The label you entered in the Define dialog box does not exist in the repository. In the
education version of Visible Analyst, items cannot be created directly. They must be
created on a diagram or in the composition field of another object, such as an entity
or data store.

Labels must be unique - Label used elsewhere in project.

If you are labeling a process, all names must be unique. If labeling a data flow, data
store, or external entity, the name of one type cannot be the same as another type.
However, files and data flows can have the same name.

Error Messages

431

Last record in file is not complete.

The VSC import file ended in the middle of a record.

Loading this construct would exceed diagram limits.

A construct could not be added to a diagram due to size constraints.

Location(s) exist, cannot delete this entry.

An item cannot be deleted from the data repository if it exists on a diagram or as an
entry in the composition field of another data repository entry. To delete this item, it
must be deleted from any diagram it appears on, and its label must be removed from
the composition field of entries that reference it.

Location(s) exist to which you do not have Modify rights!

The object you are trying to rename or delete, appears in the composition or
attributes field of another object to which you do not have the right to make changes.
User rights are restricted by including objects in divisions. If you have not been
assigned Modify rights to the division, you cannot alter objects that belong to the
division.

Low memory warning: Approaching limit of diagram complexity. Save work

The amount of space allocated for this diagram is almost depleted. To avoid loss of
work, execute the Save function. We suggest you either partition the diagram into
multiple diagrams or not add more objects to it.

Matrix report is empty.

There were no repository objects that met the requirements you specified for a matrix
report.

Maximum number of projects reached, can’t create.

The completion of a New Project operation would have exceeded the maximum
project count restriction. The maximum project count for each configuration is:

 Education – 2
 Corporate - limited to the available disk space.

To determine your product’s configuration, select About Visible Analyst from the
Help menu.

Maximum number of levels in decomposition hierarchy has been reached.

You have already nested to the maximum level allowed by Visible Analyst (20
levels). The current Nest operation would exceed that maximum and is not allowed.

Error Messages

432

Maximum number of symbols for this diagram.
You have already reached the maximum number of symbols on a diagram allowed
by Visible Analyst (500). The current operation would exceed that maximum and is
not allowed.

Maximum number of users already logged on.

The maximum number of users (or nodes) allowed for the tool you purchased are
already logged on. You cannot log on until someone logs off.

Local data element is already used with a different class type.

When defining role names for a relationship, the name selected for the role already
appears as a member of the opposite class but with a different class type than that of
the current class. Because local data elements must be unique within a class, you
must choose a different name for the role. For example, if you have a class named
Window with a relationship to Item, and you defined the role for Window as
pWindow, there must be a member called pWindow of type Window in the member
list of Item.

Member ‘x’ is used more than once.

Local data elements must be unique within a class.

Message ‘x’ refers to a method that does not exist in the derivation tree of class ‘y’.

The indicated message is based on a method that does not exist in the indicated class,
or one of its base classes. To correct the problem, select the item and use the Change
Item function.

Message ‘x’ uses a pure virtual method.
A message used on a sequence or collaboration diagram is based on a pure virtual
method. Since pure virtual methods cannot be executed, a derived class should be
used instead.

Message ‘x’ uses a virtual method.
A message used on a sequence or collaboration diagram is based on a virtual method.
Since virtual methods are meant to be overridden, a method in a derived class should
probably be used instead.

Missing ‘format’ value.
There is no value entered in a custom report ‘format’ field. It should be “multiple” or
“single.” Please enter a correct value.

Missing ‘order by’ value.

There is no value entered in a custom report ‘order by’ field. It should be a valid
repository entry label or entry type. Please enter a correct value.

Error Messages

433

Missing ‘restriction’ condition.

There is no restriction entered in the ‘where’ clause of a custom report. Please
consult the manual and correct.

Missing select value.

There is no value entered in a custom report ‘select’ field. It should be “*”, “detail”
or “summary”. Please enter a correct value.

Modify rights to the project directory are required to perform this operation.

The creator of this project or a supervisor has given you view-only rights. One of
those people must upgrade your rights before you can make any changes to this
project.

More than one returned couple in call between ‘x’ and ‘y’.

More than one couple appears on an invocation line between modules ‘x’ and ‘y’ in
the return direction. This causes a function with more than one return value in
generated C code and is not allowed.

Multiple associator elements on a relationship.

A relationship may have only one associator element.

Multiple Data Only Modules specified in an Information Cluster.

One of the standard modules you specified for the information cluster is in fact a data
only module. An information cluster can have only one data only module.

Multiple invocations of ‘x’ have different number of parameters.

You invoked module “X” in different places on your structure chart with different
numbers of couples along the invocation line. The code generator cannot produce
proper C code in this situation.

Multiple invocations of ‘x’ have parameter of different type.

You invoked module “X” in different places on your structure chart, with couples
corresponding to repository items of different types. The code generator cannot
produce proper C code in this situation. Note that it is possible that these couples
could exist as components of ITRs attached to the invocations. In this case, the
variations are not obvious from looking at the diagrams.

Multiple invocations of ‘x’ have return values of different type.

You invoked module “X” in different places on your structure chart with one couple
appearing on invocation lines to module “X” in the return direction corresponding to
repository items of different types in different instances. The code generator cannot
produce proper C code in this situation.

Error Messages

434

Multiple Related To items specified.

More than one Related To item was specified in a field in an import file.

Name exceeds 128 characters.

The name you entered exceeds the Visible Analyst maximum of 128 characters.

Name not specified where required.

You have not entered the name of a repository item where one is required.

Name of connected item is not a valid VSC name.

A name you entered contains invalid characters. Please reenter.

Nested braces in composition of ‘x’.

Curly braces cannot be nested in a composition field to show array structure.

NetWare shell is not loaded.

You have attempted to run the LAN version of Visible Analyst when both of the
NetWare shell programs IPX.COM and NETx.COM are not memory resident. Load
them into memory and then restart Visible Analyst.

No complete clusters exist on this view.

A cluster view replaces a group of entities with a cluster on a cluster diagram only
when all of the entities composing the cluster appear on the current view. Partial
clusters are ignored. Either none of the entities appearing in the current view is a
member of a cluster or there is no cluster for which all of the composing entities
exist on this view. In either case, the cluster view is the same as the existing view.

No entities are available for inclusion in cluster.

Either there are no entities in the project or all of the entities are currently members
of clusters and the free entity pool is empty. An entity can be a member of only one
cluster.

No entries in repository.

A view can be created by the selection process only when there are already entities
and relationships in the repository from which to select. You must either create your
view manually, by adding entities and relationships to blank diagrams, or you must
enter the repository using the Define function from the Repository menu and create
entity entries. Then you can add them to a diagram and draw relationships between
them.

Error Messages

435

No length specified for item ‘x’. Using ‘y’.
Item ‘x’ has no length specified in its repository entry. Shell code is generated using
the default value y.

No more entries.

While searching for the next/prior item in the repository, the end/beginning of list
has been reached.

No reports found in reports file.

The report saver file is empty.

No space left on drive.

The target drive is full or there is not enough space to copy all of the files.

No valid programs in the project ‘x’. Using the entire project.

There is no program item in your project repository referring to a module for which
to generate shell code. The code generator assumes that you want a code for a
program corresponding to your entire project structure chart.

Not enough memory to execute this function.

While printing a report, Windows could not allocate the memory space required to
process the report.

Object type is not supported by this version of Visible Analyst.

The item you are attempting to open is of a type that is not supported by this version
of Visible Analyst. For example, if your tool set does not support object modeling,
you cannot access class and member objects that were created by other Visible
Analyst tool sets. Contact Visible Systems to upgrade your product configuration.

Object ‘x’ is based on an abstract class.

An object used on a sequence or collaboration diagram is based on an abstract class.
Since abstract classes cannot be directly instantiated, a derived class should probably
be used instead.

Object ‘x’ is not used. There are no messages attached.
This error is the result of not having messages attached to either an object lifeline on
a sequence diagram, or an object link on a collaboration diagram. To correct the
error on a sequence diagram, connect two object lifelines with a message line. To
correct the error on a collaboration diagram, add a message to an object link line.

Error Messages

436

One or more of the selected tables have columns that are either members of the view or
are used in an expression. Remove?

When removing a base table from a view, if columns from the table are specified in
the column list or are used in an expression (Filter, Having, Group By, etc.), the user
is prompted before the table is removed. After confirming the delete, any expression
that references the table will have the table name replaced by the work DELETED.

Only one processes allowed on a context diagram.
Because the context diagram defines the scope of the project, only one process is
allowed. It is numbered as process 0.

Only two projects allowed in the Education Version.

The education configurations of the product limit you to editing two projects at a
time. However, you may maintain other projects on backup disks created by the
Visible Analyst Backup tool. When these projects are needed, you should Backup
and Delete the current project then Restore the required project.

Only someone logged in as supervisor can turn off security.

To disable security for the single user version of Visible Analyst, the user must be
named supervisor or be assigned as system manager.

Operation labeled ‘x’ is dangling.

This error message is the result of not connecting the indicated operation to an event
on an entity life history diagram. To resolve the error, draw a line connecting the
operation to an event using the Connect function.

Operation labeled ‘x’ cannot be connected to an entity.

This error message is the result of connecting the indicated operation to an entity.
Operations can only be connected to events. To resolve the error, connect the
operation to an event using the Connect function, or remove the connection to the
entity.

Operation labeled ‘x’ has more than one input connection.

This error message is the result of connecting the indicated operation to more than
one event. To resolve the error, move or delete all but one of the lines to connect the
operation to one and only one event.

Parameters missing.
There is one (or more) missing parameter in the ‘params’ clause of a custom report
specification.

Error Messages

437

Parent already has 40 children.
Each diagram in a project can have a maximum of 40 diagrams on the level
immediately below it. The New Diagram, Nest or Page operation cannot continue.

Parent missing. Must restore before editing children.

The parent diagram of the selected child cannot be located in the directory containing
the project. A DOS delete or rename command could have caused this condition. To
correct this condition, Restore the project data files from the backup disk(s)
generated by a Visible Analyst Backup operation.

Problem accessing database files. - Operation canceled.

An unexpected error status was returned from the record manager. To correct this
condition, execute the project Rebuild function. If the problem persists, contact
Visible Systems.

Problem accessing security file.

The VASECUR.VAW file is missing or damaged. Please contact Visible Systems.

Problem creating directory - Cannot proceed with operation.

When creating a new project, there was a problem creating the needed subdirectory.
Either you have insufficient rights to perform the operation, or there was a problem
with the drive.

Problem creating network transaction file - Cannot proceed with create.

Critical error; contact Visible Systems.

Problem creating project repository - Cannot proceed with operation.

When creating a new project, there was a problem creating the needed files. Either
you have insufficient rights to perform the operation, there is insufficient disk space,
or there was a problem with the drive.

Problem opening tree file - Cannot proceed with operation.
Problem reading project tree file - Cannot perform save.
Problem reading project tree file - Cannot print.

Critical error; contact Visible Systems.

Problem sending message.

A message could not be sent to the selected user. It could be that the user is not
logged in on the network. Otherwise, try reloading the network shell.

Problem with current device.

Windows had a problem accessing the output device you specified.

Error Messages

438

Problem with transaction log - Cannot proceed.
The transaction file for this project has been corrupted. To correct this condition,
contact Visible Systems for instructions.

Process number already in use.

The specified process number is already used. A process number must be of the form
‘Parent-number + “.” + Child-number’ where child-number is a unique number
between one and one hundred.

Process view is empty.

You have attempted to create a process view and indicated a process that does not
use data elements listed in the composition field of any existing entity. There must be
data flows either entering or leaving the process that are composed directly or
indirectly of data elements which one or more entities list in their composition fields.

Program ‘x’ has invalid root module.

The specified program repository item does not have a module listed in its
composition field.

Project already exists.

The project specified for creation already exists.

Project already has maximum number of diagrams.

The diagram count for the current project involved in a New Diagram operation or
the Copy or Copy Diagram operation exceeds the maximum allowable diagram
count if the operation were to complete. The following table describes the maximum
diagram count per diagram type for the each configuration:

 Education – 10

Corporate –limited to the available disk space

To determine your product configuration, select About Visible Analyst from the
Help menu.

Project does not exist.

The project root that was entered could not be found in the project master list. Try
restoring the project from a set of backup disks.

Project files damaged or not convertible.

A project created with an earlier version of Visible Analyst is damaged or not
complete and cannot be converted to the current release.

Error Messages

439

Project is currently being created by another user - Cannot proceed.
The project specified is being created by another user. Either select another project
root name or wait until the other user saves his or her work.

Project master file cannot be opened - May be damaged.

There was a problem accessing the project master file. Contact Visible Systems.

Project not found in master file.

The selected project could not be found in the list of projects.

Project version (X.Y) not supported.

This project was created with a prior version of Visible Analyst. It must be converted
to version 5.0 before being used. To convert a 3.1 or later project to version 5.0,
execute the Rebuild tool. If the project was created by a version prior to 3.1, then
contact Visible Systems. We can convert it for you.

Project ‘x’ not found. Enter new location:

This project could not be found in the directory path where other projects reside.
Perhaps it is on another drive or in another directory, or perhaps it is on a server or a
local drive.

Project’s database files not found.

The database files for this project could not be found in the directory where the
project resides. Either the files have been deleted or moved with DOS functions.
They need to be restored to the proper directory before Visible Analyst can proceed.
You also have the option of restoring the most recently backed up version of the
project.

Query definition error: ‘x’.

The specified error occurred when you defined a custom report query. Please correct
and try again.

Rebuild failed. Cannot create data store list.

Rebuild could not access or update the temporary project.

Rebuild failed. Cannot create work files for project ‘x’.

Your system may be low on memory or disk space.

Record header format is not correct.

The header for an import record is not properly formed.

Error Messages

440

Recursive definition for ‘x’ is not permitted. Set Reference type to Address.
A class cannot be used in its own definition unless the reference type of the member
indicates it is a pointer to the class.

Recursive views are not allowed.

When defining the base tables for a view, the list cannot contain the view itself. Any
other view or table is allowed.

Relationship already exists with different cardinality.
A relationship actually consists of the relationship itself and the two entities to which
it is attached. An entity/relationship combination can appear on multiple views, but
only once per view. However, each occurrence must specify the same cardinality.
You are attempting to specify a cardinality for a relationship different from how it
appears on another view.

Relationship already exists with different set of names.

A relationship actually consists of the relationship itself and the two entities to which
it is attached. An entity/relationship combination can appear on multiple views, but
only once per view. However, on each occurrence, the relationship must have the
same names in both directions. You are attempting to specify a relationship with
mismatched names in the opposing directions of the relationship.

Report name missing.

The report name is missing in the ‘report’ clause of a custom report specification.

Report saver file is empty.

No report format files have been created. To create a saved report, define a report in
the Reports dialog box and click the Save Report button. In the subsequent dialog
box, give the report a name and click OK.

Report “x” not found.

The report you requested from the report saver file could not be found. The report
names contained in the file are listed in the dialog box. You can choose one from the
list.

Repository string exceeds the maximum length.

One of the strings in a VSC import file exceeds 254 characters in overall length.

Restriction too long.

The restriction entered in the custom report definition ‘where’ clause is too long.

Error Messages

441

Return value from “x” is sometimes ignored.
Some invocations of module “x” do not have a return couple and some do.
Invocations should be consistent.

Root module for C program “x” is not named ‘main’.

The module named in the repository Program item for which shell code is being
generated needs to be named “main” for C programs.

Security cannot be disabled for network version of Visible Analyst.

In order for Visible Analyst to work properly on a network, security must always be
turned on.

Selected SQL dialect is not defined in SQLDIAL.TBL - Reload from master media.

The information for the SQL dialect you have selected is not in the file
SQLDIAL.TBL. You should reload the file from the master media.

Sequence event labeled ‘x’ is dangling.

This error message is the result of not connecting the indicated sequence event to an
entity or any events on an entity life history diagram. To resolve the error, draw a
line connecting the event to an entity or structure box using the Connect function.

Selection event labeled ‘x’ is dangling.

This error is the result of not connecting the indicated selection event box to an entity
or a structure box on an entity life history diagram. To resolve the error, draw a line
connecting the event to an entity or structure box using the Connect function.

Some components already exist - Conflicting information was not changed.
When defining components using the Add Components dialog, an item was defined
that already existed in the repository but with different physical characteristics. The
original characteristics were not modified.

Statement type ‘x’ is being used in the current project and cannot be removed.

You cannot delete a statement type from the current project if there are statements
that us it.

Stereotype not defined for relationship between the use cases ‘x’ and ‘y’.

For relationships between a pair of use case symbols, a stereotype must be specified,
indicating the type of relationship. A name is optional. To resolve the error, find the
relationship and set the stereotype using the Change Item function.

Storage type expected.

A storage type is required in a custom report specification.

Error Messages

442

String constant expected.
A string constant is required in a ‘where’ clause restriction.

Structure box labeled ‘x’ is dangling.

This error message is the result of not connecting the indicated structure box to an
entity or any events on an entity life history diagram. To resolve the error, draw a
line connecting the structure box to an entity or event using the Connect function.

Subdirectory could not be created.
A default subdirectory could not be created for your new project because your disk is
full, there are no more available directory entries (a very rare occurrence), or because
you do not have rights to create subdirectories from the current directory. Check
your available disk space or check with your network administrator.

System boundary labeled ‘x’ has no components.

The above error message indicates the named system boundary does not have any
use case object defined in its composition. A system boundary is used to group
objects. To resolve the error, either delete the system boundary, or add components
using Define.

Template files missing - Reload from master media.
One of the symbol template files (TEMPLATE, TEMPLATE.SC, TEMPLATE.ER,
TEMPLATE.US, TEMPLATE.FD, TEMPLATE.CL, or TEMPLATE.ST) is
missing. Reload from master media.

Text string is not in the proper format.

All strings in the import file must be enclosed in quotes.

The first character of a label must be a letter when rules are enabled.

All entries in the project repository must begin with a letter when rules are enabled.

The item “x” is not valid when combined with the other line parameters you have
previously chosen.

Not all combinations of line elements are valid. If you select an invalid combination,
you cannot continue. Either reset to a valid setting or cancel the operation.

The maximum number of projects have already been created.

In the education version of Visible Analyst, only two projects can be created. If you
want to create another project, you must delete a project before continuing.

The requested scaling factor is too small for the selected page size.

The scaling factor you selected cannot be used with the selected page size because
the workspace required to represent the diagram would be too large. The minimum

Error Messages

443

valid scaling factor is set. As the page size increases, so does the minimum scaling
factor.

The requested diagram settings are too small to include all diagram objects. The scaling
factor has been changed.

