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Java applet-based tools have been developed for exploring mathematical foundations of 
computer security techniques including modular arithmetic, primes, permutations, 
combinations, probability, authentication algorithms, and hashes. Tools were used by 
students to examine MonoAlphabetic and shift substitution ciphertexts, Playfair and 
Vigenère ciphers, message digests, digital signatures, and public key cryptosystems. 
 
1. Introduction 
 
Many computer security topics involve some familiarity with Math concepts that are not 
often taught, or inadequately covered, in curricula, including sets, permutations, combi-
nations, and probability; number theory (divisibility, primes, groups, rings, and fields); 
modular arithmetic; and computability theory (the reasonableness of an algorithm). 
 
These topics form the basis for many security areas, but most students will have limited 
exposure to them. The challenge here is how to introduce these topics to a typically 
Math-phobic audience, without eliciting a “deer in the headlights” response.  Since this is 
not a pure Math course, we make no attempt to be mathematically rigorous, nor to expect 
students to come away with advanced skills in these areas; rather we try to motivate 
coverage based on simple, real-world applications of these topics. 
 
In this paper, authors share their experience in searching for new approaches in teaching 
computer security techniques [1] through exploring mathematical foundations of 
encryption algorithms that include modular arithmetic, primes, permutations, 
combinations, probability, authentication procedures, and hashes [2]. The developed Java 
Applets tools were successfully used by students to examine MonoAlphabetic, shift 
substitution, Playfair and Vigenère ciphertexts, as well as to develop projects [1, 3, 4] on 
message digests, digital signatures, and public key cryptosystems. 
 
2. Lecture Notes 
 
The class lectures on computer security technologies cover history of cryptography; 
security concepts; theory of sets, permutations, combinations, and probability; number 
theory and modular arithmetic; classical cryptosystems; symmetric block ciphers; public 
key cryptography; an overview of message authentication codes, hashes, and message 
digests; principles of authentication; network basics; Web security and privacy for users; 
tunneling and virtual private networks (VPNs); and malware. The instructors discuss with 
students secure ways of sharing the network resources, issues of confidentiality, medical 
and personal information security on the Internet, and protection from electronic spam. 



 

This overview helps in introducing complex encryption algorithms such as the RSA 
Public-Key encryption algorithm [5]. At the same time, it illustrates a strong bond 
between mathematics and computer science. A student (even if he/she is not familiar with 
the theory of numbers) can try to solve the problems by a simple experimentation with 
the Java Applets tools especially designed for these courses. 
 
3. Security Tools 
 
A set of security tools (shown in Fig. 1 [left]) has been developed for these courses by 
using Java applets. The students have used these tools for deciphering simple shift- 
substitution ciphertexts (see Fig. 1 [right]), MonoAlphabetic substitution ciphers, Playfair 
and Vigenère ciphers, as well as for exploring modular arithmetic and message digests. 
The tools were also used in reviewing the topics on probabilities and combinatorics. 
 

  
 

Figure 1.  Java Applets security tools (left) and Shift Substitution Cipher Breaker (right). 
 

4. Course Assignments 
 
The assignments for the Computer Security course include three homework question-
naires, lab, midterm and final exams, and a project paper that covers in depth one of the 
computer system security technologies. A student can gain extra points towards the final 
grade for project presentations, lab demonstrations of computer security modeling, and 
submission of a paper (on the course-related topics) to conferences or journals [1, 3, 4]. 
 



 

Every class starts with a brief discussion of a topic that is related to the homework 
exercises. After this "warm-up" introduction [6], the instructor offers a discussion on the 
main topic and asks students for a feedback on lecture materials and their arguments on 
selecting a competitive strategy for the problem analysis and development. These 
discussions help students focus on the main point of the class session and stay active in 
class. Here are a few examples of the homework assignments: 

 
4.1 Assignment 1: Cracking a Simple Cipher 
 
Students are asked to solve simple ciphers by using any method, e.g., the following 
ciphertexts from the textbook [2] used in this course: 
 

1. Si spy net work, big fedjaw iog link kyxogy 
2. Cf lqr'xs xsnyctm n eqxxqgsy iqul qf wdcp eqqh, erl lqrx qgt iqul! 

 
These ciphers are simple substitution ciphers of the type with which many people like to 
amuse themselves trying to solve – e.g., newspapers sometimes publish a daily crypto-
puzzle, which readers try to solve, often during their commutes. Students typically find 
the second cipher easier to solve, probably because there are more ‘hints’ in the text, and 
more repetition. Also, if students solve the first cipher and then move onto the second, 
their mindset is likely already set in such a way that the second seems easier to solve. It is 
important that the students be required to describe the steps they used to 'crack' each 
cipher, rather than just provide the solution without explanation Evaluating their efforts 
based on the description of their strategy is better than simply relying on their answers. 

