
RIVIER COLLEGE ONLINE ACADEMIC JOURNAL, VOLUME 1, NUMBER 1, FALL 2005

Copyright © 2005 by David Snogles. Published by Rivier College, with permission. 1

Abstract

Most users of mainstream Instant Messaging applications on the Internet don’t realize their conver-
sations are being transmitted in clear text and are vulnerable to eavesdropping during transmission.
This project report presents a solution to this problem implemented in a final project for CS699 in the
spring of 2005 at Rivier College. The project was entitled Personal Encrypted Talk and its primary goal
was to secure Instant Messaging communications between two parties on the Internet. Secondary
objectives were Java Cryptography Architecture research and the practical experience gained by the
author in the development of a scalable Java based Graphical User Interface application. This article
summarizes the software engineering steps followed during the implementation of this project.

1 Introduction

In the 1970s UNIX became a popular networked operating system used by programmers. Many of these
programmers found it convenient to continue working while simultaneously communicating with fellow
programmers using a program called “talk.” Talk allowed two users to communicate via typing text in a
split window displayed in a local terminal window.

In the 1990s the next generation of UNIX talk was born. It was called Instant Messaging, and it
wasn’t confined to just UNIX workstations. It was available to any PC connected to the Internet. As its
popularity increased major Internet Service Providers such as MSN® and third party software vendors
like ICQ® developed their own Instant Messaging services. These services are now used by millions of
users around the world.

Most Instant Messaging Services are plagued by the same problem. All the communications
between the parties are transmitted in clear text. Anyone with a traffic sniffer on the network or at any
hop in between the two end stations can eavesdrop on the conversation. (See the MSN Sniffer and ICQ
Sniffer products available from http://www.packet-sniffer.net/ for more details). Another problem is that
all the clear text traffic goes through the messaging servers of these companies; therefore at any time
they could choose to log all conversations between individuals. This can affect both corporate and
personal users alike. Company sales opportunities, intellectual property secrets, information on company
projects, marketing information, as well as office gossip between employees can put a company at risk.
Personal information between home users could compromise usernames, passwords, credit card
numbers, and social security numbers putting the average citizen at risk for identity theft.

Securing network communications is a practical problem facing all interconnected applications.
It’s not limited to Instant Messaging, but also affects E-mail, FTP, Telnet, and Virtual Desktop
applications. The Personal Encrypted Talk (PET) project summarized in this article was implemented as

PERSONAL ENCRYPTED TALK - SECURING INSTANT
MESSAGING WITH A JAVA APPLICATION

David Snogles*

M.S. in Computer Science, Rivier College 2005

Keywords: Java Encryption Instant Messaging

Snogles, David

Copyright © 2005 by David Snogles. Published by Rivier College, with permission. 2

a final project in CS699 at Rivier College in the spring of 2005 and provides a solution for Internet users
still communicating with clear text. The PET system uses open source cryptography technologies to
allow end users to form a secure tunnel between two PC’s anywhere on the Internet. All communi-
cations through this tunnel are encrypted and protected from outside eavesdropping. The PET project is
an example of how insecure applications can be made secure using the Java Cryptography Architecture.

2 System Environment

The Personal Encrypted Talk (PET) system was designed to operate on Microsoft® Windows XP and
Windows 2000 machines with an active connection to the Internet. The following table (see Fig. 1)
illustrates details on the software tools and libraries used in the development of this project.

Development Language: Java 1.4.2 & 1.5 from Sun Microsystems
Interactive Development Environment: Borland JBuilder X Personal Edition
Servlet, Applet or Application: Java Application
User Interface: Java Frame built using the Swing Library
Communication Transport Mechanism: Apache XML-RPC.
Cryptography Platform: Using the Java Cryptography Architecture

(JCA), and Java Cryptography Extension (JCE)
Cryptography Ciphers: Several cipher suites provided by Bouncy

Castle and Cryptix were analyzed. The Diffie-
Hellman and 3DES implementations provided
by Sun in the JCA were used for version 1.0 of
PET Project.

UML Tools: Microsoft Visio with UML Template, Jude
UML Modeling Tool (Jude Community
V1.4.3) by EIWA System Management.