The page settings you specified (workspace, orientation, page size, and scaling) are
not large enough to encompass the entire diagram. The scaling factor has been
changed to accommodate all the diagram objects.

The selection that you made requires the existence of objects that you have chosen to
delete. The selection will not be changed.

When resolving conflicts during enterprise copy, you cannot make your selections
such that a dependent object is retained while the parent object is deleted. For
example, if you choose to delete a class, all member functions (or modules)
associated with that class must also be deleted.

The settings are too small to include all diagram objects, but changing the scaling factor
conflicts with the page size.

The page settings you specified (workspace, orientation, page size, and scaling) are
not large enough to encompass the entire diagram. However, the scaling factor
cannot be changed because the workspace required to represent the diagram would
be too large. Change the workspace, orientation, or page size to accommodate all the
diagram objects.

There are more than two description lines.

An import file has more than two lines of description information.

There are no virtual methods defined for this class.

Only classes with virtual or pure virtual methods can be marked as abstract. Visible
Analyst automatically marks classes with pure virtual methods as abstract.

There are ‘x’ unnamed actor(s).

This error is the result of not labeling actors on your use case diagram. To resolve the
error, find and label them using the Change Item function.

There are ‘x’ unnamed iteration event(s).

This error is the result of not labeling iteration events on your entity life history
diagram. To resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed message(s).

This error is the result of not labeling messages on your sequence or collaboration
diagram. To resolve the error, find and label them using the Change Item function.

Error Messages

444

There are ‘x’ unnamed note(s).
 This error is the result of not labeling note symbols on one of several types of UML
 diagrams. To resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed object(s).

This error is the result of not labeling objects on your sequence or collaboration
diagram. To resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed operation(s).
This error is the result of not labeling operations on your entity life history diagram.
To resolve the error, find and label them using the Change Item function. Note that
even though the name does not appear in the operation symbol, the name must exist
and will be displayed in the operation table.

There are ‘x’ unnamed relationship(s).

This warning is the result of not labeling relationships on your use case diagram. To
resolve the warning, find and label them using the Change Item function.

There are ‘x’ unnamed selection events.
This error is the result of not labeling selection events on your entity life history
diagram. To resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed sequence events.

This error is the result of not labeling sequence events on your entity life history
diagram. To resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed swimlane(s).

This error is the result of not labeling swimlanes on your activity diagram. To
resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed system boundary(s).

This error is the result of not labeling system boundaries on your use case diagram.
To resolve the error, find and label them using the Change Item function.

There are ‘x’ unnamed use case(s).

This error is the result of not labeling use cases on your use case diagram. To
resolve the error, find and label them using the Change Item function.

There must be at least two event blocks defined on this diagram.
Every entity must have a creation event and a destruction event. In addition, there
may be other events that take place in between. This error indicates there are not at
least two connections from the defining entity to event symbols. To resolve the
error, connect the entity to at least two events using the Connect function.

Error Messages

445

There should be only one entity on this diagram.

An entity life history diagram describes the events and operations of a single entity.
Remove all but the desired entity for this diagram.

These columns are components of a relationship. Do you want to include all members of
the relationship?

When adding a join relationship by dragging and dropping columns, if the pair of
columns selected are part of a relationship based join, the user can choose to add all
the columns from the relationship. Note: the columns will not appear in the
Additional Join Restrictions control because they are part of a relationship definition.

These PERFORM statements are generated from invocation lines.
You specified that module description fields are to be interpreted as COBOL code
and placed into your generated shell code. Therefore, the PERFORM statements that
would otherwise be generated from module invocations appearing on structure chart
diagrams are not used as generated code. Rather, they are placed in the code as
comments for your reference, to compare against the code stored in the module
description field.

This class appears on an entity-relationship diagram.

If a class appears on an entity-relationship diagram, the persistent indicator cannot be
turned off. This is because an entity or table outlasts the execution of a program.

This couple exists on other diagrams, so it may not be changed.

Couples of different types cannot have the same name. You have tried to locally
change a couple to a different type when the original couple has locations on other
diagrams. Either choose a new name for the couple before attempting to change the
type, or make a global type change, throughout your project.

This division has been used in an Enterprise Copy. Delete Enterprise Tags before
removing.

If a division has been used in an Enterprise Copy operation, the link between the
enterprise project and the satellite project must be removed before a division can be
deleted. See Removing Enterprise Links for details.

This entry can only be associated with one ‘x’ planning statement type.

When this statement type was defined, the Cardinality was set to 1:1, so it cannot be
linked to more than one entry.

Error Messages

446

This entry has been deleted.
The item selected has been deleted by another user since the window was displayed.
Select another entry.

This file is currently locked by another user.

The file specified for import or export is being accessed by another user. Try again.

This is disk “x” of the backup. Please insert backup disk “y”.

The wrong disk was inserted during a Restore operation. The disks must be accessed
in the same sequence as when they were produced during Backup operation.

This is not a conditional invocation line. Reposition start point.

This message is issued when an attempt to specify an additional conditional
invocation line fails because the conditional terminator (the diamond shaped one)
was not chosen. To associate another conditional invocation line to a pre-existing
conditional terminator, select the conditional terminator with the Line Settings
function on the Options menu. Now point to the middle of a preexisting conditional
terminator and select it as the start point of the line. Next choose the appropriate
module as the endpoint of the line. A second conditional invocation line is drawn as
if it were emanating from the conditional terminator you selected as the start point.
In fact, there are two conditional-terminated invocation lines with the conditional
terminators exactly superimposed on each other. Either can be moved or deleted
separately from the other.

This item cannot be deleted or modified.

The text caption that appears on diagrams generated by the education version of
Visible Analyst cannot be altered or removed.

This page already contains the maximum of 2000 text items per page.

You are allowed up to 2000 blocks of text on a diagram.

This page already contains the maximum of 1000 lines per page.

You are allowed to have any combination of 1000 lines and line segments on a
diagram.

This page already contains the maximum of 500 symbols per page.

A diagram may contain up to 500 symbols. Once this maximum is reached, you can’t
add more. Try subdividing the diagram.

This PERFORM statement is generated from an invocation line.

You have specified that module description fields are to be interpreted as COBOL
code and placed into your generated shell code. Therefore, the PERFORM

Error Messages

447

statements that would otherwise be generated from module invocations appearing on
structure chart diagrams are not used as generated code. Rather, they are placed in
the code as comments for your reference, to compare against the code stored in the
module description field.

This planning statement is already associated with another entry.

When this statement type was defined, the Cardinality was set to 1:1, so it cannot be
linked to more than one entry.

This project is stored on a local drive to which you do not have access.
The selected project is stored on a local drive on another workstation. You must be
using that station in order to access the project, even if you have been given rights.

Too many flows to fit on diagram. - Remaining flows ignored.

This message is displayed by the Nest and Split operations. When splitting a data
flow, there was not enough space in the margin to draw all the subflows. Therefore,
only the subflows specified before this message appeared are drawn in the diagram’s
margin. If you wish to continue splitting the parent data flow, move the flows on the
margin (either individually or in a block) about two inches toward the middle of the
diagram and once again select Split. Now select one of the subflows as the object of
the Split. The split operation further decomposes the parent data flow, not the
subflow. Then enter or select the component subflows. Repeat this procedure until
you have fully decomposed the parent data flow.

The instructions for the Nest operation are similar. Follow the above instructions to
move the flows from the margin(s) of the child diagram. Then, Save the diagram and
return to the parent diagram using the Parent option of the Nest function. The parent
diagram containing the nested process should be the current diagram. Now locate the
nested process and re-nest this parent process using Nest Explode operation. Another
set of data flows is dragged down and drawn on the child diagram. Repeat this
procedure until the message is no longer displayed.

Too many parameters.

There are too many parameters in the ‘params’ clause of a custom report
specification.

Too many reports.

You have already saved the maximum number of custom reports. You cannot save
another.

Tree file already exists in this subdirectory - Select another path.

The subdirectory to which you are moving the project already contains the current
project tree file.

Error Messages

448

Trigger “x” already in repository. Add to Table?

You tried to add a trigger to the repository that already exists. If you want to attach it
to the current table (entity), click OK. Otherwise, click Cancel.

Type for couple “x” cannot be determined.

The element related to by couple “x” has no physical characteristics defined.

Unable to access path\file.

Problem accessing a file in the specified directory. You might not have rights to the
directory.

Unable to delete directory.

The directory containing the project you are deleting cannot be deleted. You might
not have rights to the directory or the directory might not be empty.

Unbalanced braces in composition of “x”.

The curly braces in the composition field of repository item “x” are not balanced.

Unbalanced parentheses.

The parentheses in an expression are not balanced.

Unexpected EOF.

An end-of-file was encountered in the REPORTS.TBL file where other report
definition statements were expected. Please correct the file and try again.

Unexpected error during VA operation.

Critical error, contact Visible Systems.

Unknown column “x”.

The column name you entered in a ‘where’ clause restriction is invalid. Please
consult the manual and enter a correct value.

Unknown parameter “x”.

The parameter you entered in a ‘where’ clause restriction is does not match any
parameter expression you entered in the ‘params’ clause. Please enter a correct
value.

Use case labeled ‘x’ is dangling.

The above warning message is the result of not connecting the indicated use case to
another use case on the use case diagram. To resolve the error, draw a line from the
use case to any use case using the Connect function.

Error Messages

449

User file cannot be accessed if security is disabled.
The Users option on the Tools menu cannot be selected if security is not enabled. To
enable security in the single user version of Visible Analyst, select the Security
option from the Options menu and enter a user ID of “SUPERVISOR.” This enables
security and prevents unauthorized users from entering Visible Analyst. After
enabling security, the supervisor can assign a password for the Supervisor User ID.
To disable security, sign on as SUPERVISOR and deselect Security.

User not logged on.

When security is enabled, a list of valid user IDs is checked. The one you used is not
among them. Check with the supervisor.

VR Repository Access Error (Error Displays as a Dialog Box)

This error is issued by the BTRIEVE data base manager employed by the repository.
The message usually occurs because the data repository and diagram parameter files
are unsynchronized due to a latent problem or power loss during a Visible Analyst
operation. It could also happen because one or more repository files have become
unavailable due to deletion. There are other possible causes as well.

Because it indicates a serious problem, we recommend that you call Visible Systems
so that we can help you correct the situation. It is important that you record the other
information that appears in the dialog box. A simple way to do this is to press
ALT+PrintScreen and capture the dialog box to the Windows Clipboard. You can
then open Windows Write program (or another software package that can deal with
bitmaps). Once in Write (or whatever other software you choose), select Paste from
the program Edit menu and the image from the Clipboard appears. Then you can
select Print from the File menu and print it, so that you can refer to it when you talk
to Visible Systems technical support personnel.

Warning: A pure virtual method should not have a definition. Continue?

If a class method is defined as pure virtual, or abstract, the Module Description field
should be empty because pure virtual methods are never executed. They are meant to
be defined by derived classes.

Warning: Both Related To and Values & Meanings contain information.

It may be redundant to specify information in the Values & Meanings field when a
couple is related to an element, data structure, data flow, data store or file. We
suggest you specify information in the Related To field when a couple represents a
data flow diagram element, data structure, etc., and remove any information from the
Values & Meanings field.

In other instances, when the couple only exists within the context of the structure
chart diagram and bears no meaning in terms of project data flow diagrams, then the

Error Messages

450

Values & Meanings field should describe this couple. For example, a control couple
that signals an end of file condition would likely contain information in its Values &
Meanings field because a condition or signal should not be defined in a data flow
diagram.

Warning: Entity life history diagram ‘x’ is not associated with an entity.

This warning is the result of not exploding an entity on an entity relationship
diagram to the indicated entity life history diagram. To resolve the warning, open an
entity relationship diagram on which the entity appears, select the entity, and use the
Explode feature to attach to the indicated ELH diagram.

Warning: Related to entry “x” does not exist in the repository.
A label was entered into the Related To field which does not reference a dictionary
entry. Correct the spelling of the label. To determine the correct spelling of the label,
execute a repository search.

Warning: Relationship “XrY” omitted from schema because it doesn’t appear on the
included view(s).

The named relationship either joins two entities (somewhere in this project) or is
attached to an entity included in the current schema but does not appear on any of the
views you chose to include in this schema. Therefore, it is omitted from the schema
you are generating. If this is not what you want, add one of the views containing it to
the list for the schema generation.

Warning: Relationship “XY” omitted from schema because Entity “Z” doesn’t appear
on the included view(s).

The named relationship is attached to Entity “Z”, that is included in the current
schema but does not appear on any of the views you chose to include in this schema.
Therefore, it is omitted from the schema you are generating. If this is not what you
want, add one of the views containing it to the list for the schema generation.

Warning: There are ‘x’ unnamed structure box(es).

This warning is the result of not labeling structure boxes on your entity life history
diagram. To resolve the warning, find and label them using the Change Item
function. However, since structure boxes are simply place holders, it is not
necessary to label them.

Warning: This entry type is normally related to a data element.
A label was entered into the Related To field of a control couple that does not refer
to a data element. A control couple represents an item used to coordinate the
processing between procedures. In most instances, it is a single conditional signal.
The Related To field should only contain an element reference due to the data flow

Error Messages

451

diagramming restriction that prevents the definition of conditionals and the
elementary nature of a control couple.

Warning: This entry type is normally related to a process.

A label was entered into the Related To field of a structure chart module entry that
does not refer to a data flow process. A structure chart module represents the
encoding of one or more data flow processes. Therefore, the Related To field should
contain a label that references a process.

Warning: This entry type is normally related to an element, data structure, data flow, or
file.

A label was entered into the Related To field of a data or generic couple that does not
refer to a data element, data structure, data flow or file. A data or generic couple
represents the data items passed between structure chart modules. These data items
are inputs furnished to and the outputs produced by the modules. A high correlation
exists between the data flow diagram entry types such as an element, data structure,
etc., and a data or generic couple because the structure chart is derived from the data
flow diagrams of the project.

Warning: “x” in composition field has an invalid type for this object.

You entered a name in the composition field of “x” whose type cannot be used for
object “X.”

Warning: “x” in composition field is referenced by another cluster.

You entered an entity into the composition field of a cluster that is already in the
composition of another entity. No entity may be referenced by more than one cluster.
To select from the free entity pool (entities not referenced by any cluster), position
the cursor in the composition field of the cluster and click the repository Search
button. Multiple entities can be selected from the repository search dialog box.

You do not have rights to change this object.

The selected object belongs to a Division to which you do not have Modify rights.
Division rights are inherited from a user’s project rights, but can be further restricted
within the division.

You do not have rights to this directory.

Either you have not been assigned as a trustee to the directory selected or you have
insufficient rights in the directory. There are two other ways this error can be caused.
First, the network drive mappings changed since directory rights were assigned.
Second, some users are attempting to access this network volume with different
drive mappings than other users.

Error Messages

452

Trustee assignment is accomplished through NetWare functions, normally performed
by the supervisor. The following trustee rights must be granted for the user to gain
access to the project: Read, Write, Open, Create and Search.

You do not have rights to this diagram.

The selected diagram belongs to a division to which you do not have access rights.
Division rights are inherited from user project rights, but can be further restricted
within the division.

You do not have rights to this object.

The selected object belongs to a division to which you do not have access rights.
Division rights are inherited from user project rights, but can be further restricted
within the division.

You do not have rights to update the VAW.INI file.

In order to change user-defined attributes or objects, you must have write access to
the system VAW.INI file that is stored in the directory where VA32.EXE was
loaded.

You do not have the required rights to perform the enterprise update requested.

In order to complete an Enterprise Copy operation, you may need modify rights on
the selected division in either the enterprise project, the satellite project, or both
depending on the selections you made in the Update Actions dialog box. Division
rights are inherited from user project rights, but can be further restricted within the
division.

You do not have view rights for all objects in the specified division.

In order to perform an Enterprise Copy operation, you must have view rights for the
division being copied. Division rights are inherited from user project rights, but can
be further restricted within the division.

You have insufficient rights to the directory where the Visible Analyst is installed.
In order to use Visible Analyst, you must have read, write, create, and erase rights to
the directory where the Visible Analyst system data files are stored. If the System
Data Path was set to be different from the program directory during the install
procedure, you only need to assign read rights to the program directory. Establishing
a separate directory for programs and data gives you the most flexibility in assigning
rights to control access.

You have not been assigned access rights to this project.

In order to access this project, the user who created the project or a user with
supervisor equivalent privileges must include your user ID in the access list
maintained by the project. Furthermore, you must be defined as a trustee of the

Error Messages

453

directory containing the project either implicitly, through the cascading effect of
parental privileges, or by an explicit directory entry.

To include the user ID in the access list maintained by the project, select Users from
the Tools menu. Trustee assignment is accomplished through NetWare functions,
normally performed by the supervisor. The following trustee rights must be granted
for the user to gain access to the project: Read, Write, Open, Create and Search.

You have not been assigned modify rights to this project.

The creator of this project or a supervisor has given you view-only rights. One of
those people must upgrade your rights before you can make any changes to this
project.

You may not use arcs and elbows for invocation lines that have couples.

Because of the way couples are drawn, you cannot add couples to invocation lines
of these types and you cannot change an invocation line with existing couples into
one of these line types.

You must have exclusive rights to branch - Another user is editing a child diagram.

When a diagram is inserted into the tree, all diagrams below it in the same branch
could be affected. Someone is editing a diagram within the branch. Therefore, the
create cannot be performed.

You must have exclusive rights to project to perform this operation.

The selected function can only be performed if you are the only user accessing the
current project.

You must have rules & repository support to access this project.

The project you are attempting to open was created with a repository, and the version
of Visible Analyst that you are using does not have repository support. Contact
Visible Systems to upgrade your product configuration.

You must install printers from Windows Control Panel before this function can be used.
You cannot change printers until at least one is installed. You must do this from the
Windows Control Panel.

You must select an invocation line before pasting unassociated couples.

If a couple is copied to the Windows Clipboard without an associated invocation
line, you must select an invocation line before performing a Paste operation so that
Visible Analyst knows where to place the couple.

Error Messages

454

You must Undo changes to the current line-in-progress to change modes.
If a line is being drawn, but has not yet been completed, you must either complete
the line or select Undo from the edit menu to cancel the line before you can switch to
another drawing mode.

‘X’ statement types cannot have children.

When this statement type was defined, the Composite Type option was not enabled.

‘X’ statement types cannot be linked to other objects.

When this statement type was defined, the Allow Linkage option was not enabled.

‘X’ statement types cannot be linked to this type of object.

When this statement type was defined, the Link To type was different than the object
type to which you are attempting to link.