 
4.2 Assignment 2: Cracking Classic Ciphers 
 
After cracking simple short ciphers, students are asked to explore how cryptographers 
might actually crack some classic ciphers. The students are encouraged to use various 
components of Java applets while working on this assignment. They start by exploring a 
MonoAlphabetic Substitution Cipher (see Figs. 1, 2) that maps individual plaintext letters 
to individual ciphertext letters, on a 1-to-1 unique basis. (The oldest such cipher known is 
the Caesar cipher [2], where the mapping involves a simple circular shift within the 
alphabet). To encipher a message, students take each letter in the plaintext, find that letter 
in the Plaintext row, and substitute the corresponding letter immediately below it, in the 
Ciphertext row. For example, using this substitution table, we can take the message:  
 

The enemy plans to attack on Tuesday morning 
 

and encipher it into the following text by selecting the value of the Shift Key = 3: 
 

Qeb bkbjv mixkp ql xqqxzh lk Qrbpaxv jlokfkd 
 

To decipher the text, they simply reverse the process – or equivalently, use the negative 
of the original shift value, e.g., Shift Key = 26 – 3 = 23 (see Fig. 1, right). Both encryption 
and decryption can be done manually, or by using one of the Java Tools, available [7, 8]. 
 
Finally, students examine the Letter Frequency Analysis approach [1, 2, 9], which is 
based on some assumptions about the plaintext:  



 

• That the plaintext consists of characters, not some kind of binary code.  
• That it is written in some known natural language (e.g., English).  
• That we know the frequency of letters in a typical piece of text in that language.  
• That the plaintext is typical of normal English text, and so we expect the same 

frequencies of letters (approximately, within statistical fluctuations).  
 

  

 
Figure 2.  MonoAlphabetic Cipher Breaker (left) and letter frequencies in typical English (right). 

 
As long as we know that there is a 1-to-1, unique mapping from plaintext to ciphertext 
(and, therefore, from ciphertext to plaintext), we can employ our knowledge of those 
letter frequencies to crack a substitution cipher. It is important to note that we need a 
large enough piece of text to give us some expectation that we have a large statistical 
sample. The longer the message, the better statistical sample we are likely to have.  
 
Known letter frequencies in typical English text may be found on the web [9]. A typical 
representation of the letter frequencies in traditional English is shown on the bar chart 
(see Fig. 2, right). The Java tool allows a student to view the letter frequencies for the 
ciphertext being examined (Fig. 2, center).  Students may display letter frequencies in 
alphabetic order, or in order by frequency. 
 
The MonoAlphabetic Cipher Breaker Java applet (see Fig. 2, left) was used for 
deciphering the structured ciphertext (620 words, 2,485 characters), where the original 
word spacing, punctuation, and style have been retained. The second ciphertext (25,955 
words; 103,818 characters) was organized in groups of four letters and word spacing and 
punctuation have been removed. The absence of the content clues (word spacing and 
punctuation) makes it more difficult to decipher the ciphertext, while the larger sample 



 

allows greater use of letter frequency analysis. To reduce the time of deciphering the 
unstructured ciphertext, one student even wrote customized UNIX scripts and a standard 
UNIX dictionary to help with the mechanics of the solution [1].  

 
4.3 Assignment 3: Exploring the Playfair Cipher 
 
In 1854, Sir Charles Wheatstone invented the Playfair Cipher [2], which is a polygram 
substitution cipher using a block size of 2. Based on the use of a 5 × 5 square matrix of 
letters, constructed starting from a keyword or keyphrase. Each unique letter from the 
phrase is inserted into the square, until there are no more letters, and then the remaining 
letters of the alphabet are added to fill the square. For example, the phrase "Cynicism is 
the last refuge of the romantic" produces the matrix shown in Fig. 3 below. 
 

 
 

Figure 3. Playfair Substitution Cipher Applet. 
 
