The variation in static pressure along the shell (lower part of the figure) also agrees well with the ex-
periment. Points 3 are the pressure measured along the wall of the shell and points 4 are the pressure found
by measuring the transverse fields. The same total pressure ratio pg */ Ppo* = 0.06727 was taken in the cal-
culation as in [7]. The value of k = 0.232 obtained by calculation agrees well with the experimentally deter-
mined value of k =0.24.

The authors thank A. N. Kraiko for useful discussions and attention to the work.
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SIMILARITY OF FLOWS IN STRONGLY UNDEREXPANDED
JETS OF VISCOUS GAS

V. N. Gusev, T. V. Klimova, UDC 533.6.011.8:532.525.2
and V. V. Ryabov

The fulfillment of the conditions formulated in [1] for the similarity of flows in strongly under-

expanded jets of a viscous, thermodynamically ideal gas is studied. The limits of applicability

of these conditions are egtablished on the basis of exact solutions of the one-dimensional Navier
—Stokes equations and experimental investigations.

§1. Let us consider strongly underexpanded jets of a viscous, thermodynamically ideal gas escaping
from arbitrary nozzles into a quiescent medium. The necessary conditions for the similarity of such flows
were formulated in [1] on the basis of dimensionality theory and are expressed as equalities of the following
similarity criteria:

M;, K.=Re;¥p~/puj, UiYpoo! Peoy Wil o 1.1)
M,-=Uj/V'YjRT,-, Re,—=ij,dj/p,j, p01=p1(1+0.5('{,—1)M,2) W (=1

Here p, p, T, U, and yu are the pressure, density, temperature, velocity, and coefficient of viscosity,

respectively, the index j refers to the parameters in the initial'cross section of the jet, the index = refers
to the parameters at infinity, and dj is the characteristic size of the initial cross section of the jet.

The distributions of the stream parameters in the initial cross sections of the jets, normalized to the
respective characteristic values, are assumed to be identical while the constants determining the physical
properties of the gases in the jets and in the surrounding space, such as the ratio of specific heats vy, the ex-
ponent n in the law u ~ TN, the Prandt] and Schmidt numbers, etc., are congidered to be included among the
similarity criteria.
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If the physical properties of the gases in the jets and in the surrounding space are the same, the system
of similarity criteria (1.1) is shortened to three:

M57 KZy TOJ'/TBM T0J=TJ(1+O'5(‘Y_1)MJZ) (1 '2)

The dimensionless dependent and independent variables of the problem are written in the form

1.3)

The similarity law formulated above is obtained in the limiting case when p_/ Pg; — 0. But the appear-
ance of regions in which the flow is entirely determined by the assignment of the initial data in the exit cross
section of the nozzle and corresponds to the discharge of gas into a vacuum (P =pe = 0) is characteristic of
strongly underexpanded jets in such a limiting transition, It is obvious that the use of the characteristic
parameters of the surrounding medium as the scales in these regions can lead to an infinite increase or de-
crease in the dimensionless variables as p./ Pyj — 0. Physically this is connected with the fact that the flow
inside the jet bounded by shock waves becomes 1nf1n1tely overexpanded relative to the outside pressure pe.

For a rigorous approach in this region a transition to a new system of characteristic parameters of the
problem, which can become the critical values of the stream parameters at M =1 (denoted below by the in-

dex *), is necessary. Inthis case the system of similarity criteria and dimensionless dependent and inde-
pendent variables is written in the form

M;, Res=p.U.d;/ 1.4
=U/U., p’=p/p., p’=p/p., T'=T/T. (1.4)
z'=xld;, y'=y/d;, z'=2z/d,

On the other hand, experimental investigations (see [10], for example) show that for some parameters
similarity in the variables (1.3) continues to be satisfied inside the jet. In this connection it is interesting
to establish the conditions under which a transition to the new variables in this region becomes necessary.