Customizing an SQL Dialect

455

Appendix B

Customizing an SQL Dialect

After selecting the Options function SQL Dialect, you see a dialect named User-Defined.
Selecting this and then choosing Generate SQL from the Repository menu generates SQL
DDL that includes all possible options. There is no existing SQL dialect that includes all of
them; however, you can customize this dialect if you need an SQL dialect that Visible Analyst
does not yet support.

To customize the dialect:

Keep a Backup of the 1 Make a copy of the file \VA\SQLDIAL.TBL so that you
Original File: can restore it and start over in case you make a serious
 error.

Edit the Dialect 2 With an ASCII text editor, edit the file SQLDIAL.TBL.
Description Table: Each dialect is described in a section beginning with the

name of the dialect in brackets. Search for [sql user] at the
beginning of the section describing User Defined SQL.

 3 You see the various options listed followed by a colon,

and then Yes or No (indicating whether or not the option
applies) or a numeric value describing a length constraint.
Change these values to reflect the requirements of your
SQL dialect. If ‘Semicolons:’ is set to yes, each DDL
statement is appended with a ‘;’.

Select Applicable Data 4 This is followed by a section defining the available data
Types: types for the customized dialect. For any data type that is

not supported by your dialect, the text following the colon
should be deleted. Alternatively, the entire line can be
deleted. For data types available in your dialect, you must
also indicate how many parameters are to be passed to
SQL when indicating a certain data type. Examine how it
is done in other dialects if you have questions.

For example, examine the definition for the data type
“decimal”. You see three possible syntaxes:

Customizing an SQL Dialect

456

DECIMAL(,), DECIMAL(), and DECIMAL. The first
indicates that SQL would expect a definition of a decimal
data type to include both the field length and the number
of decimal places (DECIMAL(6,2)). Similarly,
DECIMAL() would describe a declaration with just one
length value, and DECIMAL would contain no length
value. Consult the documentation for your SQL dialect to
find out how it expects data types to be defined and what
the numbers mean to that specific dialect.

If the list of data types begins with a single colon (:), this
indicates the logical-to-physical mapping wastes storage
space. If the list starts with a pair of colons (::), the SQL
dialect does not have a native type that corresponds to the
logical type.

Note
2 In the LAN version, this file is Read Only. A user with network supervisor

privileges must change the file to Read/Write before editing can be done.

Customizing the Trigger Wizard

457

Appendix C

Customizing the Trigger Wizard

When performing SQL schema generation, you can enforce referential integrity either
declaratively or through the use of the Trigger Wizard. The Trigger Wizard automatically
generates the triggers that are necessary to enforce the referential integrity constraints
specified by the relationships defined in your data model. If you want to customize the trigger
code that is produced by the Trigger Wizard, you must follow the guidelines outlined in this
section.

Create a Supplemental 1 When generating triggers, the Trigger Wizard uses the
Trigger Definition File: TRIGSYS.TBL file to create the necessary SQL code.
 This file contains macro definitions for all triggers that

can be generated for each SQL dialect. This file should
never be modified. Instead, create a file named
TRIGUSER.TBL to use to redefine macros that you wish
to change. (You can simply copy the TRIGSYS.TBL.)

Determine the Scope 2 The trigger definition file is divided into sections. In the
of the Changes: first section, [Template global], define macros that are

used by all other sections in the file. For each SQL dialect
that you use, there should be a section named [Template
dialect], where dialect is the name of the target RDBMS.
Valid dialect names include Server System 10, Oracle,
and Watcom.

Create New Macros: 3 There are two types of modifications that you can

perform: modify the code of an existing macro or create a
new macro that is to be called by one or more of the
standard macros. To create a new macro, a C-style
convention is used:

 #define identifier {substitution-text}
 OR
 #define identfier (parameter-list) {substitution-text}

where all occurrences of identifier are replaced with
substitution-text. The substitution-text can contain zero,

Customizing the Trigger Wizard

458

one, or more statements. Note that the opening and
closing braces ({ }) are required.

There are two operators that can be used for token
passing:

token##parameter, parameter##token
AND
token#^parameter, parameter#^token

If ## precedes or follows a formal parameter in the
definition of a macro, the actual argument is concatenated
with the token on the other side of the ## before the
macro is expanded. If #^ is used, the expansion is
performed before the passing.

To remove a macro definition, use the directive #undef
identifier.

To define a single-line comment, use the #— directive.
Anything after the directive is ignored by the Trigger
Wizard. To define a multi-line comment use #/* to start
the comment and */ to end it. Macro comments do not
appear in the generated trigger.

Modify the Trigger 4 The Trigger preamble is a special macro that gets
Preamble Macro: expanded at the beginning of every trigger generated by

the Trigger Wizard. It can be used to store code that is
common to all triggers.

Modify the Referential 5 The Trigger Wizard uses a set of pre-defined macros to
Integrity Macros: enforce the referential integrity constraint defined by a

relationship. The names of the macros cannot be altered.
However, you are free to make any changes you wish to
the body of the macro.

 OnDeleteCascadeChild
 Delete dependent rows when the parent is deleted.

 OnDeleteRestrictParent
 Don’t allow parent to be deleted if dependent rows exist

in the child.

Customizing the Trigger Wizard

459

OnDeleteSetDfltChild
Set dependent foreign key columns to a default value
when the parent is deleted.

OnDeleteSetNullChild
Set dependent foreign key columns to NULL when the
parent is deleted.

OnUpdateCascadeChild
Change dependent foreign key columns when the primary
key (or any unique constraint) columns in the parent are
modified.

OnUpdateRestrictParent
Don’t allow primary key columns in the parent to be
modified if dependent rows exist in the child.

OnUpdateSetDfltChild
Set dependent foreign key columns to a default value
when the primary key columns in the parent are modified.

OnUpdateSetNullChild
Set dependent foreign key columns to NULL when the
primary key columns in the parent are modified.

OnInsertChildRestrictParent
Don’t allow an insert to be performed on a dependent
table if the foreign key does not exist as a primary key in
the parent.

OnUpdateChildRestrictParent
Don’t allow an update to be performed on a dependent
table is the foreign key does not exist as a primary key in
the parent.

Use Built-in Macros: 6 The Trigger Wizard has several built-in macros to ease

the construction of a trigger. Except where noted, these
macros can only be used in the body of one of the
referential integrity macros described above.

ChildTableName
The name of the dependent table in a relationship.

Customizing the Trigger Wizard

460

ColumnUpdateTest(Conjunction)
Creates a test condition comparing column values before
and after the table is modified. This should only be used
for SQLServer dialects.

Parameter Description
Conjunction If a multi-column key is used,

this parameter determines how
the column comparisons are
grouped. Acceptable values are
and or or.

ColumnValueTest (CorrelationNameOld,
RelationalOperator, CorrelationNameNew, Conjunction)
Creates a test condition comparing a pair of columns in
either the parent or dependent table.

 Parameter Description
 CorrelationNameOld The name of the table.

Depending on which table is
being examined, either the
ParentTableName or
ChildTableName macro or a
correlation name should be
used.

 RelationalOperator The operator used to compare

the columns. Any relational
operators are acceptable.

 CorrelationNameNew The name of the table.

Depending on which table is
being examined, either the
ParentTableName or
ChildTableName macro or a
correlation name should be
used.

 Conjunction If a multi-column key is used,

this parameter determines how
the column comparisons are
grouped. Acceptable values are
and or or.

Customizing the Trigger Wizard

461

 ForeignKeyColumnNameList(CorrelationName)

Comma delimited list of foreign key column names in key
order.

Parameter Description

 CorrelationName The name of the dependent
table. Either the
ChildTableName macro or a
correlation name should be
used.

JoinParentChild (ParentTableName,
RelationalOperator, ChildTableName, Conjunction)
Creates a join condition that is used to compare the
unique columns in the parent table against the foreign key
columns in the child.

 Parameter Description
 ParentTableName The name of the owner table.

Either the ParentTableName
macro or a correlation name
should be used.

 RelationalOperator The operator used to compare

the columns. Any relational
operators are acceptable.

 ChildTableName The name of the dependent

table. Either the
ChildTableName macro or a
correlation name should be
used.

 Conjunction If a multi-column key is used,

this parameter determines how
the column comparisons are
grouped. Acceptable values are
and or or.

JoinParentParent (CorrelationName1,
RelationalOperator,CorrelationName2, Conjunction)

Customizing the Trigger Wizard

462

Creates a join condition that is used to compare the parent
table against itself.

 Parameter Description
 CorrelationName1 The name of the parent table.

Either the ParentTableName
macro or a correlation name
should be used.

 RelationalOperator The operator used to compare

the columns. Any relational
operators are acceptable.

 CorrelationName2 The name of the parent table.

Either the ParentTableName
macro or a correlation name
should be used.

 Conjunction If a multi-column key is used,

this parameter determines how
the column comparisons are
grouped. Acceptable values are
and or or.

 ParentRelationshipName

Foreign key relationship name from the parent
perspective.

ParentTableName
The name of the owner table in a relationship. This table
has a primary key that is used as a foreign key in the
dependent table.

SetForeignKeyDefaultValueList (ChildTableName)
Comma delimited list of assignment statements required
to set foreign key columns in the dependent table to
default values.

 Parameter Description
 ChildTableName The name of the dependent

table. Either the
ChildTableName macro or a

Customizing the Trigger Wizard

463

correlation name should be
used.

SetForeignKeyNullList (ChildTableName)
Comma delimited list of assignment statements required
to set foreign key columns in the dependent table to
NULL.

 Parameter Description
 ChildTableName The name of the dependent

table. Either the
ChildTableName macro or a
correlation name should be
used.

SetForeignKeyCascadePkey(ChildTableName,
ParentTableName)
Cascades primary key column values from the parent into
foreign key columns in the child.

 Parameter Description
 ChildTableName The name of the dependent

table. Either the
ChildTableName macro or a
correlation name should be
used.

 ParentTableName The name of the owner table.
Either the ParentTableName
macro or a correlation name
should be used.

TriggerName
The name of the trigger being created. This macro is
available throughout the body of a trigger.

TriggerTableName
The name of the table for which the current trigger is
being created. This macro is available throughout the
body of a trigger.

Customizing the Trigger Wizard

464

UniqueKeyColumnNameList(CorrelationName)
Comma delimited list of the unique constraint column
names in key order.

 Parameter Description

CorrelationName The name of the owner table.
Either the ParentTableName
macro or a correlation name
should be used.

Combine Generated 7 If you have defined triggers in the repository for any
Trigger Code with User entities that are used with the Trigger Wizard, you must
Triggers: insert the following directive into the body of the trigger:

 —VA_Extension InsertTrigger

This indicates to the Trigger Wizard where the generated
referential integrity code should be placed. If this
directive is not used, an error message is issued during
SQL generation and no referential integrity code is
produced.

When a trigger is produced by the Trigger Wizard, it has
the following form:

CREATE TRIGGER trigger-name
Begin
Trigger Preamble code
—VA_Extension InsertTrigger
—VA_Extension begin
referential integrity constraint code
—VA_Extension end
End

Note

2 The macro facility of the Trigger Wizard is available to all trigger bodies, even
those that are stored in the repository. A macro defined within the body of an
existing trigger is visible only within the given macro body. To extend the
visibility of a macro to all trigger bodies, place the definition of the macro in the
[Template global] section of the TRIGUSER.TBL file, or if you want to limit it
to particular an SQL dialect, place it in the [Template dialect] section.

Index

465

Index

—
—, 389

!
!, 389

$
$CDATE, 67
$CTIME, 67
$CUSER, 67
$DIAGRAM, 67
$EDATE, 67
$ETIME, 67
$EUSER, 67
$PARENT, 67
$PROJECT, 67

%
%, 294

*
*/, 389

/
/*, 389

:
:, 456
::, 456

;
;, 455

?
?, 408

[
[], 293

{
{ }, 293

|
|, 293, 303

<
<<extends>>., 225
<<includes>>, 225
<drive>\SETUP, 11

…
… button, 268

4
4K pages, 326

A
a non-inheritance relationship exists between

‘x’ and ‘y’, 215
a non-supertype/subtype relationship exists

between ‘x’ and ‘y’, 210
a parameter value cannot be changed, 258
abandon preview report, 289
about dialog box, 98
about Visible Analyst, 17, 32
absolute file name, 326

Index

466

abstract, 399
abstract class, 256
access, 331, 332
Access 97, 26
access control rights, 402, 405
access control user rights, 406
access its properties, 40
access private data members of a class, 258
access the index search function, 32
accessible to class itself, 257
accessible to derived classes, 257
accessible to friends, 257
accessible to member functions, 257
accessing a class, 256
accessing DFD symbols, 177
accessing the repository, 233
accessing Visible Analyst, 13
action state, 231
actions to fire a trigger, 322
activation, 227
active object, 256
activity diagram, 230
activity diagram analysis, 231
activity diagram graphics, 231
actor, 224
actor name, 224
add a view specification, 262
add an external link, 259
add arguments, 258
add ascending information, 320
add boilerplate to existing diagram, 67
add branch, 35
add button, 238, 404
add check constraints, 319
add child diagram, 35
add component to a key, 320
add descending information, 320
add detail to planning statement, 53
add diagram text, 29
add diagram to print queue, 20
add diagram to queue, 41
add enhancements, 29
add entity to cluster, 287
add external link, 259
add fields, 27
add line to diagram, 15
add lines to a diagram, 29, 55
add new planning statement, 52

add non-relationship-based joins, 273
add physical storage information, 320
add planning statement dialog box, 52
add planning statements, 50
add relationship to a view twice, 275
add relationship-based joins, 274
add rights, 337
add statements, 48, 49
add symbols to a diagram, 29, 55
add text to diagram, 15
add user dialog box, 336
add user ID, 18
add user-defined attributes, 13
added boilerplate, 64
adding a couple, 99
adding a join, 268
adding a line, 79
adding a new division, 404
adding a new method, 256
adding classes, 130
adding columns to the list of columns, 265
adding entities, 130
adding expressions, 265
adding foreign key information for a table, 320
adding friends, 258
adding items to a division, 403
adding key information for a table, 319
adding key reference information, 321
adding labels, 103
adding line segments, 98
adding lines, 96
adding relationships, 130
adding repository fields to a project, 281
adding SQL schema generation information for

entities, 317
adding SQL schema generation information for

relationships, 317
adding SQL schema generation tablespace

information, 322
adding symbols to a diagram, 90
adding trigger information for a table, 321
adding users to a division, 405
additional information, 358
additional join restrictions, 268
address, 253, 256, 258
address reference type, 106
ADM DATA, 359
adornments, 227

Index

467

advise action, 408
aggregation, 60, 214
aggregation relationship, 106
AK, 196, 252
alias, 264, 295, 354
ALIAS, 359
alias field, 248, 249, 264
ALIAS(), 27
aligned in horizontal or vertical row, 30
all data only modules, 307
all fundamental elements must be used on a

DFD, 26, 196
allow duplicate rows, 325
allow FK references outside of this schema

box, 317
allow null, 295
allow null field, 277
alphadesignator, 351
alphanumeric report order, 288
ALT+R, 15
ALTER TABLE, 312
alter table statements, 315, 389
alternate key, 72, 196, 252, 321
alternate keys, 312, 391
analysis, 1, 177
analysis error message box, 153
analysis errors, 32
analysis for entity life history diagrams, 221
analysis statistics, 192
analyze, 13, 15, 30, 121, 146, 152, 165, 166,

167, 168, 169, 175, 185, 186, 194, 195, 213,
217, 252, 313

Analyze, 192
analyze function, 1
analyze function checks, 152
analyze project diagrams, 146
analyzing class diagrams, 214
analyzing data flow diagrams, 152
analyzing diagrams, 75
analyzing FDDs, 169
analyzing state transition diagrams, 218
analyzing structure charts, 185
and, 272
AND, 294
and internal assessment, 45
ANSI 92, 26
ANSI character set, 103
Application Browser, 329

Application Browser format, 378
Application Browser names, 395
apply button, 117
arc line, 229
arch line, 227
argument list, 73, 256, 257
arguments, 257, 258, 399
arguments button, 258
arrange diagram window, 73
arrange icons, 32
arrange open diagram windows as cascaded

windows, 32
arrange open diagram windows as tiled

windows, 32
arrayspecifier, 399
arrow notation, 58
arrowhead, 179, 180
arrowhead endpoint, 183, 184
AS/400 DDS format, 348, 378
AS/400 DDS import, 392
AS400 DDS generation, 27
AS400 DDS generation mapping schemes, 27
ascending information, 315
ASCII file, 293, 384, 397
ASCII format file, 355
ASCII formatted data files, 347
ASCII text editor, 98, 308, 455
assign colors, 24
assign priorities to statements, 49
assign trustees, 334
assign user access privileges, 337
assigning access rights, 335
assigning user access privileges, 336
assigning user rights, 405
assigning users to a division, 404
assigning users to divisioins, 405
associatedid, 352
associatednumber, 350
association, 60
association matrices, 291
associationname, 399
associations, 46
associative class symbol, 213
associative entity, 196, 200, 203, 256, 389
associative entity ‘x’ has less than two foreign

keys as primary key, 203
associative entity ‘x’ has less than two

identifying relationships in this view, 200

Index

468

associative entity ‘x’ has less than two
identifying relationships attached, 200

associative entity type, 195
associator, 196
ASSOCIATOR, 359
associator element, 295, 354
associator element field, 249
associator element name, 194, 203
assumption, 46
asynchronous stimulus, 227, 229
atrributes details, 237
attach check constraint to a table, 319
attached classes, 255, 285
attached entities, 255
attaching check constraint to a table, 319
ATTR, 359
attribute display mode, 118
attribute initial value, 73
attribute level, 23, 71
attribute limit, 253
attribute name, 73
attribute physical characteristics, 253
attribute qualification, 253
attribute reference, 253
attribute type, 73, 106, 253, 256
attribute type fields, 352
attribute visibility, 73, 253
attributedescription, 399
attributeline, 350
attributes, 4, 46, 59, 71, 114, 194, 213, 248,

399
attributes details button, 251, 256
attributes field, 253
attributes file, 349
attributescope, 399
attributetype, 350, 351, 352
attributevisibility, 399
attributive class symbol, 213
attributive entity, 196, 201, 202, 256, 389
attributive entity ‘x’ has no identifying

relationship in this view, 201
attributive entity ‘x’ has no foreign key as

primary key, 204
attributive entity ‘x’ has no identifying

relationship attached, 200
attributive entity ‘x’ has no unique primary

key, 202
attributive entity type, 195

authorization ID, 9, 312
auto connect, 24, 78, 97
auto label, 104
auto label lines, 24, 96, 100, 104, 195, 213
auto label symbols, 24, 90, 91, 104, 108
auto position text, 25
auto save, 137
AUTOEXEC.BAT, 9, 12
autoinc, 310
automated repository maintenance, 146
automatic data flow balancing, 146
automatic process numbering, 4
automatic repositioning of text, 25
automatically attaches the line, 24
available columns box, 265
available columns list, 266, 321
available objects list, 403
available objects list incremental update, 403
available tables box, 264
available users list, 405
average module fan-out, 192