Here are the rules to encipher a piece of plaintext: 

Massachusetts goes Republican! 
First, eliminate all non-letter characters and up-case all letters: 
 

MASSACHUSETTSGOESREPUBLICAN 



 

Then, arrange the plaintext in pairs of letters. If any pair of letters contains the same letter 
(for example, 'SS'), then insert an 'X': 
 

MA SX SA CH US ET TS GO ES RE PU BL IC AN 
If there is a last character not paired, add an 'X'. 
 
For each pair of plaintext characters, call the first p, and the second q; the corresponding 
ciphertext characters c and d: 

– If p and q are in the same row of the matrix, c is the letter to the right of p, and d 
is the letter to the right of q, wrapping around if necessary. 

– If p and q are in the same column of the matrix, c is the letter below p, and d is the 
letter below q, wrapping around if necessary. 

– If p and q share neither the same row nor column, they define the corners of a 
square.  The other two corners of the square are c and d, with c being the letter in 
the same column as p. 

Finally, the ciphertext will be generated (see Fig. 3): 
 

AO ZI GC MN IG LH YL PA IL TU GK TP SY CF 
 

Students are also encouraged to find an effective method to decipher this message. 
 
4.4 Assignment 4: Exploring Probabilities  
 
Starting with the warm-up exercise on simulating a coin toss, students explore factorials, 
powers, permutations, and combinations by using the Java Applets tool (see Fig. 4). 
 

 

 
Figure 4. Factorial, Power, Permutation, and Combination Utility of Java Applets. 



 

These exercises help students work on the fourth assignment of reviewing the theory of 
probabilities that plays an important part in many areas of security. In an attempt to 
overcome the common “Math-phobia” of students, some standard statistical/probability 
problems were re-cast using scenarios that were more ‘security-related’, and perhaps 
more in keeping with current events: 1) “CIA Hiring”; 2) “Brobdingnag Battles”; 3) 
“Delta Force”; and 4) “Ethnic Dispute”. 
 
5. Exploring Prime Numbers and Modular Arithmetic 
 

 
 

Figure 5. The Sieve of Eratosthenes Java Applet for searching prime numbers. 
 
Modern encryption algorithms are based on applications of modular arithmetic [10] and 
prime numbers. To explore different topics of the number theory (e.g., divisibility, prime 
numbers, groups, rings, and fields) and modular arithmetic, students used Java applets 
that were created using recommendations described in [8, 11]. The Sieve of Eratosthenes 
(see Fig. 5) was used for generating the prime numbers.  
 

 

 
Figure 6. The Integer Modulus Demonstrator Java Applet. 



 

The modular arithmetic operations could be done without worrying about whether we 
will exceed some large arithmetic bound; therefore, such calculations can be carried out 
on computers, even for large integer values. The Modular Arithmetic Applet (see Fig. 6) 
has been useful in analyses of multiplicative inverses [10] that are critical for applying 
the decryption algorithms [2, 5, 8, 11].  
 
Sometimes the modular multiplicative inverse has a solution, and sometimes it does not. 
For example, the inverses of 2, 4, 5, 6, and 8 (mod 10) do not exist (see Fig. 6, right 
diagram; the rows related to integers 2, 4, 5, 6, and 8 do not contain a value 1 there). It 
turns out that a-1 ≡ x (mod p) that has a solution iff a and p are relatively prime. In the 
considered case, the only rows that contain a 1 are for values that are relatively prime to p 
= 10: 1, 3, 7, 9. This example could be used in introducing the finite field of order p, 
known as the Galois Field [10], GF(p), which is defined as the set Zp of integers {0, 1, ..., 
p - 1}, together with the arithmetic operations modulo p. The subset Zp* is defined as the 
set of (mod p) integers that are relatively prime to p. In this study case, p = 10 and Zp* = 
{1, 3, 7, 9}. Every element in Z10* is present in the multiplicative table based on these 
four elements only, and no other elements other than those are present. Furthermore, 
every element in Z10* is present in every row of the table. It turns out that this is true for 
all p; therefore, Zp* is closed under multiplication (mod p). 
 
This fundamental property of relative primes allows introducing Euler's totient function, 
φ(p), which is defined [10] as the number of positive integers less than p, that are 
relatively prime to p. The φ(p) function has the following properties: 
  

φ(1) = 1 
φ(p) = p – 1 (for p prime) 
φ(m) < m – 1 (for m composite)  

 

These properties lead to a conclusion that φ(p) is just the number of elements in Zp*. This 
fact laid the foundation to various modern encryption algorithms [2, 11], including the 
RSA public key encryption [5]. 
 
