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A two-point second-order uniform box-scheme has been developed for numerical analysis of the gas flow in 
the boundary layer under the conditions of intensive blowing on the body surface. An effective regularization 
algorithm has been created. The numerical analysis indicates the second order of the uniform convergence of 
this box-scheme. Flowfield parameters in the boundary layer near the stagnation point of a blunt body were 
calculated for different magnitudes of blowing and temperature factor. Numerical results have been compared 
with earlier obtained data by the three-point exponential box-scheme. 

Nomenclature 
constant, Eq. (33) 
function, Eqs. (1) and (2) 
total enthalpy 
grid-cell size 
parameter of the symmetry 
order of uniform convergence, Eq. (33) 
distance from the axis of symmetry to  generatrix of 
the body 
HIH,, enthalpy ratio 
temperature factor 
velocity component along the generatrix of the body 
ulu,, normalized value of the velocity component u 
coordinate along the generatrix of the body 
coordinate normal to  the body surface 
coefficient, Eq .  (6) 
(1 + j )  I ,  Falkner-Skan constant 
coefficient, Eq.  (6) 
small coefficient, Eq. (5) 
u,r!. J;,p dy/(2<)"', normalized coordinate along 
the normal 
viscosity 
J;, p,,,p,,,u?r;! dx, normalized coordinate along the 
generatr~x 
density 
0.72, Prandtl number 

Subscripts 
w = wall conditions 
6 =, external boundary-layer conditions 
E = parameters estimated at the certain magnitude of 

the coefficient E 

+ = parameters estimated at the midpoint of the 
(i + l ) th  grid cell 

- = parameters estimated at  the midpoint of the ith grid 
cell 

Superscripts 
( I )  = index of the derivative approximation 
(2) = index of the function approximation 
' = differentiation along the variable 7 

Introduction 

M ANY problems of aerodynamics and thermophysics come 
to solving differential equations with small coefficients 

at the highest derivative. The latter leads to  the formation of 
regions with small linear dimensions where gradients of the 
functions are large. Nonuniform convergence or  even diver- 
gence of numerical solutions takes place in the numerical 
analysis of such classical problems by traditional box-schemes. 
In this study, gas flow parameters in a boundary layer under 
the condition of blowing on the body surface are analyzed. 

From a mathematical point of view, the increase of the flow 
rate of blowing gas is equivalent to  the existence of a small 
coefficient at the highest derivative in the boundary-layer 
equations.' As a result, a new sublayer with large gradients 
of temperature and velocity is created. 

The gas flow in the boundary layer at the stagnation point 
of a blunt body is studied using a two-point uniform expo- 
nential box-scheme. The identical problem was considered by 
El-Mistikawy and Werle' using a three-point exponential box- 
scheme. In order to apply our two-point scheme, a more 
effective regularization algorithm is developed. The improved 
matrix variant4-%f the regularization is applied. 

Gas Blowing into a Boundary Layer 
Consider the flow of a perfect gas in the boundary layer 

near the stagnation point of a blunt body with uniform blowing 
at the surface. A viscosity coefficient is assumed to be linearly 
proportional to the gas temperature and the coefficient of 
proportionality is the Chapman-Rubesin ~ a r a m e t e r . ' . ~  Then 
the system of boundary-layer equations, considering heat 
transfer on the body surface, will acquire the following form2? 
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Boundary conditions are the following: 
On the surface of the body (7 = 0) considering the gas 

blowing 

On the external boundary of the layer (q + w) 

In Eq. (3) the parameter f,, characterizes the mass flow rate 
of the blowing gas. The increase of the rate leads to  a new 
type of mathematical problems,' i.e., the solution of the equa- 
tions with small coefficients a t  the highest derivative. Special 
box-schemes should be used in order to  solve such problems. 
These are schemes with uniform convergence or exponential 
schemes. l.3.5.6 