§2. First let us consider the fulfillment of the similarity conditions formulated above on the example
of the spherical expansion of a gas into a flooded space (M =1). The choice of this flow is explained, on the
one hand, by the presence of an exact solution of the Navier—Stokes equations [2] and, on the other hand, by
the equivalence of the flow in the hypersonic region of a jet to one-dimensional flow [3].
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We separate the test region of the one~dimensional flow under consideration by the coordinate r, at
which the stream parameters are extremal into a supersonic region r < r; and a region r > r. of transition
of supersonic flow into subsonic flow. Inthe case of an ideal gas this flow will consist of supersonic and
subsonic branches of an ideal source separated by a spherical shock wave whose position is determined by
the coordinate r;. As pw/popx — 0

Fo=lt] B (L) (1) T ek e (2.1)
re ¥V po. y+1 y+1 2y (y—1) .
Here the following equations are valid for the stream parameters:
Atr<r,
U (o(yH ) =/ (p— 1) UV D =2
p'= (/o (yF+1) ="/ (y—1) U?) V0=V (2.2)
T'=(3L0+0) =Y. (y—1) U,
p'=-(‘/2(7+1)—’/2(7~1)U'2) 1/(1-1)
atr>r,

(1/2(.{_'_1))‘Ia(1+i)/(1-1)ﬁ(1__1/2(7_1)(72)}/(1-1):;_2,
p=(1_1/2(.y__1)[72) 1/(1-1)
T=(1-/.(y=D)T?), p=(1="/,(y— 1)) ¥ 1-»

2.3)

In accordance with the two chosen systems of characteristic parameters the former e€quations are
written in the variables (1.4), in which r' =r/r«, and the latter are written in the variables (1.3), in which
F=rr;lv P/ Do, When py, > p,, the coordinate r, > ry and in the hypersonic flow region from Eqs. (2.2)
we get the asymptotic expressions

U=V (y+0)/ (D +..., o=V (+D/(—1)r—+ ...
I'=((y—1)/(y+4))Ro-vr/2a=01 2.4)
p=((y=1)/ (yF 1)) =2

Changing to the variables (1.3) in (2.4), we obtain

T=Y2/ (=) + ..., p= @/ (f+ D))V (y=D/ (Y F1) i+ ...
2

— W( (,\,_,1)/(,!_,_,1) ) Y2 (Y1) (Pm/Po-) (1—1);-2(7—1)4- .. (2.5>
2 V(-1 ‘
p= (_74-—1 ) ((=1)/ (1)) ¥ (Poo/Poe) T~VF 1L

It follows from (2.5) that as p,/pyx — 0 the pressure and temperature in the hypersonic flow region are
negligibly small in comparison with their values at infinity. Consequently, as already mentioned above, their
representation in this region must be done in the variables (1.4). For the velocity and density such a division
is not necessary in the hypersonic approximation [see Eqs. (2.3) and (2.5)]. The distribution of these para-
meters at y =1.4 in the variables (1.3) is given in Figs. 1 and 2 dashed lines (Ky = =).

A similar flow pattern is also retained in the presence of viscosity. At r < r. the flow continues not to
depend on the conditions at infinity, and at relatively high values of the Reynolds number it remains nearly
ideal. This is confirmed by the results of numerical calculations {4], and also follows from an asymptotic
solution, which is valid in the hypersonic region of flow [5].

The fulfillment of the similarity conditions at r > r_ is illustrated by Figs. 1 and 2, in which the results
of numerical calculations with K, = 0.061, y% =¥ =14, T(s/Te =1, Nx =D, =1 are presented. In these
figures curves 1-3 correspond to Rey = pxUxTx/p+ =565, 157, and 30. Despite the fact that the data presented
were obtained at finite values of the pressure drop p,/p)x, the similarity in the variables (1.3) is satisfied
rather well in the subsonic region of flow. The corresponding asymptotic solutions in this region as p_/py+—0
are given in [5] for Tyx/Te =1 and in [4] for Tg./Te =1.

888



Al Te 2
L
6 X ad
O A Y

5

A

Car
4 B

P,

7 3
?

o
o = =
g
b

~4

ok —
NN, 1> NP7
A ¥ \t
Y
a4 s b
of \‘wi E
o2 | Y
: 0.2 J 2
o 41 02 83 44 45 46 F ot 0.2 84 0 5.2 24 06 F
Fig. 3 Fig. 4

In the supersonic region of flow the functions presented in Figs. 1 and 2 fan out. But the pressure and
temperature in the hypersonic region of flow decrease, approaching zeroc, as Poo/Pyx — 0, just as in the case
of an ideal gas. A change to the criteria (1.4) is necessary for them. At the same time, such a division is
not needed for the velocity and density in this region, With an error of Rer, A = 2(y— 1w, w = [2y~1~2n

(y— V-, they can be represented in the variables (1.3) in the entire flow field except for the vicinity of the
critical section of the source.

