
RIVIER ACADEMIC JOURNAL, VOLUME 3, NUMBER 1, SPRING 2007

Copyright © 2007 by Rivier College. All rights reserved. 1
ISSN 1559-9388 (online version), ISSN 1559-9396 (CD-ROM version).

Abstract

Teaching an early computer organization and architecture course can be a challenge. It is difficult to
enliven many of the basic computer science concepts and have students understand the relevance of
such concepts to the real world. Among the topics that can be made more interesting and relevant to
students are programming at the machine level, and the use of assembly language. A hands-on
approach increases enthusiasm and understanding. In this article, we present a simulator for a PDP-11
computer that uses a GUI-based interface and a built-in assembler, and we argue that its use in
computer organization courses can enhance student understanding for machine-level programming.

1 Motivation
Over several sessions of teaching an introductory Computer Organization course to Computer Science
undergraduates, we have found that many of our students struggle with a number of the basic concepts
presented in the course. In an attempt to give students a more hands-on experience, we chose a textbook
[1] that provided a very user-friendly computer simulator, MarieSim [2], which is written in Java and
makes excellent use of a graphical user interface (GUI) to provide a pleasant and relatively comfortable
experience for students.

Unfortunately, we found the design of the (imaginary) computer being simulated ("MARIE:
Machine Architecture that is Really Intuitive and Easy") to be too limited for students to program much
beyond relatively trivial machine-level programs. While the machine was designed -- for pedagogical
reasons -- to be extremely simple, we found its limited instruction set and its non-orthogonal provision
of features such as indirect addressing (provided only on two of its 13 instructions) to be frustratingly
restrictive. For example, we wanted to expose our students to the concept of stacks, and their application
to expression evaluation, but we found this to be very difficult to implement using this architecture.

2 The Vision

We felt that we could apply the concepts of a user-friendly Java GUI to a more realistic, but still
understandable, machine simulation, and thereby allow our students to progress further in their use and
understanding of machine language programming.

It occurred to us that simulating a PDP-11 would be advantageous. The PDP-11 [3, 4, 5] was a
highly influential series of 16-bit minicomputers sold by Digital Equipment Corporation (DEC) during
the 1970s and 1980s.

Features of the PDP-11 architecture that we felt would lend themselves to ease of learning include:

A PDP-11 COMPUTER SIMULATOR

Bryan Higgs, Ph.D.*
Associate Professor of Computer Science, Rivier College

Keywords: PDP-11 computer, simulator, machine-level programming

Bryan Higgs

 2

• A general-purpose register (GPR) machine, which is the most common kind of CPU in use
today.

• An orthogonal instruction set; once the concepts of one instruction are understood, other
instructions are easy to learn.

• A rich set of addressing modes (Register, Register Deferred, Autoincrement, Autoincrement
Deferred, Autodecrement, Autodecrement Deferred, Index, Index Deferred, PC Immediate,
PC Absolute, PC Relative, PC Relative Deferred), applied in a very consistent manner over
virtually all the available instructions. Again, once the concept of a particular addressing
mode is understood, that knowledge can be applied across the instruction set. These
addressing modes allow for very easy LIFO stack manipulation, and can be used to great
effect for studying stacks and their applications.

• An instruction set using an expanding op-code approach, which could be used as a real-world
example of that technique.

In general, we could imagine the course introducing features gradually, without overwhelming our
students with too much information at once. For example, while the PDP-11 boasts a relatively
powerful instruction set, we could gradually introduce a subset of these instructions, adding more
instructions as our students become more comfortable. A similar approach can be taken with addressing
modes.

The PDP-11 was a highly successful real-world architecture that was used for many kinds of
applications, from banking applications to capturing data in high-energy physics experiments, and
everything in between. We know that it was capable of being applied to many areas of computing, and
expect that our students could take advantage of this in their programming activities.

The PDP-11 architecture was used as an extended example in an early edition of a popular textbook
on Computer Organization [6].

3 The Implementation

3.1 Build, Acquire, or Adapt?

We looked into the availability of PDP-11 simulators, and found quite a few. [7-12]. However, none
seemed to satisfy our needs. We were looking for a pedagogically oriented solution involving the use of
a modern GUI, preferably written in Java for portability; none lent itself to this approach.

So, we decided to build our own PDP-11 simulator.

3.2 The Implementation in Java

We implemented a PDP-11 simulator in Java, which included:
• An emulation of the PDP-11 machine, including:

o Almost a complete set of machine instructions

o CPU fetch-decode-execute instruction cycle
o 64Kbytes of Memory, addressable by byte or 16-bit word.

o 8 General-Purpose Registers

 3

A PDP-11 COMPUTER SIMULATOR

o Processor Status Word flag bits

• A simple assembler, which produced 'executable' files for the emulator

• A GUI, which allows the user to view the above, to observe a loaded program in symbolic
form, and to execute that program to observe its execution.

3.2.1 The Graphical User Interface
The style of presentation was influenced by the MARIE Simulator [2], and so owes much to its
philosophy.

An example of how the PDP-11 simulator appears is shown in Figure 1.

Figure 1: The PDP-11 Simulator Environment

3.2.2 The Program Panel
The panel labeled 'Program' displays a symbolic version of a loaded program. For each instruction, it
displays the octal address, the instruction code in octal, the instruction mnemonic, and operands (if any).
Note that instructions that use Immediate addressing mode consume additional words of memory; this
explains those lines which contain no instruction mnemonic or operands. During program execution, the
next instruction to be executed is highlighted in green.