The exponential box-scheme has been developed by El- 
Mistikawy and Werle3 for numerical solution of the Faulkner- 
Scan Eqs. (1) and (2) at S = 0 under the conditions of in- 
tensive blowing. The uniform three-point scheme" has the 
second order of convergence when using a variable size of 
the grid cells. As the authors of the study3 indicated, their 
method of calculations contains all of the positive features of 
both exponential as well as two-point box-schemes. However, 
their method does not have all of the advantages of the two- 
point box-schemes, i.e., when their scheme is applied to solve 
the equation system and some of the equations should or could 
be solved by the traditional box-scheme.' The principal ad- 
vantages of the two-point box-schemes are 1) using this ap- 
p r ~ a c h , " " ~  any type of boundary conditions estimated ac- 
curately; 2) algorithmization of the grid-cell-size changes is 
very simple; and 3) fluxes of the flow parameters are calcu- 
lated without additional procedure and the approximation 
error of the fluxes is the same as that of other terms of the 
equations. The two-point exponential box-scheme developed 
has the second order of uniform convergence. In the case 
considered previously, it is obviously better if the traditional 
box-scheme is a two-point one as, e.g., in studies of Keller,' 
Denisenko and P r o v o t o r ~ v , ~ ~ '  Provotorov and R i a b o ~ , ~  and 
Riabov and Provotorov." 

In this study, the two-point exponential box-scheme has 
been developed and analyzed. Its regularization algorithm is 
described. 

Model Equation 
Consider the model equation 

EU" + au '  - bu = d (5) 

Here the parameter E can accept very small magnitudes, and 
a 2 0, b r 0. Consider two neighboring grid cells (i, i + 1) 
of the box-~cheme.~."he values of the parameters in the cell 
(i + 1) will be marked by (+), and in the cell (i) by (-). 
Assume, that coefficients in Eq. (5) are constant in half-in- 
tervals (i, i + ?) and (i + f ,  i + 1) and they are equal their 
values correspondingly in the cells (i) and (i + 1). Using the 
technique of El-Mistikawy and Werle,' the solution of Eq. 
(5) with constant coefficients is the following: 

where A and B are arbitrary constants. 

The solution (6) is used to obtain the box-scheme charac- 
teristics. Consider that the functions as well as the derivatives 
are continuous in the cell (i + f ) .  These conditions offer two 
linear relations for the coefficients A +, B + ,  A , and B- .  
Besides, using Eq .  (6), the values of the functions {u(~)} and 
the derivatives {u")) will be found in the cells (i) and (i + 1). 
These conditions determine four linear relations for the coef- 
ficients A + , B +  , A , and B through the values of the func- 
tions d2) and the derivatives u(') in the cells (i) and (i + 1). 
Solving this system of four equations in connection to the 
coefficients A + , B + , A - , and B - , and substituting their values 
in the first two equations connected to two linear relations, 
the box-scheme will be obtained. The following new param- 
eters are introduced: the parameter h is a grid-cell size of the 
interval (i, i + 1); S, = [exp(&y,h)(a, - y,)]-I; r, = 

[exp(+a,h)(y,  - a,)]- ' .  
Finally, at 1 5 i 5 N ,  the obtained box-scheme could be 

+ *+(I  - a+s+ - Y + T + )  

f!Tl = a - y - + - ( S -  + r - )  - a + y + $ + ( S +  + r + )  

The most general form of the boundary conditions is 

~ t l ~ ( , l )  - ~ 1 2 ~ ( 2 )  = d(1) 
I 1  

-Q$+lucyl  + Q ~ + l u $ \ l  = dEy2 

Regularization Algorithm 
Here is the analys~s of the regularization algorithm for the 

solution of the two-point equations (15), (7), (8), and (16). 
In this study an economical method of the regularization has 
been developed. This method uses significantly less arithmetic 
calculations than the identical method offered by Samarskii 
and Nik01aev.~ 

Consider two neighbormg grid cells (1) and (1 + 1). In the 
cell (i) the boundary condition of the same type as Eq. (15) 
is 

~ , " ~ j l )  - - 12 ( 2 )  = - ( I )  D,  u, d ,  (17) 

Find the value uj" from Eq.  (8) 

u,") = ( Q ~ ' ) - ' [ G ~ ~ ,  + Q;71u!"] 