As the pressure drop p./p« increases, the supersonic region of flow decreases, the veloeity in it be~

comes less than its limiting value (see Fig. 2), and here a change fo the criteria (1.4) is now necessary for
all the stream parameters.

It should be noted that the mode of flow considered above, at a value of the similarity parameter K, as
small as desired, refers to that level of rarefaction at which many of the gasdynamic criteria of 4 continuous
medium in the stream vanish. This is indicated, for example, by the monotonic variation of the gas density.

The existence of this mode is confirmed by the results of measuring the density in strongly underexpanded
jets [6].

§3. As already mentioned, the investigation of the one~dimensional expansion of a viscous gas carried
out above can be used in an analysis of the flow in the hypersonic region of a strongly underexpanded jet. The

mutual equivalence of these flows in the isentropic case was demonstrated in [3]. Its rigorous proof in the
presence of viscosity is presented below.

Let us consider the steady discharge of a strongly underexpanded jet from an axisymmetric nozzle. For
a nonviscous gas the Euler equations admit the following asymptotic solution:

(g 2(7-1)
u’=uo+u1[ r (fp)v]
-

, r{g) 12" dinr.'(g)
v =U1E - ] +.
de

ey

{3.1)

e
r
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Here u and v are the radial and tangential velocity components, respectively, r' =r/r;, r; is the radius
of the nozzle exit cross section, r,'(¢) = r*(<p)/rj is some arbitrary function of ¢, and the dependent variables
are made dimensionless relative to their critical values at M =1.

From a comparison of Egs. (2.4) and (3.1) and in accordance with the results of [3] it follows that at
large distances from the nozzle exit cross section the isentropic flow in a jet asymptotically approaches, along
each ray ¢ = const, the flow from some source having an intensity which varies from ray to ray. In order to
obtain the dependence r«(g) of the radius of the critical cross section of the equivalent source on the angle ¢
one must join the resulting solution with the solution for small r. The results of numerical calculations by the
method of characteristics are usually used for this purpose.

At distances r' = O(Rew) from the source in the flow dissipative processes become important and the
agymptotic expansion (3.1) loses force in this region. To find the solution here we use the Navier—Stokes
equations in a spherical coordinate system having the origin in the nozzle exit cross section, and we change
in them to the new dependent and independent variables

P .
* ot ot r'o®
4
b Rem )
(a 3BRer. () ¢
After the change and the transition to o — 0, we obtain
aw er-Y 7@ 1,0 08
LA A S YA ( @)
T ™ x ax X e\ T x
80 oW | nu, 90  u (3.2)
or_* o _— .',.oz + {n—1) _____en) __:0
x Tml 1)( X x 0 XX
)
o((9V _l)___é____(m@).{_nu“ Gz A
X X X 3¢ X? dg

Here r° =ryx(p)/r«(0).

Integration of the first two equations of system (3.2) with n =1 gives

6 2,07
o (v—1) rX
9 - [ "{ (“{+1) (1-—n) @ ¥ e:_n (roX)z(qr._i)(i—n) ] v
reX

When ¢ = 0 this solution coincides with the solution of [5]. Consequently, with the accuracy adopted here
the viscous flow along the axis of an axisymmetric jet at large distances from the nozzle exit cross section
asymptotically approaches the one-dimensional flow from a spherical source. Here the following equations
from the one-dimensional solution will be valid for the distribution of the parameters:

U'=uot R-W, o/ =R~X*/ (uyR-W)

@, p'=R~*"*0X*/ (u,-+tR~*'W)
X=R"r”(0)/', R="/.r. (0)Re
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In these equations for r}(0) there are numerous approximate functions containing M: and y. The equations
are written in the variables (1.4). Just as in the case of an ideal gas, however, when [WR"Y| «u, Eqgs. (2.4)
remain valid for the velocity and density, and a change to the variables (1.3) is possible for the variables with
the adopted accuracy.

A corresponding analysis of the influence of viscosity on the gas flow near the jet axis, based on the one-
dimensional analogy, was given in [7]. There also they noted the rather good agreement of some experimental
data with the similarity law of [1], such as for the coordinate r. at which the density is extremal and for the
density p .. itself.

