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SPHERICAL EXPANSION OF A BINARY GAS MIXTURE INTO A FLOODED SPACE 

V. N. Gusev and V. V. Ryabov UDC 533.6.011,,8:532.525.2 

INTRODUT ION 

An increasing interest in the study of jet flows in connection with their possible use 
in the separation of isotopes or gas mixtures has recently been noted. Direct observations 
of the separation of mixtures during the penetration of the ambient gas into the jet (see 
[I], for example) serve as the basis for this. 

One-dimensional flow from a source can become a good theoretical model for the study of 
separation processes in jet flows. The properties of the spherical expansion of a viscous 
heat-conducting gas into a flooded space have been studied in detail on the example of this 
flow using the Navier--Stokes equations (see the bibliography of [2]). In the investigation 
of separation effects one must allow for diffusional processes in addition to viscosity and 
heat conduction. In theoretical investigations great attention has been paid to this ques- 
tion in the study of the structure of a piane shock wave in a binary gas mixture. The pres- 
ent investigation was undertaken for the purpose of clarifying the role of diffusional pro- 
cesses in one-dimensional flow from a spherical source. The spherical shock wave, in which 
the complete separation of the components of a mixture is possible in the presence of a 
small counterpressure, as shown in the report, is studied in detail. Asymptotic solutions 
are obtained in the transonic and hypersonic regions of flow. The results of n~unerical cal~ 
culations are presented for argon-helium mixtures at different initial concentrations. 

w Let us consider the established supersonic flow of a gas mixture escaping from a 
spherical source of radius n, with the velocity of sound (Mach number M, = i) into a space 
with a constant pressure p=. The flow will occur along radii from points of the sphere with 
the center at the origin of coordinates and will consist of two regions, inner supersonic 
(r, < r < r+) and outer subsonic, separated by some transitional region. In the case of an 
ideal gas the flow is described by the Euler equations and r+ is the coordinate of the shock 
wave; in the presence of viscosity r+ is the coordinate where the flow parameters are extre- 
mal. 

Following [3], we write the system of one-dimensional Navier--Stokes equations for a one- 
temperature gas mixture in the case of spherical symmetry: 

pur~=p~r~+p~zr~=const ' p ~ r ~ = c o n s t  ' P = f / o  pT 
TY~ 

dr , +-fd td  7 

pur2 ( c,T + a.~2 ) _ r2l dd~ + P,rz(u,_a) X (i.i) 

?n 2 

p r 

p m~m2 { [m~nm~ d d ] df } u~-a= - - D ~ 2  f ( l - f )  ( l n p ) -  ( l n T )  - p~ rrt 2 dr P--d-/ 
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Here u is the velocity; p, p, and T are the pressure, density, and temperature, respec- 
tively; f is the concentration; m is the molecular weight; Ro is the universal gas constant; 

is the coefficient of viscosity; % is the coefficient of thermal conductivity; Cp is the 
specific heat at constant pressure; D~2 is the coefficient of diffusion; B is the thermal dif- 
fusion ratio; the component with the heavier molecular weight is denoted by the index 1 and 
the lighter one by the index 2. 

The average density of the gas and its molecular weight and specific heat at constant 
pressure are defined as 

p=p ,+p . ,  m = m J + m ~ ( l - D ,  ( [ =  pim, ~, 
pm 

~[Ro (cvipi+c~p2) 
c r - -  m ( ~ - - t )  p 

He re  y i s  t h e  r a t i o  o f  s p e c i f i c  h e a t s .  We a l s o  a s sume  t h a t  ~ ~ T n ,  B ~ m - ~ ,  t h e  P r a n d t l  
number  ~ = ~Cp/X ~ m, and t h e  Schmid t  number Sc = ~ / (pD~a)  ~ m - ~ .  With  n = 0 .75  t h e s e  f u n c -  
t i o n s  w e l l  a p p r o x i m a t e  t h e  t r a n s f e r  c o e f f i c i e n t s  o f  an  a r g o n - - h e l i u m  m i x t u r e  [ 3 ] .  

Let us reduce the system (I.i) to dimensionless form. We introduce the following dimen- 
sional constants: Q = Q~ + Qa = 4~pur 2 is the gas flow rate; p=, p=, T=, and ~ are the pres- 
sure, density, temperature, and coefficient of viscosity at r = =. The dimensionless quanti- 
ties are defined as follows: 

p,  p p, p T 
w-~- , - - - - - - ,  = - -  O =  

Y'~RoT| p~ p~ To. 

IX o F Sc ~ F| 

~| o~ Foo Sc~ ~ F (1.2) 

--=l [ Q~R|174  ] ~ =--m2 
Y =  r 4 ~ p ~  r -l, F = s + ( l - - e ) / ,  8 mi 

Here the quantities at an infinitely remote point r = ~ are denoted by the index ~. 