B
Bachman notation, 3, 58
back, 237
backing up a project, 344
backup, 10, 15, 30, 343, 344
backup destination, 344
balance a data model against a process model,

194
balance data model against a process model, 28
balance data model against process model, 2,

196
balance ERDs against DFDs, 26
balance net flows, 166
balancing errors against DFDs, 169
base class, 106
base classes/entities, 114
basic operating principles, 13
basic operation aspects, 55
BEGIN PBLIST, 280
bfloat, 310
bi-directional control couple, 184
bi-directional couple, 311
bi-directional couples, 101
bi-directional data couples, 183
bi-directional data flows, 101

Index

469

bi-directional generic couples, 184
binary, 276, 310
bit, 276, 310
black bar, 231
blank diagram, 133
boilerplate box, 64
boilerplate diagrams, 39, 60
boilerplate keywords, 67
bold, 26, 117
bold face, 293
bounding boxes, 367
bounding rectangle, 77
box containing action states, 231
box with a tab, 225
branch, 146, 168
branched elbow line drawing technique, 102
break link between DFDs, 127
break spawn link, 168
Btrieve, 6
Btrieve client-server, 6
Btrieve local version, 6
Btrieve requester, 6
bufferpool, 327
BUFFERS=, 12
building a planning outline, 50
built-in macros, 322, 459
business event, 46
business function, 81
business functions, 166
business language, 45
business plan, 46
Business Planning Analysis Methods, 166
business rules, 45
business vision, 45
by, 256
by qualifier, 256
BYTES value, 309

C
C, 301, 303, 305, 308, 311
C, 300
C array example, 304
C typedef statements, 308
CA Datacom 8x, 26
cache, 325
CACHE, 325
call an external source module, 394

CALL statement, 394
called function, 311
called module, 191
called page, 191
called-by information, 290
calling function, 311
calling module, 179, 191
calling page, 191
calling parameters, 305
calls information, 290
capabilities, 17
caption text, 103
capture business vision, 45
capture changes, 324
Card’s intrinsic complexity algorithm, 186
cardinality, 105, 225, 321, 399
cardinality between any linked objects, 48
cardinality information, 321
cardinality notation, 58
caret, 273
carriage return, 350
cascade, 32, 73, 271
CASE, 1
CASE import, 397
case insensitive, 67
CASE interface format, 397
CASETool, 396
category notation, 58
Centura SQL Base 5x, 26
Centura SQLBase, 6, 7
chain of associative entities, 203
change, 404, 405
change a line, 117
change a project owner, 118
change alias, 264
change argument list, 255
change arguments, 258
change class, 255
change current SQL dialect, 235
change data store number, 29
change decomposition level, 148
change diagram text, 29
change item, 29, 104, 105, 108, 116, 148, 160,

161, 167, 168, 169, 171, 172, 186, 190, 208,
211, 212, 215, 218

change item dialog box, 217
change join expressions, 267
change join type, 267

Index

470

change label, 29
change line orientation, 97
change line type, 97
change name used by view, 266
change order of columns, 266
change orientation, 30
change page orientation, 289, 300
change position of a key column, 320
change printer, 20
change printer driver settings, 289, 300
change process, 29
change project name, 344
change scaling, 30
change size, 30
change size of symbol, 118
change sort order, 239
change terminator type, 97
change the size of the description window, 47
change type button, 97, 117
change type dialog box, 117
change user ID, 12
changing a membership list, 404
changing an existing division, 402
changing detail level, 71
changing FDD connectors, 102
changing labels, 103
changing lines, 96
changing repository fields, 282
changing rights of selected users, 406
changing the name of a division, 404
changing the size of a symbol, 118
changing user rights, 405
char, 276
character, 310
CHARACTER, 309
character fields, 349
check, 354
CHECK, 355, 360
check balance conditions, 152
check button, 297
check condition, 178
check constraint tab, 319
check constraints, 313, 389
check data flow balance, 153
check for dangling objects, 152
check for errors, 146
check for input and output, 153
check objects for labels, 152

check options, 271
check processes for numbers, 152
checks the syntax of custom report file, 293
child diagram, 35
child of the new diagram, 63
child processes of a function, 102
child project, 413
child statement, 47
child symbol, 102
childtablename, 459
choose a planning statement branch to display,

51
choose link field name, 284
choose type of referential integrity generated,

315
choosing the page to connect, 133
CIF, 397
CIF file, 397
CITRs, 180
class, 23, 62, 72, 256, 258, 399
class ‘x’ has no aggregation attributes defined.,

216
class ‘x’ has no attributes defined., 214
class ‘x’ has no methods defined, 214
class ‘x’ is involved in cyclic inheritance

relationship, 214
class attribute, 72
class attributes, 72, 254
class characteristics field, 256
CLASS COMPOSITION, 355, 360
CLASS DATA, 360
class diagram, 62
class diagram errors, 214
class diagram line terminators, 92
class diagram notation, 72
class diagram symbol, 85
class diagram symbols, 79
class diagrams, 59, 62, 104, 212, 400
class information, 353
class methods, 257
class name, 72
class relationship notation, 94
class symbol, 213
class symbol levels of detail, 213
class symbol subtypes, 213
class tree file, 34, 35
class[element] ‘x’ is undefined, 215
classattribute, 399

Index

471

classdescription, 399
classes, 4, 59
classes of errors, 169
classformat, 398
classformat attribute, 399
classic user interface, 25
classic user interface off, 238
classid, 350
classtype, 399
cld_classassociations, 398
cld_generalization_links, 398
CLDs, 59, 80
clean option, 315
clear, 21, 42, 76, 114, 116, 236
clear current criteria controls, 272
clear diagram object, 15
clears display, 236
clears repository entry changes, 236
close active diagram, 19
close diagram, 19
cluster, 136
cluster diagram, 136
cluster diagram scope, 137
cluster diagram, 19
cluster diagrams, 3, 60, 136
cluster names, 136
cluster subfunctions, 137
clustered, 324
clusters, 286
COBOL, 301, 302, 303, 305, 309, 311, 394
COBOL, 300
COBOL copy libraries, 395
COBOL data division, 394
COBOL data division data definition, 395
COBOL data division hierarchy, 395
COBOL file data structure location, 308
COBOL file external name, 395
COBOL module, 394
COBOL OCCURS clause, 303
COBOL OCCURS example, 304
COBOL paragraph comments, 395
COBOL paragraph source code, 395
COBOL REDEFINES clause, 303
COBOL SELECT statement, 304
COBOL source module name, 394
COBOL USAGE types, 309
COBOL-85 USAGE types, 309
COBOL-specific configuration items, 308

COBOLTYP.TBL, 301, 309
code button, 396
code generation options, 27, 301, 306
code generation options dialog box, 306
code generation output, 305
code generation process, 303
code generation requirements, 302
code generation speed, 301
code size, 301
COLHDR(), 27
collaboration diagram, 229
collaboration diagram analysis, 229
collaboration diagrams, 229
collapse child, 106, 212
collapse object browser folder, 113
collapse planning outline, 50
colon, 456
colors, 24
column ‘x’ in entity ‘y’ has been added to the

foreign key of relationship ‘z’, 207
column ‘x’ in entity ‘y’ is used by overlapping

foreign keys with conflicting types.
Relationship ‘z’ should no longer use this
column, 206

column ‘x’ in entity ‘y’ is used by overlapping
foreign keys with conflicting types.
Relationship ‘z’ will no longer use this
column, 206

column characteristics, 312
column check constraints, 318
column comments, 391
column name, 272
column name quotes, 315
column name storage type, 297
column type, 295
column type date allowed conditions, 295
column type integer allowed conditions, 296
column type location allowed conditions, 297
column type set allowed conditions, 296
column type string allowed conditions, 295
columns, 312
columns for table ‘x’ cannot be identified, 209
columns in key list, 320
columns in table list, 320
columnupdatetest, 460
columnvaluetest, 460
COMMENT ON, 312
Communicates, 225

Index

472

communicates lines, 224
compare field against value, 272
compare objects dialog box, 410, 411
compiler-ready ASCII file, 305
completeness checks, 4
completeness of design, 185
completion of actions, 231
completion of subactivities, 231
complex OCCURS clauses, 394
complexity of interface, 185
complexity ratings for structure charts, 4
composite type, 47, 48
composition, 294, 352
COMPOSITION, 355, 361
composition field, 205, 251, 319
composition matrices, 291
composition/attributes field, 237
compound symbol, 83
comprehensive strategic business plan, 45
computer aided software engineering, 1
concatenated entities, 195
concurrency, 256
concurrent access by a user, 332
conditional, 179, 180
conditional connector, 181
conditionally invalid connection, 185
CONFIG.SYS, 12
configuration options, 306
confirm file deletion dialog box, 12
conflict resolution options, 411
conflicting names dialog box, 412
conflicting names list, 411
conflicting objects dialog box, 412
conflicting objects list, 408
connect, 30, 97, 102, 130, 132, 218
connect a class to a state transition diagram,

122
connect a function, 30
connect action states, 231
connect by clause, 269
connect by control, 266, 272
connect object lifelines, 227
connect objects, 229
connect selected symbols, 15
connect string, 9
connected location file, 349
connectedid, 351
connectedlocnum, 351

connecting symbols, 97
connection errors, 169, 214, 218, 221, 225,

227, 229
connection type between module ‘x’ and

module ‘y’ cannot be accurately determined,
188

connectionstyle, 351
connector, 177
connector junction, 173
connectors, 101
consistency checks, 4
constant, 258, 399
constant qualification, 253
constraint name, 313
CONSTRAINTS, 313
construct, 29, 64, 120, 173
construct dialog box, 120
constructs, 67, 119
container name, 326
container type, 326
content selection for report types, 292
contents, 32
context diagram, 36, 63
context diagrams, 146
context-sensitive help, 14, 15
context-sensitive repository help, 237
contiguous sequence of program statements,

177
contract, 236
control, 179
control bar, 16, 25, 69, 76, 90, 103, 112, 177
control bar options, 69
control bar, 147
control connection, 180
control connections, 70, 179
control couple, 247, 249
control couples, 180
control how individual windows appear, 68
control interface table row, 184
control parameters, 184
controls, 184
convert a project from an earlier Visible

Analyst version format, 344
convert Btrieve database project to relational, 7
convert data repository files into ASCII, 344
convert data repository files into ASCII

formatted data files, 347
convert relational database project to Btrieve, 7

Index

473

converting earlier version files, 347
copy, 15, 21, 114, 237
COPY, 345
copy a branch, 31, 344
copy a diagram, 31, 344
copy a division between an enterprise project

and a satellite project, 344
copy branch, 35
copy child diagram, 35
copy current object, 237
copy diagram, 31, 35, 38, 344
copy diagram dialog box, 38
copy existing diagram, 38
copy fields to a DOS ASCII file, 240
copy highlighted text to a DOS file, 237
copy object to Clipboard, 21
copy of parameter is passed, 258
copy project, 31, 344, 346
copy statements, 49
copy to, 21
copy to Clipboard, 15
copying a project, 346
copying boilerplate diagrams, 39
copying data from DOS files, 240
copying data from Windows Clipboard, 241
copying data to DOS files, 240
copying data to Windows Clipboard, 241
corporate edition of Visible Analyst, 49
correctness of connection, 185
correlation name for a table, 264
correlation names, 264
correlation tables, 195
couple cursor, 77, 100
couple entry mode, 75
couples, 178, 179, 300
create a Btrieve project, 6
create a clustered index, 324
create a lower level diagram, 121
create a multiple page diagram, 20
create a new diagram, 19, 112
create a new project, 18
create a planning statement type, 47
create boilerplate diagram, 63
create constructs, 29
create date, 285
create division rights, 404
CREATE INDEX, 312
create indexes, 391

create macros, 322
create new diagram, 35, 61
create new fields, 379
create new macro, 457
create new project dialog box, 56
create new records, 379
create password, 336
create project, 56
create rights, 9
CREATE SCHEMA, 312
CREATE STORED PROCEDURE, 312
CREATE SYNONYM, 312
CREATE TABLE, 312, 327
create table statement, 315
CREATE TABLESPACE, 312
CREATE TABLESPACE statement, 325
create tablespace statements, 391
CREATE TRIGGER, 312
create user ID, 336
CREATE VIEW, 313
create view even if base tables do not exist,

272
create view of data model, 19
creating a cluster diagram, 136
creating a construct, 120
creating a division, 414
creating a link, 259
creating a new division, 402
creating a new project, 414
creating a new view, 128
creating a process view, 130
creating a user-defined object, 283
creating clusters, 287
creating divisions, 402
creating expressions, 266, 268, 270, 272
creating new diagram, 123
creating projects on a network, 337
creation date, 294
creation dates, 347
creationdate, 350, 351
creationuserid, 350, 351
critical success factor, 46
cross reference report, 288, 290
crowsfoot notation, 3, 58
CTRL+A, 15
CTRL+C, 15
CTRL+D, 15
CTRL+E, 15

Index

474

CTRL+F, 15
CTRL+L, 15
CTRL+N, 15
CTRL+O, 15
CTRL+P, 15
CTRL+Q, 15
CTRL+R, 15
CTRL+S, 15
CTRL+T, 15
CTRL+V, 15
CTRL+X, 15
CTRL+Z, 15
curly braces, 293, 303
current activity, 18, 332, 340
current attribute, 254
current diagram, 169
current entity view level, 71
current menu function, 69
current object, 69, 76
current project, 33, 47, 69, 281, 282, 283
current project field, 260
current SQL dialect, 72
current view, 137
current zoom level, 69
currently active diagram name, 74
custom, 137
custom installation, 8, 11
custom report definition syntax, 293
custom report definitions, 293
custom report file format, 293
custom report file syntax, 294
custom report specifications, 297, 298
custom reports, 292
custom reports dialog box, 29
custom symbol generator, 3
customize code generated, 301
customize control bar dialog box, 69
customize display format, 277
customize import, 384
customize the import, 379
customized import characteristics, 381
customizing an SQL dialect, 455
customizing COBOL code, 309
customizing SQL dialect, 277
customizing the trigger wizard, 457
cut, 15, 21, 114
cut to Clipboard, 15
cyclic connections, 165

D
D prefix, 149
dangling connector line, 172
dangling project, 346
dashed line, 99, 227
dashed line with a stick arrowhead, 225
dashed line with stick arrowhead, 227, 229
dashes, 389
data and control connections, 178
data capture, 323
data collisions, 379
data connection, 180
data connection lines, 183
data connections, 70, 179
data couple, 247, 249
data couples, 180, 183
data decomposition, 4
data definition, 233
data definition language, 26, 312
data element, 213, 247, 256, 258, 399
data element ‘x’ is not used on data flow

diagram, 208
data element naming convention, 390
data element physical information, 276
data elements, 59, 178, 194, 302
data flow attached to file labeled ‘x’ is

unnamed, 160
data flow balancing, 146
data flow balancing examples, 153
data flow diagram pages, 131
data flow diagrams, 2, 4, 57, 59, 80, 194
data flow labeled ‘x’ is dangling, 160
data flow labeled ‘x’ is not attached to a

process, 162
data flow splits, 152
data flow splitting, 146
data flows, 103
data flows ignored by Analyze, 157
data import, 383
data interface table row, 183
data mod(s) field, 250
data model, 7, 45, 167
data model error messages, 197
data model objects links, 46
data modeler, 3, 4
data modeling, 1, 46
data modeling graphics, 194

Index

475

data modeling tool, 2
data only module, 178, 187, 249, 354
DATA ONLY MODULE, 361
data only module usage, 307
data only modules, 177, 251
data only-modules, 179
data parameters, 183, 184
data repository considerations, 57
data storage type, 276
data store, 209
data store guidelines, 165
data store labeled ‘x’ is dangling, 160
data store number, 81, 91, 295
data store numbering, 146, 149
data store numbering versus process

numbering, 149
data store numbers, 104
data stores, 104, 165
data structure, 247
data type, 312
data, control and generic interface table rows,

178
data, control, and generic couples, 178
database, 9
database alias, 9
database file, 353
database management, 233
database manager, 6
database phys inf, 354
database synchronization, 413
datafile name(s), 325
datafile size, 325
datawindow object, 280
date, 276, 310
date constant formats, 296
date created, 290
date diagram created, 67
date diagram last edited, 67
date last altered, 290
datetime, 276, 310
DB2, 8
DB2 2 properties, 323
DB2 5 properties, 324
DB2 5 tablespace properties, 326
DB2/2 2x, 5x, 26
DBA privileges, 391, 392
DBFILES, 361
DBMS location, 9

DBPHYSINFO, 361
dbspace, 327
DDS, 329
DDS example, 393
DDS generation errors, 13
DDS import, 392
DDS name translation, 27
DDS scource file format, 392
debug statements, 305
decide the format of the imported data, 378
decimal, 276, 310
DECIMAL, 309, 456
decimal digits, 277
decimal point alignment, 350
DECIMAL(), 456
DECIMAL(,), 456
decision, 231
declarative, 315
decompose, 122, 123
decompose a symbol, 121
default, 295, 399
default action, 408
default bufferpool, 327
default data path for project data, 334
default data path=, 334
default font, 24
default paths, 13
default settings, 12
default supervisor name, 12
default value, 302, 312
default value field, 277
define, 28, 146, 167, 233, 319, 408
define a name space, 312
define a new project name, 346
define boilerplate, 63
define connect by clauses, 262
define dialog box, 262, 319, 408
define dialog box SQL schema generation, 318
define dialog box, 217
define display values, 280
define ERD notation, 57
define group by clauses, 262
define having clauses, 262
define join relationships, 262
define minimum line length, 13
define passwords, 31
define report content, 288
define report format, 288