6. The Advanced Encryption Standard (AES) 
 
In January 1997, the National Institute of Standards (NIST) announced a contest to select 
a new encryption standard to be used for protecting sensitive, non-classified, U.S. 
government information. After rigorous reviews of 5 final proposals, NIST chose a 
submission called "Rijndael" by two Belgian cryptographers – Joan Daemen and Vincent 
Rijmen [12]. Rijndael uses arithmetic in the Galois Field GF(28), the finite field of order 
256. It can be shown [10] that the order of a finite field (number of elements in the field) 
must be a power of a prime, pn, where n is a positive integer. Therefore, in Rijndael n = 8, 
and each element of the field can be represented by an octet. The bits in the octet are the 
coefficients of a polynomial over Z2 modulo the irreducible Z2 polynomial [10]. 
 
Byte values are represented as polynomials with the least significant bit being the 
coefficient of x0, and the most significant bit the coefficient of x7, e.g., {10100011} 



 

identifies the specific field element: x7 + x5 + x + 1. Some finite field operations involve 
one additional bit to the left of an 8-bit byte. When this extra bit is present, it appears as 
{01} to the left of the other 8 bits: {01} {00011011}. Addition in a finite field is achieved 
by "adding" the coefficients for the corresponding powers in the polynomials for the two 
elements. This operation of addition is performed using an XOR operation denoted by     . 
For example, all notations below are equivalent: 
 

 (x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2 + 0 [polynomial notation]; 
 {01010111}    {10000011} = {11010100}     [binary notation]. 
  
Multiplication in Rijndael is the multiplication of polynomials modulo the irreducible 
polynomial [10]. For example, in the polynomial notation: 

(x6 + x4 + x2 + x + 1) • (x7 + x + 1) = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1, and 
(x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1) mod (x6 + x4 + x2 + x + 1) = x7 + x + 1. 

The modular reduction by m(x) ensures that the result will be a binary polynomial of 
degree less than 8, and thus can be represented in a byte. This multiplication is 
associative, and the element {01} is the multiplicative identity. For any non-zero binary 
polynomial b(x) of degree less than 8, the multiplicative inverse of b(x), denoted by b-1(x) 
can be found using the Extended Euclidean algorithm [10]. As it follows from the above, 
the set of 256 possible byte values, with XOR used as addition, and the multiplication 
defined as above, has the structure of the finite field GF(28). The detail description of the 
AES algorithm can be found in [4, 12].  
 
7. Exploring Message Digests 
 

 

 
Figure 7. Message Digest Generator Applet. 

 
The drive for hash/message digest algorithms began with public key cryptography. RSA 
was invented, but it was slow enough at that time to make it impractical when used alone. 
A cryptographically secure message digest algorithm with high performance would make 
RSA much more useful. After several attempts and improvements, R. Rivest came up 
with MD5 [13], a message digest algorithm that produces a one-way hash function that 
maps a message of any length into a fixed-size hash (128-bit) authenticator value. The 
example of creating the MD5 digest from the text message is shown in Fig. 7. 
 

⊕

⊕



 

The National Institute of Standards approved a Secure Hash Algorithm, SHA-1 [14], for 
computing a condensed representation of a message. When a message of any length < 264 
bits is input, the SHA-1 produces a 160-bit output called a message digest. The message 
digest can then be input to the Digital Signature Algorithm (DSA) which generates or 
verifies the signature for the message. Signing the message digest rather than the message 
often improves the efficiency of the process because the message digest is usually much 
smaller in size than the message. The same hash algorithm must be used by the verifier of 
a digital signature as was used by the creator of the digital signature. Students explored 
this technique by using the Digest Generator Java applet shown in Fig. 7. 
 
8. Conclusions 
The authors have described some algorithms, tools, and experience of using the Java 
Applets in computer security courses for seniors and graduate students. The experience 
has been in general a very positive one, while at the same time providing useful lessons 
learned. The authors believe that this algorithm-exploration and project-based approach 
with the Java Applets can be effectively applied to courses of a similar nature in 
academia, and the model can be extended to other areas of applied mathematics. 
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