After the pressure and density are eliminated the system (I.I) is reduced to the follow- 

ing form: 

i do 

dy " ~ F tO dy w "dy 

2 (i--s) df]~ i r id2w 2 w )  

y F ay 

,~ i dO I d w  w \ 1  
+ . o  - ~71-~+--11 y~  y y / a  

O n �9 O n 

a y  ~ y  .I 

Qi 
(2 

+ 0.5 (7_1) [3|174 ( Q~ ..... p [ e - l = =  

f 3e 0" { / ( t - ] ) [ (  I d~. t dO 
F -  4Sc~FF |  C LX-w--d-yy 0 dy 
) ] e~+(l-s~)[ d l }  2 l - -e  f=. i dO 4 F~ 

y - - # - + ~ "  F 0 @ dy 

+ 

(1.3) 

Here ~ and Qt/Q are dimensionless constants determining the fluxes of heat and diffusion 
passing through a spherical surface per unit time at an infinitely remote point r = = (y = 0), 
which must be assigned as the boundary conditions. 

In the case when the pressure approaches a finite value the solution of the system (1.2) 
in the vicinity of the point y = 0 has the following form: 

/ , ~ , O=A_jbN ~, 
j = o  j~0 ~=0 
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From the boundary conditions for the flow rate of the gas and its temperature and con- 
centration at y = 0 it follows that ao = bo = i and Co = f~o The subsequen t coefficients of 
the series are determined through the dimensionless constants C, Q~/Q, Sc~, ~, y, n, ~, B~, 

f~, and ~. 

For example, 

a,=b,-ci ( t-~)/Foo 

In the case when thermal and diffusional fluxes at an infinitely remote point are ab- 
sent (bl = c I = 0), we have ~ = I and QJQ = fJF~. 

w Let us dwell on this case in more detail. We will consider an argon--helium mix- 
ture (Y = 1.67, n = 0~ e = 0.i). 

The system of equations (1.3) was solved numberically on a computer by the method pre- 
sented in [4]. The solution has much in common with the case of the escape of a one-compo- 
nent gas. At relatively high Reynolds numbers Re, = 9,u,r,/~,, where the asterisk denotes 
quantities at the critical sphere, the flow remains close to ideal at r < r+. 

The results of the numberical calculations with f~ = 0.5, Sc~ = 0.333, a~ = 0o431, and 
B~ = 0.377 are presented in Fig. i. In it the variations in the pressure p' and density 9' 
of the mixture are given in similarity variables [5] as functions of x' = r,/[r(po*/p~) ~ at 
values of the criterion C = 5 (curves I~ and 0.07 (curves 2); C is uniquely connected with 
the similarity parameter K2 = Re,(p~/po,) ~ [5]: 

C = 0.75 (0.5 ( ~ + t ) )  [o.25c~+i)/(~-t)--1 
\ - Z /  r .  1 

where the stagnation parameters are denoted by the index O. As shown by the results obtained~ 
the variations in the parameters of the mixture at r > r+ are analogous to the corresponding 
variations in a one-component gas [2]. 

In the presence of dissipative processes the spherical shock wave becomes smeared out 
and its thickness becomes finite and the greater, the larger the pressure drop po,/p~. In 
contrast to a plane shock wave, because of the spreading out of the gas the ratios at its 
front, which follow from the theory of a direct compression shock, are disrupted. Moreover, 
as po,/p~ § =, when C § O, the density drop at the shock wave front disappears entirely and 
the density variation becomes monotonic in the entire region of flow (curve 2 in Fig~ i)~ 

Because of the large gradients of the thermodynamic quantities in the shock wave front, 
diffusion fluxes of the components of the mixture develop, thanks to which their redistribu- 
tion occurs. The considerable increase in the velocity of the light helium component in this 
region attracts attention. In the example under consideration its maximum velocity exceeds 
the limiting velocity of the mixture by more than three times. 

Concentration of the light component occurs in the leading front of the spherical shock 
wave, just as in the plane case [6]. This effect was noted in [7]. Its magnitude depends 
on the initial concentration of the mixture and is practically constant with variation in 
the similarity parameter K2 (see Fig. 2, in which curves 1-4 represent the results of the 
calculation of the argon concentration for K= = 0.087, 1.24, 3.72, and 12.4, respectively). 
At small values of f~ the concentration of the light component becomes considerable; for 
example, at f= = 0.02 and K2 = 1.24 the minimum value is f = 0.5f~. 