Index

476

define repository attributes dialog box, 281,
282

define repository object, 15
define repository objects dialog box, 283
define site-specific objects, 27
define start with clauses, 262
define user attributes, 27, 281, 282
define user names, 31
define user objects, 27, 283
define user security, 31
define user security information, 344
define where clauses, 262
defined report button, 289
defining a primary key, 252
defining default path settings, 333
defining instance, 165
defining methods, 258
defining planning statement types, 47
defining relationship, 195
definition errors, 214
definition for column ‘x’ in entity ‘y’ conflicts

with the definition of the matching column
on relationship ‘z’, 208

definition for column ‘x’ in entity ‘y’ has been
updated for relationship ‘z’, 207

definition for column ‘x’ in entity ‘y’ should
be updated for relationship ‘z’, 205

definitions of key terms, 32
DEL, 15
delete, 21, 114, 116, 235
delete a branch, 344
delete a diagram, 37, 344
delete boilerplate diagrams, 37
delete branch, 31, 35
delete button, 121, 322
delete check constraints, 319
delete child diagram, 35
delete constructs, 29
delete current parameter, 258
delete currently displayed entry, 235
delete data store, 149
delete diagram, 31, 37, 344
delete diagram and all children, 37
delete diagram from queue, 41
delete diagram only, 37
delete diagrams user rights, 406
delete entity from cluster, 287
delete fields, 27

delete from DOS, 346
delete items user rights, 406
delete joined column pair, 274
delete object from diagram, 15
delete project, 31, 344, 346, 414
delete project with no project files, 15
delete reports button, 290
delete repository entry, 235
delete rights, 9, 337
delete statements, 48, 49
delete user, 338
delete user groups, 338
delete user ID, 18
delete view and dependent views, 271
deleted data store number, 149
deleting a construct, 121
deleting a join, 268
deleting a line segment, 99
deleting a project, 346
deleting clusters, 287
deleting divisions, 404
deleting line segments, 98
deleting predefined report, 290
deleting projects with no project files, 346
deleting temporary project, 414
deletion, 227
delimited ASCII format, 349
demo version, 11
demote planning statement, 51
denormalization, 106, 211, 212, 315
denormalization information, 104
derived class, 106
derived classes, 73
descending button, 320
descending information, 315
describe construct, 120
description, 283, 294, 352
DESCRIPTION, 362
description field, 248, 303, 307
description field in module comment, 307
descriptive comments, 300
descriptive overview of current project, 18
descriptive text, 303
deselect, 21
deselect a page, 42
deselect all pages, 42
deselect current block, 116
deselect current object, 76, 116

Index

477

deselect highlighted fields, 289
deselect item selected into a block, 77
design, 1
design completeness, 185
design complexity, 185
designate subflows, 151
destination information, 290
destination parent diagram, 38
destination project, 40
detach, 122, 123
detach a constraint from an entity, 319
detach child diagram, 19
detail field, 105
detail report type, 294
detailed listing report, 288, 290
detailed report for a single repository entry.,

290
details button, 340
develops a comprehensive strategic business

plan, 45
df file extension, 398
DFD, 147
DFD symbols, 79, 81
DFD tree file, 34
DFDs, 2, 59, 60, 102, 123, 124, 167, 251
diagram, 29
diagram area, 16
diagram box, 64
diagram creator, 67
diagram file, 349
diagram grid, 22
diagram icon, 68
diagram insertions, 64
diagram label, 67, 255
diagram labels, 138
DIAGRAM LINES, 362
diagram location matrices, 291
diagram menu, 75, 112
diagram named ‘x’ has no parent diagram, 162
diagram number, 255
diagram opened as read only, 69
diagram process, 55
diagram project root, 67
DIAGRAM SYMBOLS, 362
diagram trees, 118
diagram type, 118
diagram type box, 101
diagram window icon, 74

diagram workspace, 68
diagramid, 351
diagramming tool, 1
diagramname, 351
diagramprocnum, 351
diagramtype, 351
dialect, 235
dialect button, 317
diamond, 231
diamond shaped terminator, 181
differentiate entity types, 114
digits, 277
disable methodology, 57
disable repository, 57
disabling boilerplate, 64
disconnect, 130, 134
disconnect pages, 130
discrepancy between specified cardinality of x

and prefix/suffix count of y. Collapsing
parent table z according to prefix/suffix, 211

discriminator, 106, 400
discriminator element ‘x’ targeted for entity ‘y’

is simultaneously used by more than one
subtype group, 211

discriminator values & meanings, 250
disk cache, 12
display action expression, 73
display areas of help, 32
display argument types, 73
display current activity, 340
display data type, 72
display entity attributes, 71
display field, 277
display guard condition, 73
display length, 302
display line labels, 70
display logical names, 71
display message arguments, 73
display next sequential repository entry, 236
display null option, 72
display object browser, 113
display physical names, 71
display physical schema, 71
display previous sequential repository entry,

236
display project history, 340
display relationships, 73
display repository entry, 234

Index

478

display repository object menu for field
options, 15

display statement description, 51
display statement priority, 51
display statement types, 51
display symbol labels, 70
display the define dialog box, 113
displaying all objects in the repository, 403
displaying enterprise links, 413
displaying repository specific class objects,

403
DITRs, 180
divide into subflows, 30, 149
division, 28, 401
division box, 402
divisionid, 350
divisions, 402, 404, 405
DLL, 6, 7, 8
dm information, 352
DMS, 326
DMS tablespace, 323
do not generate drop, 271
dock window, 264
document business vision, 45
domain, 295, 391
domain data type, 72
domain label, 280
domain name, 72
domain name edit box, 279
domains, 278
domains option, 315
DOS file locking, 4, 331
DOS path, 18
DOS-based backup, 10
double precision, 310
double quotes, 349
downward-pointing couples, 311
drag down input and output data flows, 146
drag unbalanced flow down to child diagram,

162
dragging a block, 77
dragging statement, 53
draw in horizontal or vertical plane, 30
draw page link symbol, 132
draw virtual chart, 19
draw VIRTUAL chart, 329
drawing connectors, 102
drawing diagrams, 74

drawing information clusters, 83
drawing lines, 91
drawing modes, 75
drawing objects, 75
drawing operation errors, 13
drawing relationships, 101
drawing symbols, 79
drop behavior, 271
drop view statement, 271
duplicate a Visible Analyst project, 344
duplicate appearance of page connector ‘x’,

172
duplicate constraint names, 389
duplicate foreign key ‘x’ for entity ‘y’, 203
duplicate module entries in the repository, 257
duplicate page connector, 172
duplicate parent, 106
duplicate parent and retain, 106
duplicate process numbers, 148
duplicate project name, 346
duplicate rows check, 325
duplicate rows not returned, 266
dynamic link library, 6
dynamic model, 60
dynamic modeling error messages, 218
dynamic modeling graphics, 217
dynamic modeling overview, 217

E
E format, 384
each entity must correspond to a data store, 26
edit, 21
edit boxes, 15
edit check constraint information, 319
edit check constraints, 319
edit codes, 396
edit diagram, 55
edit dialect description table, 455
edit menu, 114
edit menu functions, 15
edit statements, 48, 49
edit style field, 280
edit style types supported, 280
editing, 111
editing a diagram, 111
editing existing labels, 110
editing existing text, 110

Index

479

editing mode, 75, 77
editing objects, 75
editing procedures, 55
elbow connector, 171
elbow line mode, 92
element subtype, 213
elemental class, 213, 248, 258
elements, 307
ELH, 2, 220
ELH symbols, 83
ellipse, 224
enable boilerplate, 60
enable data repository function, 57
enable repository, 57, 61
enable rules, 57, 61
enable security, 24
enabling boilerplate, 64
end of file, 294
END PBLIST, 280
enforce referential integrity, 457
enter help mode, 15
enter subflows, 150
enter text, 55
entering text, 103
enterprise access, 401
enterprise copy, 31, 344, 401, 406, 407, 414
enterprise copy dialog box, 407
enterprise definition, 410
enterprise links, 241
enterprise modeling, 401
enterprise project, 31, 241, 401
enterprise synchronized date, 413
enterprise tag maintenance, 31, 413, 414
enterprise tag naintenance, 344
entire project, 169
entire project report, 288
entire repository, 403
entities, 46
entities link, 46
entities not in a cluster, 287
entity, 59, 221
entity ‘x’ has cyclic definition - primary key

cannot be determined, 203
entity ‘x’ has multiple identifying

relationships. This requires relationship ‘y’
to have a maximum cardinality greater than
one, 208

entity ‘x’ has no composition defined, 208

entity ‘x’ has no corresponding data store, 209
entity ‘x’ has no corresponding file, 209
entity ‘x’ has no primary key defined, 200
entity ‘x’ is involved in a cyclic

supertype/subtype relationship, 210
entity class symbol, 213
entity display options, 23, 71
entity level, 23, 71
entity life history diagram, 220
entity life history diagrams, 2, 83
entity life history graphics, 220
entity name, 71
entity names, 71
entity notation, 58
entity relationship, 59
entity relationship diagrams, 2, 3, 4, 59, 62,

194
entity relationship tree file, 34, 35
entity subtype, 214
entity sub-type, 62
entity symbols, 195
entity types, 195
entity/attributes detailed listing report, 291
entity/attributes summary listing report, 291
entry characteristics, 240
entry key, 356
entry type, 357
entry type box, 319
entry type field, 247
entry type list, 294
entry type report order, 288
EOF, 391
ER1 file, 400
erase, 21
erase changes, 19, 78, 119
ERD analysis, 195
ERD balancing rules, 26, 196
ERD levels of detail, 195
ERD line terminators, 92
ERD notation, 58
ERD relationship line terminators, 93
ERD symbols, 79, 84
ERDs, 2, 59, 60, 80, 104, 251
error checking, 301
error details window, 332, 340
error message lists, 415
error messages, 13
ERwin format, 348, 378

Index

480

ERwin Interface, 400
ESF, 300, 301, 302, 303, 309
ESF BYTES value, 309
ESF format, 348
ESF type HEX, 309
establish links, 284
event, 249
event boxes, 220
event labeled ‘x’ is a dangling event, 218
event labeled ‘x’ is an input only event, 219
event labeled ‘x’ is an output only event, 219
event signature [guard condition]/action

expression, 231
events, 60, 73, 217
every entity must correspond to a data store,

197
Excel format, 378
Excelerator entry types, 385
Excelerator input picture, 385
Excelerator name limit, 384
Excelerator output picture, 385
Excelerator uniqueness rules, 384
exclamation mark, 389
executable modules, 305
execute repository functions, 28
exit, 21, 236
exit repository, 236
expand, 236
expand associators, 23, 71
expand displayed size, 236
expand domains, 72
expand object browser folder, 113
expand planning outline, 50
expandable fields, 236
explode, 19, 122, 123, 162, 220
explode a symbol, 121
export, 31, 300, 303, 344, 347, 349, 355, 396,

397, 398
export a panel file, 306
export dialog box, 311
export errors, 13
export file, 355
export file names, 349
export formats, 348
export repository information, 31
export to ERwin, 400
export to Visible product, 398
exporting prototyper panels, 311

exporting repository data, 347
expression builder, 266, 268, 269, 270, 272
expression builder button, 272
Expression control, 272
expression-in-progress, 273
extend lines, 224
extended attribute screen, 280
extended attributes, 280
extends relationship, 225
extensibility of the repository, 7
extent, 327
extentsize, 326
external assessment, 45
external entity, 163, 164
external entity labeled ‘x’ is dangling, 160
external name for a COBOL file, 395
extra primary key column ‘x’ in entity ‘y’ has

been removed from the primary key because
of singular relationship ‘z’, 207

extra primary key column ‘x’ in entity ‘y’
should be removed from the primary key
because of singular relationship ‘z’, 205

extract database location information dialog
box, 392

F
f(x) button, 265
F1, 14, 15
FALLTHRU statements, 394
fan-in, 185
fan-in/fan-out analysis, 186
fan-out, 185
FD statement, 303
FD statements, 308
FDD, 102, 124
FDD balancing errors against DFDs, 170
FDD connection errors, 171
FDD connection lines, 101
FDD connector lines, 103
FDD error messages, 169
FDD page connector error messages, 172
FDD symbols, 79
FDD syntax error messages, 169
FDDs, 2, 59, 102, 124, 166, 167, 175
features of SQL schema generation, 314
field blocks, 355
field length, 276

Index

481

fields button, 289
file, 18, 237
file extenstion c, 306
file extenstion cbl, 306
file extenstion esf, 306
file group, 322
file header section, 355
file labeled ‘x’ is dangling, 160
file locking mechanisms, 331
file menu, 34, 112
file repository objects section, 355
FILE SECTION, 304, 308
file server, 6, 10
file user attributes section, 355
file user objects section, 355
FILES=, 12
fill factor, 325, 327
filled arrowhead, 227
filled circle, 180
filled circle endpoint, 184
filled circle inside a hollow circle, 231
FILLER, 308
filter, 51
filter control, 266, 272
filtering condition, 269
find, 21
find an object, 112
find diagram object, 15
find information about the menus in Visible

Analyst, 32
find satellite, 407
first DFD, 36
FK, 196, 252
flags, 256
flat flow of control, 227, 229
float, 276, 310
FLOAT, 309
foreign key, 71, 196, 252
foreign key ‘x’ for entity ‘y’ already exists as

associator element, 202
foreign key ‘x’ for entity ‘y’ does not have

corresponding relationship, 204
foreign key ‘x’ for entity ‘y’ has associator

element defined, 203
foreign key button, 320
foreign key clause, 315, 389
foreign key created for relationship ‘x’, 206

foreign key does not exist for relationship ‘x’,
202

foreign key errors, 196
foreign key for relationship ‘x’ is wholly

dependent on the foreign key of relationship
‘y’ in entity ‘z’, 207

foreign key for relationship ‘x’ shares
column(s) with the foreign key of
relationship ‘y’ in entity ‘z’, 207

foreign key for relationship ‘x’ should not be a
component of the primary key of entity ‘y’,
207

foreign keys, 114, 312, 313
foreign keys tab, 252
foreignkeycolumnnamelist, 461
format clause, 294
forward engineering. See Export
FoxPro 6x, 26
free entity pool, 287
free-form composition field, 25
freelist groups, 323, 325
freelists, 323, 325
free-standing diagrams, 60
friend, 354
FRIEND, 362
frienddefinition, 399
friends, 4, 253, 257
friends field, 258, 259
from class, 106
from entity, 295
from repository clause, 294
full decomposition, 302
full outer join type, 268
function, 81, 177
function name, 272
function call, 305, 307
function calls statement, 300
function description, 295, 352
FUNCTION DESCRIPTION, 362
FUNCTION DESCRIPTION KEYS, 362
function labeled ‘x’ has more than one input

connection, 169
function labeled ‘x’ is a dangling function, 169
function labeled ‘x’ is placed illegally in the

hierarchy structure – its parent is a process,
171

function names, 168
function overloading, 257

Index

482

function prototypes, 305
function return types, 305
functional decomposition, 122
functional decomposition diagram, 124
functional decomposition diagram symbols, 80
functional decomposition diagram versus

process decomposition diagram, 167
functional decomposition diagrams, 2, 4, 59,

80, 166
functional decomposition tree file, 35
functional tasks, 59
fundamental entity, 200, 205, 389
fundamental entity type, 195
fundamental entity, 202

G
Gane & Sarson, 2, 4, 57, 81, 91, 104, 145, 146,

147, 157, 167, 209
GDPro format, 348, 378
GDPro interface, 398
general configuration options, 306
generalization lines, 224
generalization relationship, 225
generate a process decomposition diagram, 123
generate code, 29, 303
generate code dialog box, 301
generate custom reports, 29
generate data description specifications, 329
generate database schema, 112
generate DDS, 29, 329
generate debug, 308
generate decomposition diagram, 19
generate IDENTITY clause, 315
generate key constraint names, 315
generate name box, 320
generate parent, 106
generate referential integrity constraints, 321
generate schema for portion of data model, 315
generate SQL, 28, 313, 316
Generate SQL, 455
generate SQL DDL statement file schema, 28
generate SQL triggers, 312
generate structure chart, 19
generate tablespace references, 315
generate tablespaces, 315
generate UNIQUE constraint, 315
generated C example, 305

generated COBOL example, 305
generated SQL for view window, 235
generated SQL schema example, 314
generating a Uniface schema, 315
generating structure charts from repository,

329
generating subset of complete schema, 316
generating Uniface schema options, 315
generation of views in DDS syntax, 329
generic couple, 247, 249
generic couples, 184
generic DOS LAN version, 4, 331
generic format, 378
gerunds, 195
global, 137
global analysis, 185
global change, 110
global data definitions, 300
global file, 163
global model view, 127
global object, 238
global view, 19, 127, 130
global view drawing method, 130
global visibility, 73, 253, 257
glossary, 32
goal, 46
goal analysis, 45
granting access to a division, 404
granularity used for locking a table, 327
graph of actors and use cases, 224
graphic, 310
GRAPHIC, 309
grid, 22, 41, 70
grid lines, 70
grid settings, 25
group attributes, 58
group by clause, 269
group by control, 272
group by having control, 266
group objects by type, 114
group of couples, 311
group of entities, 136
groups of projects, 3
guarded object, 256

H
hardware configuration requirements, 5

Index

483

hat-shaped terminator, 182
having clause, 269
having control, 272
header field, 280
header record, 356
help, 32, 98, 237
help bar, 16, 26, 69
help cursor, 14
help menu, 14, 17
help mode, 14
help screens, 14
hex characters, 352
hierarchical relationship, 46, 47, 59
hierarchical relationships, 167, 168
hierarchical structure, 33
hierarchical view of planning statements, 49
hierarchically subordinate statements, 50
hierarchy/description border, 47
high fan-out for module ‘x’, 191
higher-order symbols, 102
high-level planning, 59
high-level project planning, 4
history, 237
history dialog box, 237
how control is passed, 180
how full each data page is, 325, 327
how import data/existing data collisions are

handled, 379
how objects collaborate, 227
how parameter is passed, 258
how the return value is passed, 256
how to assemble pages, 42
HTML report, 289
hyperlinks, 235
Hypersoft Application Browser, 19

I
I/O controller overhead, 327
IBM AS/400, 329
IBM Cross System Product, 300
IBM External Source Format, 300
IBMDEFAULTBP, 327
IBMDEFAULTGROUP, 326
IBMTEMPGROUP, 326
IC data module, 295
IC modules, 295
IDEF1X, 58

IDEF1X category symbol, 106
IDEF1X diagram line terminators, 92
IDEF1X notation, 23, 58, 71
IDEF1X relationship line terminators, 95
identified mission, 45
identify errors in primary and foreign key

specifications, 28
identifying entity, 203
identifying relationship, 105, 195, 202, 204
identifying relationships, 200, 205, 207
identity clause support, 392
IDs of network user groups, 337
IDs of network users, 337
IEW attributes, 387
IEW definition field, 387
IEW local data types, 387
IEW/ADW, 348
IEW/ADW association file, 386
IEW/ADW export, 386, 387
IEW/ADW export formats, 386
IEW/ADW format, 378
IEW/ADW import, 386
IEW/ADW import formats, 386
IEW/ADW issues in moving data, 388
IEW/ADW object file, 386
IEW/ADW property file, 386
IEW/ADW text file, 386
ignore all editing changes, 119
ignore denormalization settings, 315
ignore duplicate keys, 324
illegal actions, 15
illegal connection between module ‘x’ and

module ‘y’, 187
illegal connection(s) using off-page connector

‘x’, 187
illegal drawing operation, 13
image, 310
implementation methods, 257
implementation visiblity, 253
implementing lower level NetWare security,