GI;), = d(') - Dflu!:), + DZ2 (') r+lU,+l 
(18) 

Substituting the parameter u?) into Eq .  (17), we find the 
value ujl): 

u!') = a!') + y f 2 G f + ,  (19) 

Thus, the value uj" could be calculated as the following: 

u j2 )  = a!2) + yf2Gl:)1 (20) 
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In the case 1 5 i 5 N ,  the coefficients are 

In the grid cell ( N  + 1)  the system of equations will be 
obtained as the following: 

The solution of Eqs. (25) and (26)  is 

The coefficients & ) t ,  , y;+ , , a:', , , and yZ,Z+, are deter- 
mined by Eqs. (21-24) in the grid cell i = N + 1. The 
coefficients marked with (') are calculated in the following 
way. If the bottom cell ( i  = 1)  is at the boundary, then the 
coefficients Dl ' ,  Di', and d;' '  are equal to  the coefficients in 
Eq. (15).  That is, Dt' = Dl1 I r  Dl2 I = DlZ I r and d'," = d'" 1 .  

The expressions for uj" and uj2' from Eqs. (19) and (20)  
substitute the same parameters in Eqs. ( 7 )  and (S), when i r 
1. Considering the structure of Eqs. (17) at  1 5 i 5 N ,  the 
new equations will be 

Here ends the direct stage of the regularization algorithm. 
The regularization coefficients will be used in the next (re- 
verse) stage. Besides, the coefficients al", yf2, a!'), yfz, 
D" d + l r  D" , + I ,  and dj;),, obtained on the direct regularization 
stage, should be kept in mind.6 Then, applying Eqs. (19) and 
(20) ,  the reverse regularization stage can be performed. 

The described method of regularization uses 37% less 
arithmetical calculations than the algorithm of Samarskii and 
N i k ~ l a e v . ~  The CPU timings also support this reduction by 
the factor of 1.32. 

Uniform Convergence of Box-Schemes 
The three-point box-scheme was offered by El-Mistikawy 

and Werle3 for the solution of the boundary-value problems, 
which could be described by Eq.  (5) .  They assumed that this 
box-scheme is uniform and of the second order. These prop- 
erties of the box-scheme were proven by Doolan et al.' under 
the conditions b = 0 .  In this study, an accurate numerical 
analysis of the determination of the order of uniform con- 
vergence of both the two- and three-point box-schemes has 
been conducted by the method of Doolan et  a1.l Two steps 
of calculations were used. 

Step A: The parameters z,,, are calculated: 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 
a) grid-cell size, h 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 
b) grid-cell size, h 

Fig. 1 Two-point box-scheme; P, vs h: a) u and h) 12'. 

1.92 \ ,  1 
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 

a) grid-cell size, h 

0 0.020.040.060.08 0.1 0.120.14 
b) grid-cell size, h 

Fig. 2 Three-point box-scheme; P, vs h: a) u and b) ti'. 
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The maximum is estimated in all grid cells. The parameter h 
is the size of the largest cell. 

Step B: The criteria of the uniformity is assessed: 

Assume, that the criteria (33) is equivalent to the criteria 

where parameters C, and P, are independent of the parameter 
k ,  and therefore, the parameter P, could be estimated by 
formula 

Compared to the study of Doolan et  a1.l the calculations 
of the parameters in Eq.  (35) have been conducted with dou- 
ble precision. The order of uniform convergence has been 
estimated by the considered procedure of calculations at con- 
stant e and at h + 0. The values of the parameter P,  have 
been calculated for the linear boundary-value problem': 

The magnitudes P, are shown in Figs. 1 and 2 for the two- 
and three-point box-schemes, respectively. The obtained data 
lead to the conclusion that both box-schemes are of the second 
order of the uniform convergence. From this point of view 
they are equivalent. The difference in the assessment of the 
order of uniformity is only in the coefficient of the terms 
remaining in the approximation. This should be expected due 
to the difference in the cell sizes and in the procedure for 
calculating the coefficients in Eq. (5), designing the box-scheme. 