The variation in the concentration f at r > r+ presented in Fig. 2 shows that as K2 + 0, 
when the drop Po,/P~ § ~, an ever increasing enrichment of the mixture with the heavy compo- 
nent occurs inside the shock wave front owing to the concentration of the light component. 
The solution of the system (1.3) corresponding to this region as C § 0 has the form 
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tgp 

3 

2 

i: 

-2 
- t ~ x '  3 

w Z g,y,+/, , 0 Z d , y , , /  Z h~y, ( 2 . 1 )  
] = 0  j = 0  j = 0  

From t h e  d i f f u s i o n  e q u a t i o n  i t  f o l l o w s  t h a t  t h e  c o e f f i c i e n t  ho = 1, i . e . ,  w i t h  P o , /  
p~ >> 1 t h e  c o m p l e t e  s e p a r a t i o n  o f  t he  components  o f  t he  m i x t u r e  ( f  + 1 as  y § 0) o c c u r s  in  
a s p h e r i c a l  s h o c k  wave.  

The s u b s e q u e n t  c o e f f i c i e n t s  o f  t he  s e r i e s  ( 2 . 1 )  a r e  e x p r e s s e d  t h r o u g h  do;  f o r  example ,  
go a = a / a ( c / y ) F ~ d o l - n .  Being  c o n f i n e d  h e n c e f o r t h  t o  t h e  f i r s t  t e rms  o f  t he  e x p a n s i o n s  ( 2 . 1 ) ,  
for the flow parameters in this region we can write 

w a = 0.5 do F~Kz - - ,  p'=doFcop' 
7+i T~ 

2 (v+~)/{~-i)-n T~ i+n x,a 

A c o m p a r i s o n  o f  t h e  e q u a t i o n s  o b t a i n e d  f o r  t he  d e n s i t y  and p r e s s u r e  w i t h  t h e  r e s u l t s  o f  
n u m e r i c a l  c a l c u l a t i o n s  w i t h  C -- 0 .07  i s  p r e s e n t e d  i n  F i g .  1 ( c u r v e s  3 and 4 ) .  

w Let us proceed to an analysis of the flow in the inner supersonic region (r < r+). 
Here the flow remains close to ideal. The departures become appreciable in the regions 
adjacent to the critical section and to the leading front of the shock wave. 

Here it is more convenient to conduct the analysis in new variables, made dimensionless 
with respect to their values in the critical section of the ideal source, henceforth denoted 
by the index *i. Then in place of the system (1.3) we will have 

dv F. , [ t  t 2 
a-Zx + - i  - ?  t e x  v dx x F ~ v 

t [d2v 2 v n ~dt /dv  v 

t+ (~ - t ) v  ~ 
+ , t  4o,, F dx 

dv ] . . . .  F.,~ l /.~ / )  
+(,t-Ova_ +0.St~-'~:O.,--g---[eT, F t=0.5 ('~+l) (3.1) 

F.~ F 4Sc.~F.~F R I(1--/) 7 dx 

i dt . -~)~T~_ _ _  ] ~ + ( t - s ~ ) l d l }  t dx +~.iF' i  t_ dt -~ 
F t dx F z dx 
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In the case of an ideal gas the system (3.1) has the solution 

x2=v [0.5 (~+li --0.5 (X--i) v2] "(~-~), 

which, 
form 

t=o .5(~+i )_o .5(x- l ) : , /= / . ,  
(3.2) 

in the transonic region in the vicinity of the point x = i, can be represented in the 

2 
v = t +  . (l--x)~ . . . .  t = t  2(?--1)~ (l_x)O : + ' ' "  (3,3)  

Y~+t ~X+t 

To construct the asymptotic solution in this region in the case of a binary mixture we 
Such an approach was used in [8] for a one-compo- 

(3.4) 

use the method of deformable coordinates. 

nent gas with Z = const~ Converting to the new dependent and independent variables 

V=R':'(v-i), G=R'~Ct-t), ~=R':3(/-/.O, X=//~/,(i-x) 
in the system (3.1) and taking R + -, we obtain 

~ -  V dV A dX 2d2v (4+t) -Z~ + 2=0, G= (X-t) V 

�9 0.75/.~ ( t - ] .0  [ i - s  ] d V  
st., -ET-. ~-~.,(~-1) ~ -  (3.5) 

A=t+0.75 0f - l )  + 0.75. f . , ( t - / . , )  t--e r i - s  ) 

Integrating the first equation of the system (3.5), we obtain 

A i -  v - "f+_-i w + 2 x = o  
dX 2 

Its solution is expressed through Bessel functions: 

]/  X I-,,,(6)--&~(~) (X>O) v=2 ,~i 1-v. (6) -I,,. (6) 

V=2]  / tXl "]-:,,(6)-L,,(6) (x<o) V ~+! ]-v~(6)-kJ,:,(6) 
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(3.6) 

In this case the solution (3.6) asymptotically approaches the solution (3.3) for an 
ideal gas. As X § the region of definition of the solution will be bounded by a limiting 
line, just as in the case of a one-component gas [4]. 