334
implementing second level NetWare security,

335
import, 31, 344, 378, 383, 388, 392, 396, 397,

399, 414
Import, 400
import action list, 383, 392
import an XMI document, 400

Index

484

import box, 380
import button, 392
import customization, 379
import database, 414
import dialog box, 379, 381, 383
import errors, 13
import file error list, 381
import file overlap list, 382
import formats, 384
import from an XMI document, 400
import from Application Browser, 394
import from ERwin, 400
import from Excelerator, 384
import from SQL, 388
import From Visible product, 398
import in Application Browser format, 378
import in AS/400 DDS format, 378
import in Excel format, 378
import in GDPro format, 378
import in IEW/ADW format, 378
import in SQL format, 378
import in VSC format, 378
import preparation, 378
import procedure, 383
import RDBMS database definitions, 112
import repository information, 31
import verification, 381
import XML classes and relationships, 400
importance of the statement to the business

plan, 46
importing data into the repository, 378
importing database definitions from

UNIFACE, 397
importing from GDPro, 398
importing RDBMS database definitions, 392
importing validation rules from PowerBuilder,

396
IN clause, 323
inactive object, 256
include, 77
include connections, 25, 78, 79, 115, 116
include entities, 62
include lines, 224
includes relationship, 225
Incomplete, 106
index information, 323
index name boxes, 320
index of diagram complexity, 186

index tablespace, 323
INDEXED BY, 394
individual change, 110
information about your version of Visible

Analyst, 32
information cluster, 107, 177, 178
information cluster labeled ‘x’ has unnamed

modules, 191
information cluster symbol, 83
information clusters, 177
information requirements, 45
Informix, 8, 312
Informix 7x, 26
Informix end procedure statement, 391
informix tablespace properties, 327
inheritance, 60, 214, 216
inheritance relationship, 106, 255, 285
inheritance relationship characteristics, 285
inheritancemethod, 400
inherited class, 286
initial, 323, 325
initial number of transaction entries, 323
initial phase in an enterprise-engineering

project, 45
initialvalue, 399
initiate search of the repository, 236
initrans, 323
in-line code, 303, 305
inner join type, 268
in-out data coupling, 183
input connector, 185, 191
input connectors, 185
input data flow ‘x’ on parent is not shown, 162
input data flows, 290
input event, 219
input page connector symbol, 173
input/output data flow ‘x’ on parent is not

shown, 166
insert a new planning statement, 51
insert button, 322
insert level, 35, 36
insert new attribute, 254
insert new diagram, 35
insert new parameter, 258
insert rights, 9
insert text from a DOS file, 237
inserting a line segment, 99
insertion location for a newly added row, 324

Index

485

install to Novell server, 11
installation, 11
installation procedure, 11
installing the demo version, 11
installing to a LAN, 10
installing Visible Analyst, 9
install-to drive, 10, 11
install-to path, 10
instance name, 9
integer, 276, 310
IntelliViews, 261
interaction between users and a system, 224
InterBase 4x, 26
InterBase 5x, 26
interface table row, 183, 184, 251
interface table rows, 185
internal modules, 178
interval, 276
invalid connection, 185
invalid page size, 63
invert, 42, 403, 405
invert arc, 97
invert button, 289
invert elbow, 97
invert selections, 405
inverting selections, 403
invocation line, 99, 100, 181
invocation line terminators, 180
invocation lines, 70, 103, 178, 180, 300
Invocation Lines, 179
invocation type, 352
invoke by name, 177
ISQL, 8
issue for resolution, 46
issues involved in importing Excelerator

repository items, 384
italics, 294
item id record, 356
item1, 352
item2, 352
iteration diagram, 227, 229
iteration event, 221
ITR, 311
ITRs, 178, 179, 185, 300

J
Jackson structure diagram, 220

join expression, 268
join expression control, 266, 272
join relationships dialog box, 268, 273
join relationships dialog box columnar tab, 273
join relationships dialog box relationship-based

tab, 274
join tables dialog box, 275
join types, 268
joined columns, 274
joined columns pair, 274
joinparentchild, 461
joinparentparent, 461
joins in view, 274
JPEG, 289
JPEG file, 21
jump, 236
jump button, 255, 319, 322
jump to another repository entry, 236
junction entities, 195

K
key analysis, 3, 13, 28, 194, 196
key information button, 319
key migration, 195
key number box, 319
key synchronization, 13, 28, 59, 196, 202, 203
keyboard shortcuts, 14, 15
key-driven joins, 267
KEYS, 355
keys tab, 252
KnowledgeWare format, 348

L
label Class relationship dialog box, 107
label ERD relationship dialog box, 105
label field, 246, 280
label object dialog box, 91, 97, 100
label page link symbol, 132
labeling a relationship, 104
labeling an information cluster, 107
labeling an object, 104
labeling information cluster, 107
LAN help, 340
LAN operating characteristics, 331
LAN version, 3, 4, 6
landscape orientation, 62

Index

486

language-specific customizations, 308
large X at the end of an object lifeline, 227
largeinteger, 276
last-altered dates, 347
layout page, 42
left mouse button, 14
left out join type, 268
left padding, 350
left-handed mouse users, 14
length, 295, 302, 399
length field, 277
length for each subsequent extent, 327
length of relationship lines, 129
length of the first table extent, 327
level of detail, 71
levels are collapsed, 50
levels are expanded, 50
levels of decomposition, 147
levels of project security, 334
level-to-level data flow balancing, 4
lexical inclusion, 179, 180, 182
lexical inclusion line, 188
lexical inclusion terminator, 182
library macro, 177, 178, 187, 249
library module, 177, 187, 249
lifeline, 227
limit, 256, 258
limit searches by diagram type, 240
limited diagram access, 332
limited repository entry access, 332
limiting the scope of available objects, 403
line, 177
line cursor, 77, 97
line entry mode, 75
line feed, 350
line handle, 76
line handles, 79
line orientation, 100
line settings, 60, 99, 195
line settings dialog box, 101, 181
line terminator, 58
line terminators, 91, 179
line type, 100
line types, 60, 91, 92
lines, 29, 70, 91, 97, 99, 224
lines between states, 217
lines connected to moved symbol, 77
lines cursor, 29

linestyle, 351
LINK, 362
link between planning statement and repository

objects, 48
link model element to a file under source code

control, 259
link option, 48
link planning statements, 48
link planning statements to model objects, 259
link statements, 49
link to box, 284
link to diagrams, 130
link to field, 48
link to user-defined objects, 48
link your model elements to source code, 259
linkage rules, 259
linked repository object, 48
linking multiple page diagrams, 130
Linking planning statements, 45
linking projects, 401
linking structure chart pages, 185
links tab, 259
links to field, 259
list of all diagrams for current diagram type, 41
list of all objects in the repository, 26, 69, 113
list of available columns, 320
list of available statement types, 47
list of classes, 258
list of column names, 261
list of columns, 265, 266
list of conflicting objects, 411
list of correlation names, 264
list of custom reports, 292
list of data members, 253
list of dates, 18
list of diagrams, 133
list of diagrams and users, 340
list of eight most recently opened diagrams, 20
list of enterprise links, 241, 413
list of entry types, 240, 283
list of error causing activities, 13
list of existing clusters, 137
list of fields to include in report, 289
list of flows, 151
list of friend classes, 258
list of friend methods, 258
list of functions, 18
list of functions for a class, 256

Index

487

list of IEW objects for export, 388
list of join relationships, 267
list of joins in view, 274, 275
list of member functions, 258
list of modules previously defined, 256
list of most recently opened projects., 20
list of objects that are valid for a diagram type,

69
list of objects valid for a diagram, 26
list of objects valid for a diagram type, 113
list of open diagrams, 32
list of parameters, 257
list of parent flows, 149
list of project diagrams, 18
list of repository entries, 259
list of satellite projects, 407, 413
list of state transition diagrams, 123
list of statement types, 47
list of supported types, 281
list of tables, 264, 265
list of the Excelerator entry types, 385
list of the IEW objects for import, 388
list of the objects in the repository, 16
list of types, 284
list of users who currently have a project

selected, 340
list of valid column names, 272
list of valid logical types, 277
list of valid types, 256, 258
list of values, 280
list of values to identify subtype entities, 250
load a construct dialog box, 120, 121
load button, 120
load construct, 67
load constructs, 29
load data into a project data, 344
load DFD, 126
loading a construct, 120
LOB, 323
local area networks, 331
local change, 110
local data flow, 165
local data store, 166
local element, 238
local operation, 333
local physical characteristics, 280
local setting, 6
location, 294

LOCATION, 362
location field, 256
location file, 349
location of linked project, 413
location reference, 47
locationnumber, 351
locationnumer, 351
locations field, 48, 255
locations-diagrams field, 289
lock mode, 327
logging, 325
LOGGING, 325
logic, balance, and completeness Verification,

146
logical, 310
logical conditions, 294
logical conditions for a column, 295
logical device name, 326
logical group of repository diagrams, 401
logical group of repository objects, 401
logical model, 71
logical names, 71
logical operators, 294
logical OR, 293
logical to alias., 27
logical to colhdr., 27
logical to text, 27
logical type, 277
logical-to-physical mapping is wasteful, 277
long column tablespace, 323
long file names, 56
long name field, 255
long raw, 310
long varchar, 276, 310
LONG VARCHAR, 323
long vargraphic, 310
LONG VARGRAPHIC, 323
loop, 180
loop line, 181
loop line type, 179
low fan-in for module ‘x’, 191
lower level NetWare security, 334, 337
lower-order symbols, 102
lowerrightx, 351
lowerrighty, 351
lowest-level module, 178
LRU list, 325
lstring, 310

Index

488

lvar, 310

M
macro, 177, 249
macro definitions, 457
macro description field, 251
major concepts of structured analysis, 145
managed by, 326
mandatory foreign key, 72
manual process, 62
manually enter subflow labels, 150
many-to-one page connections, 175
MAP ROOT, 333
mark branch, 38
mask representation, 277
match option, 412
matching page connector cannot be found for

‘x’, 190
matrix report formats, 292
matrix reports, 288, 291
maxextents, 323, 325
maximize diagram, 68
maximize diagram window, 74
maximum number of concurrent transactions,

323
maximum number of extents, 323, 325
maxtrans, 323
member functions, 60, 253, 256, 258
members, 213, 248
menu bar, 16
menu functions, 32
menu item help topic, 14
merge, 380
message box, 339
message boxes, 15
message passing, 227, 229
messages, 73
messaging, 339
messaging system, 332
metafile, 21
Method, 399
method definition dialog box, 257, 258
methodology errors, 13
methodology rules for data flow diagrams, 2
methodology symbols, 70, 147
methods, 4, 72, 114, 256, 399
methods field, 256

Métrica, 2, 4, 81, 145, 146, 220
micro kernel database engine setup program, 6
Microsoft, 6
Microsoft Windows NT, 5
migrate button, 321
migrate primary keys, 196
migration, 3
minextents, 323, 325
minimize diagram, 68
minimize diagram window, 74
minimum installation, 11
minimum line length, 13
minimum percentage of used space, 323
miscellaneous errors, 32
mission, 46
MKDE, 6
MKDE interface, 6
model balancing, 13, 28, 196
modeling tool set, 2
modification date, 294
modificationdate, 350, 351
modificationuserid, 350, 351
modify all users, 406
modify date, 285
modify diagrams user rights, 406
modify fields, 27
modify items user rights, 406
modify list of prefixes/suffixes, 321
modify list of statement types, 47
modify queue, 41
modify referential integrity macros, 458
modify rights, 337
modify statement definition, 53
modify the new project defaults list, 48
modify type list button, 384
modify user, 337
modify user list, 18
modify user rights, 338
modify user rights dialog box, 337
modify view, 30, 127
modifying a project tree, 35
modifying clusters, 287
modifying divisions, 402
modifying the current view, 130
modifying user list, 405
module, 177, 249
module description, 295, 352
MODULE DESCRIPTION, 363

Index

489

module description field, 250, 307, 319, 395
module description in module comment, 307
module fescription field, 322
module labeled ‘x’ is a dangling module., 186
module subtype, 248
modules contained, 352
MODULES CONTAINED, 363
modules contained field, 251
module-to-module analysis, 185
money, 276, 310
move, 31
move between diagrams, 74
move data from Clipboard, 114
move data to Clipboard, 114
move planning statement down, 51
move planning statement up, 51
move project files, 344
move selected statement down, 53
move selected statement up, 53
move statement, 49, 53
move to parent diagram, 19
move to the previous repository entry, 237
moving a block, 77, 78
moving a line, 78
moving a project, 346
moving a symbol, 78
moving selected objects, 77
multi line comments, 389
multi-diagram charts, 185
multi-page diagram, 30, 62, 63
multi-page workspace, 62
multiple active databases, 9
multiple constraints, 389
multiple page structure chart, 135
multiple partition nodegroup, 324
multiple selection technique, 38
multi-segment line, 77, 97
multi-user access, 331
multi-user version restore, 345

N
name, 294
name construct, 120
name inside box, 23, 71
name of attribute, 253
name of child class, 105
name of child entity, 105

name of cluster, 287
name of datafile, 325
name of diagram, 74
name of domain, 278
name of new statement type, 47
name of parent class, 105
name of parent entity, 105
name of select clause, 263
name of the actor, 224
name of the bufferpool, 327
name of the child class, 105
name of the child entity, 105
name of the data-only module, 108
name of the discriminator, 106
name of the information cluster, 108
name of the project linked, 413
name of the relationship, 225
name of the segment, 324
name of the symbol, 91
name of the system, 225
name of the tablespace, 323
name of use case, 224
name transformations, 395
names of macros, 458
names of the contained modules, 108
naming considerations, 395
naming rules, 303
naming rules for FDDs, 168
national char, 276
national varchar, 276
native data type, 277, 302
nest, 19, 35, 38, 60, 121, 122, 123, 146, 149,

157, 162, 164, 165, 167, 185, 217, 220
nest dialog box, 123
nest function, 64
nest relationship, 35, 38
nested constructs, 303
nested decomposition, 121, 146, 152
nested relationships, 35
nesting considerations, 122
net data flow, 164
net data flow labeled ‘x’ is attached to a local

file, 163
net input data flow ‘x’ is not shown attached to

parent process, 162
net input data flow labeled ‘x’ is attached to a

different object on parent, 163
net input flows, 166

Index

490

net output data flow ‘x’ is not shown attached
to parent process, 162

net output data flow labeled ‘x’ is attached to a
different object on parent, 163

net output flows, 166
NetWare, 11
Netware 1x, 26
NetWare security, 333
NetWare versions 3.0 or later, 335
NetWare versions earlier than 3.0, 335
network, 17
network help details window, 341
network login name, 17
network version of Visible Analyst, 48
network versions, 331
new boilerplate diagram, 64
new DFD set, 126
new diagram, 15, 19, 35, 61, 62, 128
new diagram dialog box, 61, 127
new entry type name, 283
new model view, 127
new project, 18, 56
new project default, 281, 282
new project defaults, 47, 283
new project root, 346
new repository entries, 40
new root name, 346
new view, 19
NewWare security system, 11
next, 236, 323, 325, 327
no check, 315, 320
no good match between logical type and

physical type, 277
no levels, 50
no recompute statistics, 325
NOCACHE, 325
node, 332
node user number, 12
nodegroup, 326
NODEGROUP keyword, 326
NOLOGGING, 325
non-local data store, 164, 166
non-relationship-based joins, 273
non-transitory storage device, 256
non-unique indexes, 391
normal class, 213
normal relationship, 106
normalization, 195

normalization analysis, 196
normalization errors, 3, 195
nosort, 323
NOT, 294
not all subtype group members for entity ‘x’

are shown in this view, 210
not exists, 272
not initially logged, 324
note, 310
notes, 294, 352
NOTES, 363
notes field, 255, 303, 307, 394
notes field in module comment, 307
no-update columns box, 322
Novell Advanced NetWare, 4, 332
Novell LAN version, 331
Novell NetWare compatibility, 332
number, 310
number by level, 147
number of 4K pages, 326
number of calls a module makes, 186
number of calls to a module, 186
number of copies to print, 41
number of decimal places, 302
number of digits to right of decimal point, 281
number of enterprise projects that can be

maintained, 401
number of free lists, 323, 325
number of groups of free lists, 323, 325
number of modules, 192
number of names for relationships, 58
number of network nodes, 17
number of nodes, 3
number of occurrences of the attribute, 253
number of overlays, 117
number of parameter, 256, 258
number of rows returned, 269
number of satellite projects that can be

connected to an enterprise project, 401
number the network assigns to a node, 334
numeric, 310
numeric value, 53
NWPOPUP.EXE, 340

O
object, 227
object block, 355

Index

491

object browser, 16, 26, 69, 91, 113
object browser cursor, 91
object browser list, 91
object browser properties, 114
object definition, 237
object fields, 359
object footer, 359
object header, 355
object label, 39, 121
object label conflicts, 121
object label line break, 116
object link line, 229
object menu, 123, 126
object model, 59
object modeler, 4
object modeling, 1
object modeling error messages, 214
object modeling graphics, 213
object modeling overview, 212
object modeling tool set, 2, 3, 4
object name, 227, 229
object pointer, 253
object property mappings, 399
object significance, 46
objectid, 350, 351, 352
objective, 46
objective formulation, 45
objectives, 46
objectname, 350
ObjectName:ClassName, 229
objectnamelc, 350
objectowner, 351
objectownerid, 350
objectsubtype, 350
objecttype, 350
OCCURS clauses, 394
OCCURS value, 303
ociw32.dll, 8
ODBC, 8
ODBC compliant, 8
ODBC driver manager, 8
ODBC entry compliant, 8
offline, 325
off-page connector, 81, 133, 135, 177
off-page connector rules, 185
off-page connectors, 133, 185, 285
off-page labeled ‘x’ appears as both input and

output, 191

old foreign key column ‘x’ in entity ‘y’ has
been removed, 206

old foreign key column ‘x’ in entity ‘y’ has
been removed from the primary key, 206

old foreign key column ‘x’ in entity ‘y’ should
be removed, 205

old foreign key column ‘x’ in entity ‘y’ should
be removed from the primary key, 205

on delete button, 320
ON DELETE CASCADE, 8
on insert of child button, 321
on update button, 320
on update of child button, 321
ondeletecascadechild, 458
ondeleterestrictparent, 458
ondeletesetdfltchild, 459
ondeletesetnullchild, 459
one-directional paging, 133
one-page wide matrix, 292
oninsertchildrestrictparent, 459
only pass control, 180
only pass data, 180
on-page connector, 133, 134, 177
on-page connectors, 185, 285
onupdatecascadechild, 459
onupdatechildrestrictparent, 459
onupdaterestrictparent, 459
onupdatesetdfltchild, 459
onupdatesetnullchild, 459
open an existing diagram, 19, 112
open an existing project, 18
open circle, 179, 180
open circle endpoint, 183
open database connectivity driver, 8
open diagram, 15, 19, 64
open diagram in read-only mode, 19
open diagrams, 32
open ellipse line, 181
open existing project, 64
open parent diagram, 123
open read only, 19
operating environment, 177
operating environment symbols, 177
operation symbol, 221
operationdescription, 399
operations, 399
operationtype, 399
operationvisibility, 399