A more detailed experimental test of the similarity can be found in [8-10], in which the similarity cri-
terion K, was also used in the treatment of the experimental data with the accuracy of the definitions. From
these investigations it also follows that for moderately low values of the pressure drop pm/p0 the similarity
in the variables (1.3) is retained for the density p and the velocity head p;' which is proportzonal to pU? in the
hypersonic region of a jet, in the entire flow field except for the vicinity of the exit cross section of a sonic
nozzle.

§4. In conclusion, let us consider the interaction between strongly underexpanded jets and bodies. Here
also one must distinguish two cases. When the outside pressure p, has an appreciable influence on the dis-
turbed flow near the body, the similarity conditions will be satisfied when there is equality, in addition to the
criteria (1.1), of the parameters [1]

K ,=Ld;y*Vp./po;,
T./Ty

where L is the characteristic size of the body over which the flow occurs and Ty, is its temperature,

In this case the values of the Mach and Reynolds numbers will be the same at the similar points of the
body over which the flow oceurs (X = const, § = const, Z = const).

The fulfillment of these similarity conditions was tested experimentally. As the models we used plates
whose cross sections were made in the form of a right angle with a side L while the longitudinal dimensgions
were greater than the maximum transverse dimension of the jet. The investigations were conducted in strong-
ly underexpanded air jets ('y =1.4) discharging from sonic nozzles (M =1). The pressure distribufion over

the surface of the plate was measured in the experiments.

The results of these investigations are presented in Fig. 3 with K; =0.115 and K, = 94. The distribution
of the pressure Py, =pW/poo at the surface of the plate in three jet cross sections x =0.29, 0.58, and 0.86 as a
function of ¥ is given in it (data a, b, and c). The experimental points in this figure correspond to the follow-

ing values of the parameters: 1) Ppj =440 mm Hg, p, =0.027 mm Hg, L =40 mm, dj =1.89 mm, Toj = 295°K;
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2) Poj =220 mm Hg, p, =0.027 mm Hg, L =20 mm, dj =1.89 mm, Toj =295°K; 3) Doj =31 mm Hg, p, =
0.104 mm Hg, L =20 mm, dj =10.1 mm, Tyj = 900°K; 4) Poj = 59.4 mm Hg, ps =0.104 mm Hg, L =20 mm,
dj =7.3 mm, TOJ- = 900°K.

The experiment encompasses a wide range of variation of the parameters Pojs Peos TOJ-, L, and d; and
confirms the validity of the similarity law of [1]. The measured pressure at the plate is represented here in
a unified way in the variables (1.3), since its value in the hypersonic region of the jet is proportional to the
velocity head pU?, for which the similarity in these variables is retained in the entire field of flow except for
the vicinity of the nozzle exit cross section.

In the general case such a representation of the results will always be possible in the mode of hypersonic
stabilization for those regions of the jet in which M — «, In this case the flow around a body depends only on
the density and velocity in the undisturbed stream, i.e., on those variables for which the similarity in the
variables (1.3) is retained in the entire field of flow of the jet.

Upon violation of the principle of independence of the flow from the Mach number, such as with suffi-
ciently small angles 7 between the velocity vector and the surface of the streamlined body, the similarity
in the variables (1.3) in the hypersonic region of the jet at finite values of the pressure drop p,/ Py; will be
violated; the more so, the smaller the hypersonic similarity parameter Mr becomes.

In Fig. 4 this is illustrated on the example of flow over a rectangular plate with a characteristic size L
and a relative thickness t/L = 0.05. In it the variation of the tangential and normal forces T =T/p,L?and N =
N/p,L? acting on the plate as a function of X along the axis of a strongly underexpanded air jet (y; =1.4) dis-
charging from a sonic nozzle M =1) is represented in the variables (1.3) for values of the angle of attack of
a =0, 5, 10, 20, and 30° (curves 1-5, respectively). The investigations were carried out with K; = 0.055,

K, =90, and TW/TOJ- =1; the experimental points in the figure correspond to the following values of the param-
eters: 1) pyj = 440 mm Hg, p,, =0.012 mm Hg, L =20 mm, dj =1.89 mm, Ty =295°K; 2) p;j =27 mm Hg,
Poo =0.024 mm Hg, L =10 mm, d; =5.4 mm, Toj =295°K. The difference in these functions at X < x,, which
increases as the angle of attack decreases, is clearly seen.