The velocity of the mixture at the point r,i will be 

2 [ 3A 1 '~ r(v~) 
v . , = t + V ( O ) R  -'l', V(O)= ~ + l  [ ~ ]  | r(t/a)" (3.7) 

Through a comparison of the numerical solution obtained in Part 2 with the asymptotic 
solution (3.6) the coordinate of the critical section of the ideal source in the variables 
(1.2) is determined from Eq. (3.7). In fact, with ~ = 1 we have 

T| I| v=~b.5(~+t)w, R=y.,(0.5(~+O)"C 

and to determine the coordinate Y,i from Eq. (3.7) we will have 

~0.5 (~+1) w.,=i+ V (0) [y., (0.5 (~+1)) "C] -~ 
In this case the transfer coefficients q,i, Sc, i' and 8,i entering into the expressions 

presented above will coincide with the corresponding values at infinity. 

The asymptotic solution (3.6) for an argon--helium mixture (lines) is compared with the 
numerical calculations with C = 0.07, f= = 0.5, Sc~ = 0.333, q~ = 0.431, and 8~ = 0.377 
(points) in Fig. 3 (1-3 correspond to log V, log G, and log ~). Despite the relatively low 
value Re, = 915, the agreement is fully satisfactory. 

In the section r = r,, where M, = i, the concentration f, of the mixture increases with 
a decrease in Re, while the velocities of the components are u** < u, < u,a. The increase 
in the velocity of the light component becomes considerable. For example, at Re,= i0 it 
exceeded the critical velocity of the mixture by more than two times. 

Let us turn to a consideration of the hypersonic region of flow. In the case of an 
ideal gas the expansions 

t= [ (?-i) ]'I~(~-',x2(~_,>+ 

which follow from (3.2) are valid for the flow parameters in it. 

(3.8) 
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To construct the asymptotic solution of the system ~3.!] in the bcypersonic region of 
flow we change to new variables in it: 

w= o=tm, (/=/.,)m 
Z = x R %  , ~ =  [ 2 ~ - 1 - 2  ( ~ - t )  n]-~, ~ = 2 ~  (~-1)  

After the substitution, and taking R § ~, we obtain 

dZ + nwo Z dZ Z 2 -- 7wo [-~ 

(W+zO =o, w2= 

�9 0 .75e] . ,  ( t - - f . , )  t - - e  dO 

The resulting system of equations was separated, and it contains the solution for a one- 
component gas [9]. Using it, with n # i we obtain 

w= w0( -1) z--' 0.9) 

0.758f.~(i-1.3 I-8 
W= Sc.~F.~(l-n)(-F~-.~ - ~ ' * ) {  2(?-t)(t-n)0'i-~Z*('- ' '~*-='-* w~ ~O~-' 

�9 [ 2 7 - t - 2 n ( ? - 1 )  ]Z21f 

As Z § ~ the  s o l u t i o n  (3.9)  a s y m p t o t i c a l l y  approaches the so lu t i on  (3.8) for  an i d e a l  
gas. The function 0 reaches its minimum value @+ at a finite value Z+ > 0, corresponding to 
the region of the leading front of a closing compression shock. The function -~4 varies in a 
similar way. These properties for an argon--helium mixture are illustrated by Fig. 4, in 
which the asymptotic solution (3.9) (lines) is compared with the numerical calculations with 
C = 0.07, f~ = 0.5, Sc~ = 0.333, a~ = 0.431, and B= = 0.377 (points); curves 1-3 correspond 
to log @, log (-W), and log ~. 

w Up to now the spherical expansion of a binary gas mixture into a flooded space has 
been analyzed with a zero diffusional flux at an infinitely remote point. In this ease 

Qt 1~ lu~ l i m /  ui \ = ~  
Q F~ (Fa) ' ~j~0 

and, as the calculations show, the concentration in the critical section of a spherical source 
differs little from f~. 
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The latter condition will be violated in the presence of a diffusional flux at an in- 
finitely remote point. For example, for an argon--helium mixture with f~ = 0.9 and Qz/Q = 
0.i we have f*i = 0.011, and the case under consideration will correspond to the escape of 
helium with a slight argon content into a space filled by argon with a small admixture of 
helium. The distribution of the concentration f in such a flow with Re, = 453 is presented 
in Fig. 5 (curve i). 

The case of the escape of argon with a slight helium content into a space filled by 
helium with a small admixture of argon can be analyzed in a similar way. With f= = 0.02 and 
QI/Q = 0.999 we have f*i = 0.99, and the distribution of the concentration f corresponding 
to this case with Re, = 78.5 is presented in the same figure (curve 2). 

The results of these calculations show that in both cases the gas of the surrounding 
space does not penetrate through the shock wave into the supersonic region of flow. The 
property indicated above was noted in [i0] in the simplest case when the escaping and ambient 
gases were identical in their molecular properties. 
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