Index

492

opportunity, 46
optional report items, 293
options, 24
options button, 301
options menu, 16, 112
or, 272
OR, 294
or LOB columns, 326
Oracle server, 8
Oracle Server, 6, 8, 9, 312
Oracle Server balanced block, 391
Oracle Server driver, 8
Oracle tablespace properties, 325
OracleServer, 6
order by clause, 294
ordered association, 106
ordering, 106
organize responsibilities for actions, 231
organize statements, 48
ORI_EXE, 396
orientation, 62
output connector, 185, 191
output data flow ‘x’ on parent is not shown,

162
output data flows, 290
output event, 219
output page connector, 134
output report to file, 287
output report to printer, 287
overhead, 327
overlay, 117
overlay count, 117
override diagram scaling, 41
overwrite all, 379
overwrite existing data, 379
overwrite none, 379
overwrite option, 315
owner, 295
owner field, 277

P
pad index, 325
page, 20, 81, 130, 132, 167, 175, 185, 187, 191
page connection errors, 169
page connector labeled ‘x’ appears as output

more than once, 189

page connector labeled ‘x’ has mismatched
connection types, 190

page connector labeled ‘x’ has both input and
output connections, 186

page connector labeled ‘x’ has more than one
connection, 173

page connector labeled ‘x’ has more than one
output connection, 189

page connector labeled ‘x’ is dangling, 172,
186

page connector labeled ‘x’ is placed on wrong
diagram, 172

page connector symbol, 81
page connectors, 81
page dialog box, 132
page link, 131
page link considerations, 131
page link data flow diagrams, 132
page link symbol, 131
page linking FDDs, 136
page linking structure chart diagrams, 133
page orientation, 41
page size, 62
pages, 326
pages field, 42
pagesize, 351
pair of colons, 456
pairs of page connectors, 175
panel file button, 311
panel files, 306
Paradox 7x, 8x, 26
parallel activities, 231
parallel life symbol, 221
parameter, 353
PARAMETER, 363
parameter can be modified, 258
parameter name, 258, 294
parameter passing in generated code, 311
parameter type, 258
parameter value, 294
parameters, 258, 399
parameters passed to function, 311
parent, 122, 123
parent diagram, 19, 35
parent diagram label, 67
parent flow, 295
parent of the new diagram, 63
parent project, 413

Index

493

parent symbol, 102
parentrelationshipname, 462
parenttablename, 462
parse for correctness, 400
partitioning key, 324
pass by, 258
pass control couples, 180
pass control uni-directionally, 179
pass copy of parameter, 256
pass data couples, 180
pass entity alias to SQL engine, 312
passed couples, 290
passed parameters, 300
passing control, 179
password, 9, 336
paste, 15, 21, 114, 115, 241
paste from Clipboard, 15
path, 7, 9, 11
pathname, 327
pathological connections, 180
pctfree, 323
pctincrease, 323
pctused, 323
percent character, 294
percentage of space reserved for future

updates, 323
PERFORM, 305
PERFORM statement, 300, 394
PERFORM statements, 307
PERFORM THRU, 394
performance index, 252, 352, 354
performance indexes, 312, 391
performance keys, 324
performance of actions, 230
performance of subactions, 230
permitted but not recommended connection

between module x and module y, 189
permitted but not recommended connection(s)

using off-page connector x, 189
persistent, 399
persistent class, 256
persistentclass, 399
Pervasive Software, 6
Peter Chen, 3
physical attributes, 72
physical characteristics, 208, 258
physical characteristics for elemental types,

114

physical characteristics repository fields, 277
physical characteristics tab, 320
physical files, 165
physical information, 352
physical information for data element ‘x’ does

not specify length, 209
physical model, 71
physical name, 23
physical names, 71
physical schema, 23, 71
physical storage object, 324
physical tab, 323, 324
physically internal, 182
PHYSINFO, 364
PI, 252
pick repository items to appear in code, 306
picture, 295, 302
PICTURE clauses, 309
picture field, 277
PK, 196, 252
PK prefix, 389
planning and requirements identification, 45
planning outline window, 46, 49
planning phase, 45
planning statement description, 46
planning statement types, 46
planning statement types dialog box, 47
Planning statements, 46
planning statements description, 45
pointer, 256
pointer to object, 258
point-to-point line mode, 92
policies, 46
policy, 46
populating a composition field, 252
populating repository composition, 237
portrait orientation, 62
position diagrams in tree, 126
positioning a construct, 121
PowerBuilder, 11, 280
PowerBuilder format, 348, 378
PowerBuilder interface, 396
predefined reports, 289
predefined statement types, 45
prefetchsize, 326
prefix, 9
prefix operator, 272
prefix/suffix names, 321

Index

494

prevent docking, 264
preventing editing collisions, 333
preview a matrix report, 292
preview box, 289, 300
preview check box, 292
preview report on screen, 289
previous connector, 102
primary foreign key created for relationship

‘x’, 206
primary key, 71, 72, 114, 196, 237, 252, 321
primary key clause, 389
primary key errors, 196
primary key for fundamental entity ‘x’

contains foreign key, 204
primary key for table ‘x’ cannot be identified,

209
primary key level, 23, 71
primary keys, 312, 313
primary object file, 349
primary select, 263, 270
primary selection, 263
primary tablespace, 323
print, 20, 41, 124
print current diagram, 20
print current project tree, 20
print diagram, 15, 112
print diagram in active window, 40
print dialog box, 41, 42
print errors, 313
print global view, 40
print in black and white, 41
print in color, 41
print layout page, 42
print multiple entries per page, 294
print options, 40
print preview custom report, 300
print preview report, 289
print queue, 20, 40, 130
print range, 40
print setup, 20
print single entry per page, 294
print to file, 41, 289, 300
print to HTML, 289, 292
print tree structure, 40
printer defaults, 41
printer driver, 20
printer setup, 289, 300
printer setup for custom reports, 300

printing diagrams, 40
prior, 236
private attributes, 73
private derivation, 286
private method, 73, 257
private visibility, 253
procedure call, 227, 229
process, 81
process # field, 250
process decomposition, 122
process decomposition diagram, 4, 59, 60, 123,

124
process description, 295, 352
PROCESS DESCRIPTION, 364
process description field, 250
process labeled ‘x’ has a different parent on a

data flow diagram, 170
process labeled ‘x’ has more than one input

connection, 170
process labeled ‘x’ is a dangling process, 160,

169
process labeled ‘x’ is an input only process,

161
process labeled ‘x’ is an output only process,

161
process labeled ‘x’ is not used on a data flow

diagram, 171
process model, 7, 167, 194
process model view, 127
process modeling tool set, 4
process number, 81, 294, 352
PROCESS NUMBER, 364
process numbering, 146, 147
process numbers, 81, 104, 122
process occurrence, 168
process symbol, 81
process symbols, 122
process view, 19, 130
processes, 104
program, 177, 178
program item, 302
Progress 4GL, 398
Progress 7x, 26
Progress 8x, 26
Progress Native 7x, 26
Progress Native 8x, 26
project analysis functions, 13
project branch report, 288

Index

495

project creator, 18
project data files, 10
project database location information dialog

box, 7, 8
project database location Information dialog

box, 7
project description, 18, 56
project history, 18, 118, 340
project history box, 119
project level security, 337
project manager, 18, 31
project manager rights, 335
project name, 9, 18, 56
project name box, 346
project owner, 9
project path, 56
project root, 18, 34, 38
project scope box, 292
project tree, 33
promote planning statement, 51
properties button, 289
proposed change access, 401
protected attributes, 73
protected derivation, 286
protected method, 257
protected methods, 73
protected visibility, 106
protocol letter:servername, 9
protocol letter:servername:instance, 9
prototyper, 32, 306, 344
prototyping capabilities, 32, 344
pseudo SQL relationship joins, 267
public attributes, 73
public derivation, 286
public method, 73, 257
public visibility, 253
pure virtual method, 257
purge logs, 7
purpose, 45
purpose of structured design, 176

Q
qualification, 253, 257, 258, 399
qualifier names, 106
query optimization, 327
query report, 15
question mark, 408

R
RAM disk, 5, 9
RAM storage requirements, 5
Rational Rose, 400
raw, 310
Rdb, 312
Rdb end module statement, 391
Rdb import, 391
RDBMS catalog, 392
RDBMS catalog export format, 348
RDBMS catalog import, 392, 414
RDBMS connection information, 392
RDBMS engines, 6
RDBMS SQL dialect dialog box, 235, 317
README.DOC, 11
read-only access, 241, 332, 401
read-only indicator, 241
read-only mode, 19
real, 310
reanalyze, 412
rearrange project data flow diagrams, 35
rebuild, 7, 31, 199, 344, 347
rebuild projects, 31
rebuilding a project, 347
receive a message, 339
recent diagrams, 20
reconciliation utilities, 401
reconnect relationship, 71
record descriptions, 303
record item definitions, 367
record locking mechanisms, 331
recreate a project, 344
recreating project files, 347
rectangle, 81
rectangle with round corners, 231
rectangles, 217
redraw open structure chart diagram, 30
reduce display size, 22, 69
reference, 253, 256, 258
reference to object, 256, 258
reference type, 106
referential integrity constraint, 458
referential integrity information, 320
referential operation, 315
regenerate chart, 30, 329
regenerating existing structure charts, 329
REGULAR DMS tablespace, 323

Index

496

REGULAR tablespace, 323
relabel objects, 55
related list file, 349
related object file, 349
related to, 295, 354
RELATED TO, 364
related to field, 249
related to listing report, 288, 291
relatedid, 351, 352
relation, 349
relational database engine, 6
relational database repository exports, 349
relational export file layout, 349
relational export file structure, 350
relational format, 7, 348
relational operator, 272
relations field, 255
relationship, 267, 353, 354
RELATIONSHIP, 364
relationship (normal), 399
relationship (supertype), 400
recursive denormalizing cycle detected, 211
relationship ‘x’ is not normalized, 197
relationship ‘x’ is one to one mandatory, 198
relationship ‘x’ is optional in both directions,

198
relationship box, 320
relationship cardinality, 3, 104, 195
relationship cardinality notation, 58
relationship line, 78, 195, 213
relationship name, 59, 104, 225
relationship repository entries, 194
relationship type, 104
relationship-based joins, 274
relationships among the object roles, 229
relative filename, 326
relief, 117
remove, 404
remove items from the print queue, 41
remove a field from include in report list, 289
remove a friend, 259
remove a link, 259
remove a table, 264
remove an external link, 261
remove and place object in Clipboard, 21
remove arguments, 258
remove column, 266

remove link between an enterprise project and
a satellite project, 344

remove link between enterprise project and
satellite project, 31

removing a link, 413
removing enterprise links, 413, 414
removing members from a division, 403
removing repository fields, 282
removing users from a division, 405
rename, 31
rename project directory, 344
rename/move, 344, 346
RENAMES statement, 395
renaming a project, 346
reorder list, 258
replace attribute name with alias, 315
replace option, 315
report, 15, 255
report check function, 293
report definition, 288
report name, 294
report parameters, 294
report queries, 292
report query, 29
report query definition dialog box, 292
report query dialog box, 297, 300
report syntax errors, 299
report types, 288
reports, 29, 146
reports dialog box, 289, 300
REPORTS.TBL, 292, 297
reposition objects, 55
repository, 1, 28, 177, 233
repository column information, 294
repository custom report dialog box, 293
repository define dialog box, 242, 243, 244,

245, 318
repository dialog box, 6, 235
repository dialog box buttons, 235
repository disabled, 18
repository divisions dialog box, 402, 405
repository domain entry, 279
repository enabled, 18
repository entries, 27
repository entry, 251
repository entry dialog box, 317
repository entry types by diagram type, 247
repository export log, 386

Index

497

repository export VSC format, 355
repository functions, 233
repository information fields, 246
repository object menu, 241
repository report dialog box, 287, 288
repository report formats, 290
repository report preview, 289, 300
repository reports, 287
repository reports dialog box, 289
repository scan, 137
repository search, 238
repository search criteria, 239
repository search criteria default, 240
repository search dialog box, 238, 280
requester, 6
required report items, 293
reset, 117
resize entity symbols, 71
resize object browser, 114
resolving object name conflicts, 411
restore, 16, 30, 344, 345
restore log files, 7
restoring a project, 345
restrict, 271
restrict number of rows returned by select, 269
restriction, 294
restructure a project tree, 35
resynchronize diagram sets, 127
return, 227, 229
return control, 179
return entities to free entity pool, 287
return to the standard mouse cursor, 91, 98
return type, 256
return value, 256
return value from function, 311
returned couples, 290
returned-from information, 290
returned-to information, 290
returns, 399
returns field, 256
returntype, 399
reuse, 325
reuse existing file, 325
reuse process number, 148
reverse engineering. See Import
reverse relationship, 295
reverse relationship of ‘x’ is unnamed, 197
review foreign keys, 28

review primary keys, 28
review the activities of users, 332
revoke modify and parental rights, 335
right mouse button, 14
right out join type, 268
rights, 9
rights box, 405
RO, 241
role, 399
role names, 106
role names have not been assigned for

relationship ‘x’ between ‘A and ‘B’, 215
role/qualifier names, 104
rolemultiplicity, 399
root + .AD, 355
rounded-corner rectangle, 81
rowid, 276
rows are stored in sorted order, 325
ruler, 22, 41, 70
ruler lines, 70
rules, 1, 4, 145
rules considerations, 57
rules features, 146
rules methodology, 18
running on the network, 333
rxists, 272

S
salvaging corrupt files, 347
sample project, 11
satellite definition, 410
satellite project, 31, 241, 401
save, 15, 19, 123, 133, 149, 236
save comparison information to an HTML file,

328
save construct, 67, 120
save current diagram, 112
save errors to file, 313
save page link, 133
save preview custom report, 300
save preview report, 289
save report button, 289
save the planning statement type, 48
save with new name, 19
saves all changes to an entry, 236
saving a new diagram, 138
saving a predefined report, 289

Index

498

saving your work, 137
scale a diagram, 41
scale to page, 41
scaling factor, 62
scaling percentage, 41
SCC-compliant provider, 260
schema, 9
schema name, 9
scope, 240
scope box, 322
scope of trigger firing, 322
scrolling diagrams, 75
SCRULES.TBL, 9
SCs, 59
search, 21, 107, 236
search button, 91, 97, 100, 104, 105, 108, 116
search criteria, 237
search criteria dialog box, 240
search list box, 239
search repository dialog box, 291
searches affected, 240
searches to be implemented, 240
second connector, 102
second level NetWare security, 334, 337
security, 17, 24, 332
segment, 322, 324
segment database device location, 326
segmentation page, 40
segmentation page key, 40
select a block, 120
select a constructs, 120
select a page, 42
select all, 21, 42, 403, 405
select all descendant diagram branches, 38
select all pages, 42
select available print options, 42
select button, 259
select check constraints box, 319
select clause, 294
select columns, 262
select components, 150
select composition types, 284
select diagram, 64
select diagram type, 61, 64
select display options, 71
select distinct check box, 266
select drawing method, 62
select existing boilerplate, 64

select existing diagram, 123
select flows from diagram, 150
select format of import file, 383
select from list of custom reports, 292
select import options, 379, 384
select items into a block, 77
select list box, 280
select methodology, 57
select name of diagram, 74
select options, 40
select orientation, 62, 63
select page link symbol, 132
select page size, 62, 63
select pages to print, 42
select paper source, 40
select parent statement, 52
select project, 18, 34, 58
select project dialog box, 346
select project to open, 112
select scaling, 63
select scope of schema, 316
select spawn functions, 126
select SQL dialect, 397
select statement, 261
SELECT statement, 303, 308
select subflow components, 150
select symbol, 122
select tables, 262
select target printer, 40
select the files to link, 260
select the sort order, 294
select the user type, 337
select tree position, 64
select unhighlighted fields, 289
select update actions dialog box, 409
select workspace, 62, 63
select zoom level, 69
selected columns, 266
selected columns list, 266
selected object, 76
selected tables box, 264
selecting a line segment, 98
selecting a predefined report to print, 289
selecting a satellite project, 413
selecting all items in the current list, 403, 405
selecting all newer objects, 409
selecting all source objects, 409
selecting all target objects, 409

Index

499

selecting an existing project, 58
selecting blocks, 77
selecting conflict resolution method, 411
selecting diagram object, 76
selecting diagram type, 403
selecting division link to remove, 413
selecting domain, 279
selecting model type, 403
selecting object type, 403
selecting page link symbols, 131
selecting predefined report to print, 289
selecting repository report fields, 289
selecting the division to delete, 404
selecting update actions, 408
selecting views, 316
selection field, 263
self-delegation, 227, 229
semicolon, 294, 455
send a message, 339
send a message dialog box, 339
sequence, 350, 351, 352
sequence diagram, 227
sequence diagram analysis, 227
sequence diagram graphics, 227
sequence event, 221
sequence numbers, 229
sequence of functions, 300
sequential object, 256
serial, 276, 311
serial number, 11
servername, 9
set composite type, 284
set default paths, 13
set default size button, 118
set field length, 281
set field name, 281, 283
set field type, 281
set flags, 262
set link cardinality, 285
set link to, 285
set object name, 283
set of generation options, 328
set of leveled data flow diagrams, 20
set of planning statements, 45
set of relationships for class ‘x’ is incorrect,