Bryan Higgs

 4

The top of the panel shows a scrollbar that may be used to slow program execution, to allow
convenient observation of program flow.

3.2.3 The Registers Panel
The panel labeled 'Registers' displays the contents of the machine's general-purpose registers, R0 – R7,
in octal, decimal, or hexadecimal. The panel also displays the state of the flag bits C, V, N and Z from
the machine's Processor Status Word. These flag bits indicate the result of each instruction, on which
conditional branch instructions depend. When an executed instruction causes changes to the contents of
any of these registers, and/or the flag bits, those changes are highlighted in green.

3.2.4 The Memory Panel
The panel labeled 'Memory (octal)' displays the contents of the machine's memory words, with
addresses and contents displayed in octal. When an executed instruction causes changes to the contents
of memory, those changes are highlighted in green.

3.2.5 The Assembler Code Editor Panel
When a user requests to create or change a source program, the simulator displays an assembler editor
code panel. An example of how this appears is shown in Figure 2.

Figure 2: The Assembler Editor Panel

The user may invoke the assembler directly from the editor panel. A successful assembly is

indicated by a message highlighted in green at the bottom of the panel. If the assembly fails, a message
is displayed, and an assembler listing panel is automatically shown. The user may also ask to see the
assembler listing. An example of an assembler listing is shown in Figure 3.

 5

A PDP-11 COMPUTER SIMULATOR

Figure 3: The Assembler Listing Panel

4 Project Status
The PDP-11 Simulator implementation is nearing completion. What remains is:

• Completing the implementation of breakpoints.

• Thorough testing of the entire simulator.

• Relatively minor cleanup.

We plan to use this simulator in the next session of our Computer Organization course, and to

measure how easily our students learn in this potentially more sophisticated simulation environment.
We also plan to produce more challenging assembly language programming assignments, and
investigate how easily our students are able to expand their assembly language programming skills.

Additional possibilities exist for this simulator, including studying its source code in courses in
object-orientation, advanced Java, GUIs, compilers, and data structures.

Bryan Higgs

 6

5 Conclusions

We have almost completed implementation of a PDP-11 Simulator written in Java. The simulator
provides a user-friendly GUI interface to assembly language programming in a real-world environment.

The simulator holds much potential promise in our Computer Organization course, and potentially
elsewhere.

References
[1] Null, L. and Lobur, J. The Essentials of Computer Organization and Architecture, Second Edition, Sudbury, MA: Jones

and Bartlett, 2006
[2] Null, L. and Lobur, J. MarieSim: The MARIE Computer Simulator, Journal of Educational Resources in Computing, 3,

(2), June 2003.
[3] PDP-11, http://en.wikipedia.org/wiki/Pdp-11, retrieved November 12, 2006.
[4] PDP-11, http://www.pdp11.org/, retrieved November 12, 2006.
[5] Bell, G. and Strecker, W., "Computer Structures: What have we learned from the PDP-11?", November 1975,

http://research.microsoft.com/users/GBell/Digital/Bell_Strecker_What_we%20_learned_fm_PDP-11c%207511.pdf,
retrieved November 12, 2006.

[6] Tanenbaum, A., Structured Computer Organization, First Edition, Englewood Cliffs, NJ: Prentice-Hall, 1976.
[7] The Computer History Simulation Project, Bob Supnik, http://simh.trailing-edge.com/, retrieved November 12, 2006.
[8] DEC PDP-11 Simulators, http://www.xsim.com/bib/index4.d/Tool-DEC-11-43.html, retrieved November 12, 2006.
[9] The PDP-11 Simulator System, Hankinson, D. W., and Bidulock, D.S.,

http://pages.cpsc.ucalgary.ca/~dsb/PDP11/manual/, retrieved November 12, 2006.
[10] The PDP-11 Processor Handbook, http://pages.cpsc.ucalgary.ca/~dsb/PDP11/, retrieved November 12, 2006.
[11] Wolffe, G. S., Yurcik, W., Osborne, H., and Holliday, M. A., Teaching computer organization/architecture with limited

resources using simulators, ACM SIGCSE Bulletin, Proceedings of the 33rd SIGCSE technical symposium on Computer
Science education, SIGCSE '02, 34, (1), 176-180, 2002.

[12] Computer Architecture Simulators, http://sosresearch.org/caale/caalesimulators.html, retrieved November 12, 2006.

* Dr. BRYAN HIGGS is an Associate Professor of Computer Science at Rivier College. He earned a B.Sc. (Honors) in
Physics from the University of Liverpool, United Kingdom, and subsequently M.Phil. and Ph.D. degrees in Physics from
Yale University. He then changed fields, and joined Digital Equipment Corporation where he worked for 20 years in a
variety of positions, culminating in the Database Engineering group. In 1994, Digital sold its Database business to Oracle
Corporation, and Dr. Higgs transferred to Oracle, together with the rest of the Database group. He worked for Oracle in their
Software Engineering group for 7 years. In 2002, Dr. Higgs decided to return to academia, and joined the full-time Computer
Science faculty at Rivier College, where he has worked ever since. His major interests are Database Systems, programming
languages (especially Java and C/C++), Computer Security, and Web development. Recently, he has become interested in
scripting languages, including Perl, Python, JavaScript, PHP, and Ruby. Dr. Higgs is a member of the Association for
Computing Machinery. He is Chair of the Faculty Development Committee of the Faculty Senate.