The two-point exponential box-scheme was used by Mak- 
ashev and P r o v o t ~ r o v ' ~  and Provotorov and Riabov5." to solve 
the boundary-layer equations and the thin-viscous-shock-layer 
equations for nonequilibrium multicomponent dissociating gas- 
mixture flows. The results have been obtained in the whole 
range of chcmical reaction rates up to the values near equi- 
librium. The iteration process permits one to obtain a rapid 
convergence towards the solution. This property of the nu- 
merical algorithm is especially significant when the influence 
of the recombination processes and blowing on the flow struc- 
ture a re  essential.  In  the  cases considered in previous 
s t u d i e ~ ~ , ~ ~ . ~ ~  the number of iterations was below six. - Boundary-Layer Gas Flow with Blowing 

The numerical method developed in this study has been 
used for the numerical solution of the boundary-layer equa- 
tions under the conditions of moderate and intensive blowing 
from the body surface. The profiles (solid lines) of the tan- 
gential component of the velocity and its derivative u' along 
the normal 7 at the stagnation point on the surface of the 
axisymmetrical blunt body (P  = 0.5) are shown in Fig. 3 for 
different values of the blowing parameter (f, = 0, -2.5, 
- 10, and -25). As the rate of blowing increases, the bound- 
ary layer is thicker. The values of a'  are decreased under 
these conditions. In this problem the surface of the body is 
considered as thermally isolated. Figure 3 also shows the re- 
sults of the calculations obtained using the three-point ex- 
ponential box-scheme (markers) developed by El-Mistikawy 
and Werle.? Comparison of the results obtained by different 
methods demonstrates that they are in a good agreement. 

The flow parameters in the boundary layer near the cooling 
surface (at the temperature factor t,, = 0.1) with blowing are 
shown in Figs. 4 and 5 (solid lines). As discussed, the presence 
of the blowing flow significantly changes the structure of the 
flow in the boundary layer as seen in the distribution of the 

Fig. 3 Functions a) u and b) ti' along 7 at the stagnation point for 
two-point box-scheme (lines). The markers show the three-point box- 
scheme data. 

Fig. 4 Profile u along 7 at different values oft ,  = 0.1 (solid lines) 
and t, = 1 (dashed lines). 

velocity a. In addition, the essential changes in the distribution 
of the values g = SIS,, which characterize the temperature 
changes, were obtained (see Fig. 5). For the f ,  = - 10 case, 
the main changes of the parameter g take place in the narrow 
zone [1.25 < logl,,(7) < 1.81. The changes of the velocity take 
place in the significantly wider region [O <  log,,,(^) < 1.81. 
As the temperature factor t,, = 1 + S,, increases up  to t,, = 
1 (dashed lines in Figs. 4 and 5), the flow zone, formed by 
blowing, is located closer to  the body surface. The transition 
boundary towards the upstream flow becomes wider. Without 
blowing, the influence of t ,  on the distribution u and g is 
practically absent. The change of the blowing rate significantly 
influences the distribution of the velocity and temperature in 
the boundary layer, and as the result, this change significantly 
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Fig. 5 Profile g = SIS, along q at different values of tw = 0.1 (solid 
lines) and t, = 1 (dashed lines). 

Fig. 6 Functions of friction ~ ' ( 0 )  and heat flux g'(0) vs mass flow 
rate of gas blowing f,. 

influences the heat flux and friction on the body surface. The 
complex structure of combustion zones in a thin viscous shock 
layer was discussed by Riabov and Botin14 under the condi- 
tions of moderate Reynolds numbers and moderate hydrogen 
injections. 

Figure 6 shows the parameters g'(0) and u r ( 0 ) ,  which char- 
acterize the heat flux and friction on the body surface as 
functions of the blowing parameter f,,. The body surface is 
turned to be fully thermally isolated at If,[ 2 2. Further 
increase of the parameter I f,,,l is not justified. The effective- 
ness of the thermal isolation by blowing increases at the de- 
creasing of temperature factor t,, from 1.0 (dashed lines) to 
0.1 (solid lines). A t  the same time the friction decreases. 

Conclusions 
The results of this study demonstrate that the usage of 

moderate blowing decreases the heat flux towards the body 
surface and also decreases the friction on the surface at  the 
stagnation point. The flow parameters in this case should be 
calculated using the two-point exponential box-scheme. The 
major feature of this scheme is its uniform convergence of 
the second order, and it has to  be considered in the full range 
of changing the blowing parameters. The application of the 
two-point box-scheme compared to the three-point box-scheme 
demonstrates essential advantages of the two-point exponen- 
tial box-scheme. 
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