216
set report formats, 29
set selection mode, 98

set zoom level, 410
setforeignkeycascadepkey, 463
setforeignkeydefaultvaluelist, 462
setforeignkeynulllist, 463
setting default line selections, 100
setting options for events, 73
setting options for messages, 73
settings, 30, 62
setup button, 20, 41, 300
shared projects, 3
shell code errors, 13
shell code generation, 300
shell code generation error message box, 153
shell code generation options dialog box, 395
shell code generation scope, 300
SHIFT+F1, 14, 15
SHIFT+F10, 15, 241
shore line, 229
shortcut key, 14
show all planning statement levels, 51
show discriminators, 22
show line names, 22
show symbol names, 22
sid, 9
simulation capabilities, 32, 344
single diagram report, 288
single entry listing report, 288, 290
single line comments, 389
single page drawing area, 62
single-user security, 12
single-user version, 3
single-user version restore, 345
sizable diagram windows, 68
size, 117
size of data file, 325
size of next extent, 323, 325
size of objects on a diagram, 63
size of parameter, 256, 258
size of tablespace’s first extent, 323
size of the container, 326
size of the tablespace’s first extent, 325
smalldatetime, 276
smallfloat, 276, 311
smallint, 310
smallinteger, 276
smallmoney, 276
SMS, 326
snap line mode, 92

Index

500

snap lines, 30
snap symbols, 15, 30, 118
solid circle, 179
solid line with a stick arrowhead, 231
solid line with an open arrowhead, 225
solid line with filled arrowhead, 229
solid line with half stick arrowhead, 229
solid line with heal-stick arrowhead, 227
solid line with no arrowhead, 225
solid line with stick arrowhead, 227, 229
sort by name, 294
sort by type, 294
sort in ascending order, 320
sort in descending order, 320
sorted data, 325
source code, 300
source definition, 410
source information, 290
source project, 406
source/sink labeled ‘x’ is dangling, 160
SP_ADDSEGMENT statement, 326
SP_EXTENDSEGMENT statement, 326
sp_space command, 8
spacing of symbols, 129
spawn, 20, 102, 122, 124, 125, 167, 168, 169,

170, 171
spawn dialog box, 126
spawn procedure, 126
spawn verify, 102
spawning a function, 126
special line type, 180
special terminator types, 180
specific diagram, 403
specific type, 403
specify action that causes the trigger to fire,

322
specify at least x denormalizing prefix/suffix

names to conform to cardinality of
relationship y, 212

specify connect by column, 269
specify grouping criteria, 269
specify repository search, 237
specify starting column, 269
specify the report type, 294
specifying physical storage characteristics of a

table, 323
specifying report entries, 288

split data flow, 30, 146, 149, 150, 163, 164,
185, 251

split data flow procedure, 149
split dialog box, 150
split flow listing generation report, 291
split flows listing, 149
split flows listing report, 288
split line, 182
splitting data flows, 4, 149
SQL, 235
SQL DDL, 7, 312
SQL DDL statements, 388, 396
SQL dialect, 313, 397
SQL dialect for schema generation, 26
SQL format, 348, 378
SQL generation, 106
SQL import, 414
SQL keywords, 389
SQL procedure code, 178
SQL schema generation, 71, 312
SQL schema generation dialog box, 316
SQL schema generation error message box,

153
SQL schema generation information dialog

box, 319
SQL schemas, 178
SQL source file, 389
SQL view, 261
SQL view support, 261
SQL*Net driver, 8
SQL*Net SPX, 9
SQL*Net TCP/IP, 9
SQLBase, 6, 9
SQLDIAL.TBL, 9, 455
SQLServer, 6, 7, 9, 312
SQLServer 7 Go 7 statement, 391
SQLServer driver, 7
SQLServer import, 391
SQLServer log files, 7
SQLServer segment properties, 326
SQLServer storage options for idexes, 324
SQLWindows, 396
SQLWindows interface, 396
square brackets, 293
SSADM, 2, 4, 82, 145, 146, 220
stacked symbol, 117
stages to the import, 378
standard class, 213, 248

Index

501

standard subtype, 214
standard workspace, 62
start, 231
start with clause, 269
start with control, 266, 272
state diagram, 230
state diagram ‘x’ is not associated with a class,

219
state labeled ‘x’ is a dangling state, 218
state labeled ‘x’ is an input only state, 218
state labeled ‘x’ is an output only state, 219
state machine, 231
state symbol, 217
state transition diagram errors, 218
state transition diagram symbols, 79, 86
state transition diagrams, 2, 217
state transition tree file, 34, 35
statement description, 50, 53
statement icon, 50
statement name, 52
statement priority, 46, 50, 53
statement title, 50
statement type, 45, 50, 52
states, 60, 217
static, 257
static qualification, 253
Static structure models, 400
STD, 219
STDs, 2, 60, 80, 217
stereotype name, 225
stick man figure, 224
storage type, 277, 295, 302
store as metafile, 21
store check constraints, 315
store enhanced referential integrity

information, 315
store in encrypted format, 272
store key constraint names, 315
store stored procedures, 315
store triggers, 315
stored procedure, 178
stored procedures, 391
storing check constraints, 319
storing temporary tables, 326
straightening a line segment, 99
straightening line segments, 98
strategic planning, 49
strategic planning control bar, 51

strategic planning icon, 49
strategic planning window, 48
strategy, 46
strategy formulation, 45
strength, 46
struct, 398
STRUCTUR.DBF file structure, 355
structural complexity, 192
structure, 307
structure box, 221
structure boxes, 220
structure chart, 181, 302
structure chart graphics, 177
structure chart line types, 178
structure chart lines, 182
structure chart page connectors, 134
structure chart symbols, 79, 83, 177
structure chart tree file, 34, 35
structure charts, 2, 4, 20, 57, 59, 70, 80, 175,

176, 194
structure class, 213, 248
structure class subtype, 398
Structure errors., 221
structure model, 7
structure subtype, 214
structured analysis, 176
structured analysis diagrams, 4
structured analysis error messages, 159
structured analysis methods overview, 145
structured design, 176
structured design diagrams, 4
structured design error messages, 186
structured design overview, 176
structured methodology, 145
structured systems analysis, 145
structured systems design, 145
structures of data elements, 178
stylize, 29, 117
stylize diagram, 55
subexpression criteria, 272
subflows, 146, 149, 165
subordinate processes, 123
subprocesses, 147
subquery field, 272
subquery name, 272
subroutine, 177
sub-select, 263
subsequent connector, 102

Index

502

subsequent records object header, 356
subtree, 168
subtype, 358
subtype classification, 178
subtype entity, 210
subtype object, 106
suffix instead of prefix, 321
summary description of the project, 118
summary listing report, 288, 290
summary of import characteristics, 383
summary of objects to be imported, 392
summary report type, 294
superior process, 171
superior symbol, 170
supertype, 106
supertype /subtype relationship, 106
supertype entity, 210
supertype relationship, 207
supertype relationships, 205, 210
supertype/inheritance relationships, 70
supertype/subtype relationship, 106
supertype/subtype relationships, 106
supervisor, 337
supervisor equivalence, 337
supported dialects, 312
supported SQL dialects, 277
supported statements, 312
suppress external reference warning messages

box, 317
swimlane, 231
swimlane name, 231
Sybase SQL Server, 6
symbol, 177
symbol cursor, 77, 91
symbol cursor button, 90
symbol entry mode, 75
symbol name, 91
symbol restrictions, 80
symbol set modifications, 10
symbol shadow effect, 117
symbol template, 3
symbols, 29, 84, 85, 86, 90, 91, 103, 112, 147,

191
synchronization bar, 231
synchronize an enterprise project with one of

its satellites, 407
synchronize satellite project with enterprise

project, 401

synchronizing an entity-relationship model
with a generated database, 413

syntax analysis, 195, 196
syntax check, 28
syntax check of current report, 297
syntax error checking, 297
syntax error in cardinality detail string

(position ‘n’) for relationship ‘x’ between
classes ‘y’ and ‘z’, 216

syntax error in cardinality detail string
(position ‘n’) for relationship ‘x’ between
entities ‘y’ and ‘z’, 211

syntax error in cardinality detail string
(position ‘n’) for reverse relationship ‘x’
between classes ‘y’ and ‘z’, 216

syntax error in cardinality detail string
(position ‘n’) for reverse relationship ‘x’
between entities ‘y’ and ‘z’, 211

syntax errors, 3, 4, 169, 214, 218, 225, 227,
229, 231

Syntax errors, 221
sysname, 276, 310
System 10/11, 7
system boundary, 224, 225
system codes, 396
system design objective, 46
system event, 46
system files, 119
system functions, 59
system manager, 31
system manager rights, 335
system requirement, 46

T
table check constraints, 318
table check constraints box, 319
table comments, 391
table information, 323
table name quotes, 315
tables, 312
tables/relationships box, 263, 266, 268
tables/relationships window, 266
tablespace, 312, 323, 324, 325, 391
tablespace type, 326
tactic, 46
target class, 229
target definition, 410

Index

503

target languages, 301
target project, 406
target RDBMS, 272
target SQL RDBMS, 72
task, 46
TeamWindows, 396
TeamWindows repository manager, 396
technical support, 9
template option, 315
TEMPORARY tablespace, 326
terminator, 217
terminator type, 100
terminator types, 60, 180
terminators, 195, 213
text, 29, 103, 114, 310
text cursor, 29, 77, 103
text default settings, 110
text entry mode, 75
text settings, 24, 100, 110, 129
text settings dialog box, 111
TEXT(), 27
the external links, 259
there are ‘x’ incorrectly placed looping

structure(s), 187
there are ‘x’ invocation line(s) without source

and/or destination, 186
there are ‘x’ lines only connected at one end to

a methodology symbol., 171
there are ‘x’ unnamed classes, 215
there are ‘x’ unnamed couple(s), 186
there are ‘x’ unnamed data flow(s), 159
there are ‘x’ unnamed data store(s), 159
there are ‘x’ unnamed entity(s), 199
there are ‘x’ unnamed external entity(s), 159
there are ‘x’ unnamed file(s), 159
there are ‘x’ unnamed function(s), 169
there are ‘x’ unnamed information cluster(s),

186
there are ‘x’ unnamed module(s), 186
there are ‘x’ unnamed page connector(s), 186
there are ‘x’ unnamed page connectors, 172
there are ‘x’ unnamed process(es), 159
there are ‘x’ unnamed process(es), 169
there are ‘x’ unnamed relationship(s), 199
there are ‘x’ unnamed source/sink(s), 159
there are ‘x’ unnumbered process(es), 161
there are x unnamed event(s), 218
there are x unnamed state(s), 218

thin rectangle, 227
third-party report writer, 287
third-party report writers, 7
threat, 46
tile, 32
tiled, 73
time, 276, 310
time diagram created, 67
time diagram last edited, 67
time stamp, 359
time to read one 4K page, 327
timestamp, 310
tinyint, 310
tinyinteger, 276
to class, 106
to entity, 295
toggle display of line labels, 70
toggle display of symbol labels, 70
tokens, 293, 389
tools, 30, 343
top down arrangement, 51
top level diagram, 63, 162
top-down decomposition, 4
top-down design, 59
top-down functional decomposition, 33
top-level data flow diagram, 34
top-level diagram, 36, 125
top-level diagrams, 146
top-level select clauses, 269
total number of extents allocated, 323, 325
track the software development process, 45
trailing spaces, 349
TRANS directory, 305
transfer data between enterprise project and

satellite project, 401
transfer data information between an enterprise

and satellite project, 28
transfering data to PowerBuilder, 396
transfering data to UNIFACE, 397
transferrate, 327
transient data path=, 334
transient file directory, 305
transition, 217, 231
transition string, 231
tree file, 33, 123
tree position, 63
tree structure, 4
tree-link format, 49

Index

504

trigger, 178, 354
TRIGGER, 355, 366
Trigger preamble, 458
trigger text box, 322
trigger wizard, 315, 321
triggername, 463
triggers, 321, 391
triggertablename, 463
TRIGSYS.TBL, 457
truncate names, 72
trustee, 334, 335, 337
trustee rights, 335
turn line labels off, 70
turn symbol labels off, 70
TWX_VAW, 396
type, 294, 399
type box, 279
type field, 280
type list, 379
type list box, 280
type of edit style, 280
type of entries presented during search, 240
type of link., 413
type of relationship, 105
type of relationships to include, 73
typedef, 302
types of FDD analysis, 169
types of entities, 389
types of errors, 301
types of imports, 378
types of join relationships, 267
types of matrix reports, 291
types of messages, 227, 229
types to import dialog box, 381
typical installation, 8, 11

U
UML, 224, 227, 229, 230
UML diagram line terminators, 92
UML relationship notation, 96
unattached relationship ‘x’, 199
unbalanced data flow, 162
UNC path, 235
undefined, 310
undo, 15, 21, 78, 114
undo all editing changes, 19
undock window, 264

unexpected appearance of page connector
labeled ‘x’, 175

unicode char, 276
unicode long varchar, 276
unicode varchar, 276
Uniface CASE Bridge Cookbook, 315
UNIFACE CASE interface format, 397
UNIFACE CASE load feature, 397
UNIFACE CASE unload, 397
UNIFACE interface, 397
Unified Modeling Language, 224, 227, 229,

230
Unify 2000, 26
Unify VISION, 397
Unify VISION format, 378
uninstall, 12
uninstalling Visible Analyst, 12
union, 213, 248, 398
union all check box, 270
union all relationship, 270
union class subtype, 398
union clause, 269
union outer join type, 268
union select, 263, 270
union subtype, 214
unique discriminator, 211
unique index, 352
unique indexes, 391
unique key, 354
UNIQUE option, 312
uniquekeycolumnnamelist, 464
uniqueness, 312
unlabeled data flows, 160
unlabeled symbols, 160
unlimited program access, 332
unlimited project file access, 332
unlink, 127
un-nests relationship, 123
unordered association, 106
unstructured diagram, 4, 59, 167
unstructured diagram default values box, 101
unstructured diagram symbols, 79, 90
unstructured diagram tree file, 35
unstructured diagrams, 60, 137
unstructured process decomposition diagram,

124
unstructured tree file, 34
update, 407

Index

505

update button, 322
update columns box, 322
update diagram sets, 127
update options, 409
update rights, 9
updatestamp, 276
updating the repository, 405
updating Visible Analyst, 10
upperleftx, 351
upperlefty, 351
upward-pointing couples, 311
upwards balance, 158, 159
URL, 235
USAGE, 302
use alias name, 72, 249
use browser for preview, 289, 292
use case, 224
use case analysis, 225
use case diagram, 224
use case graphics, 224
use case name, 224
use errors, 214, 218
user, 31, 344
user attribute, 353
user attribute definition, 353
user attribute information, 356
user defined, 26
user defined name, 358
user entry type information, 356
user errors, 4
user ID, 9
user levels of security, 335
user name, 17, 336
user number, 17
user object definition, 353
user object line, 353
user rights, 9, 335, 406
user type, 31
user who last edited diagram, 67
user-defined attributes, 13
user-defined attributes list, 282
user-defined data types, 72
user-defined field, 281
user-defined object types, 114
user-defined objects, 283
user-defined SQL, 26
username, 9
users, 31, 336

users button, 405
users currently using Visible Analyst, 18
users list, 405
using a mouse, 13
using boilerplate diagram keywords, 67
using control connectors, 180
using data connectors, 180
using hashing, 324
using invocation lines, 179
utilities menu, 16

V
VA<ROOT>, 9
VA\DATA, 335
valid connection, 185
valid matching page connector cannot be found

for ‘x’, 175
valid page size, 63
valid storage types, 276
validating diagrams, 4
value, 253, 256, 258
value aggregation relationship, 106
values & meanings, 295, 352
values & meanings field, 250, 280, 395
values and meanings, 399
VALUES AND MEANINGS, 366
varbinary, 276, 310
varbit, 276
varchar, 276, 310
VARCHAR, 309
vargraphic, 310
VARGRAPHIC, 309
variable record length file, 355
VATYPES.H, 301, 308
VAW, 396
VAW#.INI, 12, 334
VAW.INI, 12, 98, 334
VAWBTR32.DLL, 6
Vax RDB 6x, 26
verify, 127, 170, 171
versionid, 351
versonid, 350
vertical bar, 303
vertical splitter, 47
view, 22, 127
view clauses tab, 262
view columns tab, 262

Index

506

view conflict, 411
view custom preview report on screen, 300
view diagram, 128
view diagrams user rights, 406
view differences, 409
view functions, 127
view items user rights, 406
view joins tab, 262, 267
view method, 62
view of data model, 19, 127, 128, 130, 137
view options tab, 262
view print queue, 40
VIEW SELECT, 366
VIEW SPECIFICATION, 366
view tables tab, 262, 263
views, 60
virtual, 394, 400
virtual base class, 286
virtual class, 256
virtual diagram, 19, 367, 394
virtual diagram positions, 367
virtual function, 73
virtual locations, 367
virtual method, 257
visibility, 73, 106, 253, 256, 257, 400
Visible Analyst data files, 11
Visible Analyst format, 114
Visible Analyst LAN features, 332
Visible Analyst program files, 11
Visible Analyst proprietary format, 115
Visible Analyst serial number, 17
Visible Analyst version, 17
Visible on the web, 32
Visible prototyper export format, 348
Visible Systems Corporation web site, 32
vision, 46
VISION, 280
VISION class editor, 398
VISION forms designer, 398
VISION repository, 397
Visual Basic, 280
void attribute type, 106
volatile, 258
volatile qualification, 253
volotile, 399
VSC format, 348, 378
VSC format imports, 384
VSC format repository exports, 355

W
w statement icon, 52
waiting for CASE Tool dialog box, 397
wall chart matrix, 292
warning messages, 159
warranty registration card, 5
Watcom 3x, 26
ways to add free form caption text, 103
weakness, 46
when to fire a trigger, 322
where clause, 263, 269
wildcard select, 239
WIN.INI, 12
window, 32
window menu, 73
Windows bitmap, 114, 115
Windows Clipboard, 21, 114
Windows meta file, 114, 115
Windows NT, 8
Windows start menu, 11
with check option, 271
with encryption, 272
WORKING STORAGE, 304
WORKING STORAGE SECTION, 308
workspace, 16, 68
www.pervasive.com, 6

X
x has more than one lexical inclusion, 188
x should be shown as a net input data flow,

163
x should be shown as a net output data flow,

163
xdb 1x, 26
XMI, 400
XMI format, 378
XMI Import, 400
XMI specification, 400
XML classes, 400
XML file, 400
XML relationships, 400

Y
Yourdon, 2, 81, 125
Yourdon, 81

Index

507

Yourdon context diagram, 147
Yourdon/Constantine, 2, 4, 57, 80, 83, 145,

176, 177
Yourdon/DeMarco, 4, 57, 63, 80, 145, 146,

167, 209
Yourdon-rules project, 36

Z
zoned decimial, 276
zoom, 22, 69
zoom box, 410
zoom level, 22, 69
zstring, 310

Index

508