In this case in the interaction of the hypersonic region of a jet with bodies the system of similarity cri-
teria and of the dimensionless functions and independent variables should be written in the form (1.4) and sup-
plemented by the parameters L/d; and TW/TOJ- .

The results of the corresponding experimental studies are presented in Fig. 5. In it, as in the preceding
case, the variation of the tangential and normal forces T' = T/p; L?and N' = N/ pojL2 acting on a rectangular
plate as a function of x' along the axis of a strongly underexpanded air jet tvj =1.4) discharging from a sonic
nozzle (Mj =1) is presented for the same values of the angle of attack ¢ but now in the variables (1 4)Rej =
1044, L/dj =1, TW/TOJ- =1). The experimental points in the figure correspond to the following values of the
parameters: 1) Poj = 2.59 mm Hg, p,, =0.007 mm Hg, dj =20 mm, Toj =295°K; 2) Pyj = 5.2 mm Hg, p, =0.007
mm Hg, dj =10 mm, Ty =295%K.

It is obvious that similarity is observed in these variables in the hypersonic region of the jet,

Attention should be turned to the fact that with a decrease in the temperature factor T,,/T oj from 1 to
0.5 (Fig. 3) the criterial functions constructed in similarity parameters vary slowly within the limits of the
experimental accuracy, This does not contradict the conclusion established earlier (see [11], for example)
that the temperature factor has a slight effect on the aerodynamic characteristics of bodies when a rarefied
gas stream flows over them in the mode of hypersonic stabilization.
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NUMERICAL INVESTIGATION OF GASDYNAMIC
FEATURES OF CONTROL JETS

V. M. Dvoretskii and V. V. Zelentsov UDC 533.6.011.35:518.5

Numerical methods, based on first order difference schemes are used to investigate features
of three-dimensional subsonic and supersonic flows of an inviscid non-heat-conducting gas in
control jets. Elements of the nozzle channels considered are axisymmetric, and flow sym-~
metry arises from the nonaxial feature of the prenozzle volume and the subsonic part of the
nozzle, or because of nonaxiality of elements of the supersonic part. In the first case the
nozzle includes an asymmetric subsonic region in which reverse-circulatory flow is observed,
and in the second case it includes a region of sudden expansion of the supersonic flow from
the asymmetric stagnation zone.

A number of features of supersonic three-dimensional gas flows in nozzles of various shapes have been
investigated using small perturbation theory and the method of characteristics, and by numerical integration
of the system of gasdynamic equations including also analysis of mixed flows over the entire channel of an
asymmetric nozzle (a bibliography of numerous investigations is included, e.g., in [1, 2]). An experimental
determination mainly of integral characteristics of asymmetric nozzles, e.g., of the lateral stress, has con~
firmed the laws predicted by theoretical investigations ([3] and the bibliography there). However, most of the
published papers contain an analysis of three-dimensional flows in nozzle channels of rather simple form. In
the general class of control nozzles the shape of the channel is substantially complex. By investigating the
local flow structure in such nozzles one can justify choice of component elements and can formulate laws for
the shaping of control forces. The present paper attempts, in the perfect gas approximation, to analyze fea-
tures of the distribution of local and integral characteristics of flow asymmetry in a hinged nozzle where the
axis of rotation of the moving part lies in the throat region, and the subsonic part is recessed in the adjacent
cylinder in such a way that the joint section between them is an asymmetric region (a "slot"), whose shape in
an arbitrary meridian section is described by a two-valued function. Another object of investigation is a trun-
cated nozzle. There is a discontinuity in contour between the initial section of the supersonic funnel and the
fixed end part, and this causes a sudden flow expansion, with formation of special features in the subsequent
flow region.

A three-dimensional variant of the Godunov scheme [4] is used to calculate the flow in the subsonic and
transonic parts of the hinged nozzle by a time-dependent method. The supersonic flow calculations are carried
out using the steady-~state analog of this scheme [5]. It has been shown that in the recessed hinged nozzle there
is a complex spiral-shaped flow with reverse flow zones., The investigation conducted shows that it is possible
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