PC Install Software: NSIS (Nullsoft Scriptable Install System)
V2.06 from: http://nsis.sourceforge.net/

Scheduling Software: GanttProject 1.9.10

Figure 1: Software Technologies Utilized

3 System analysis issues

This section highlights several of the stages of analysis the PET project went through before the initial
coding of the system could begin. The design requirements were developed highlighting what
functionality the system was to contain and how the end user would interact with the system. Additional
steps in the analysis phase of the project included partitioning the system into Client and Server
components, and outlining the interaction the users would have with the system. Each user of the system
is called a PetUser and they interact with a PetClient graphical user interface (GUI) to initiate chat
sessions with fellow PetUsers. The Server portion of the system is called the PetServer, which contains a
list of PetUsers who are logged into the system and are available for chat.

Copyright © 2005 by David Snogles. Published by Rivier College, with permission. 3

PERSONAL ENCRYPTED TALK – SECURING INSTANT MESSAGING
WITH A JAVA APPLICATION

3.1 Design Requirements

The Personal Encrypted Talk (PET) application is designed to allow multiple users to communicate
via a secure Instant Messaging tool over the Internet.

• The PetUsers should be able to log into a remote PetServer and find peers to communicate with.
• PetUsers should not be required to have any cryptographic expertise to use the system.
• The PetUsers should be able to initiate a conversation, and all encryption should be done behind

the scenes.
• To do encryption behind the scenes, a key exchange algorithm like Diffie-Hellman should be

used to create shared private keys for each conversation.
• For the initial Version 1.0 release of the tool, a single encryption Cipher may be used, but hooks

for the future support of multiple Ciphers should be implemented.
• The single Symmetric Cipher provided in Version 1.0 should be either 3DES (Triple-DES) or

AES (Advanced Encryption Standard).
• When a new user logs into or out of the PetServer, all PET applications should be informed of

the updated user (friend) list.
• The user will be required to know the IP Address and Port of the PetServer they will be logging

into, but the PET Chat Application should automatically find an open port on the system and
utilize that for operations, (i.e., end users will not have to pick a port number manually).

• If a PetUser attempts to talk to a user that has logged out of the PetServer before their local
update list is refreshed, the system should not allow a conversation to begin.

• After a user finishes a conversation with a peer and the chat window is closed, the remote peer’s
chat window should be informed.

• Any network related instabilities in the communications link should be handled gracefully by all
components in the system. Minimal user interaction should be required while the system is
recovering from exceptions, but the user should be informed that a communication failure has
occurred.

• The PetUser should be able to carry on at least one conversation with each user logged into the
PetServer. The PET application will not be required to loop back conversations to itself, and if
the application does not support this feature it should be prevented.

• For Version 1.0, a console based PetServer application will be required. Status of users logging
into and out of the server should be updated to the console in real time. If time permits a GUI
window could be provided.

• For Version 1.0 a GUI window should be provided in the PetClient to allow the user to:
o Log into and out of the PetServer.
o Get an updated active user list manually via a button click. (This feature is helpful if the

user thinks the auto-update refresh is too slow).
o The ability to initiate a chat (talk) session with a user selected in the active user list.

3.1.1 Requirements for Future Releases:

Future versions of the PET application should provide support for the following features:

• AES support was not provided in the initial release and it should be supported in future releases.

Snogles, David

Copyright © 2005 by David Snogles. Published by Rivier College, with permission. 4

(Note: Version 1.0 supports 3DES).
• Message Digests and Message Authentication should be supported in future releases. This will

ensure the integrity of text messages transmitted through the system as well as verify the
authenticity of the sender.

• PetUsers were not required to provide a password to log into the PetServer (Version 1.0). Enhan-
cements to the PetServer may include the requirement to log in with an encrypted password.

• A Graphical User Interface (GUI) should be provided for the PetServer. It will provide a simple
interface for adding and removing PetUsers from the system. Any usernames and passwords for
PetUsers will be stored in a password protected encrypted file on the local disk.

• Add support for PetServer message queuing. With PetServer message queuing, the PetServer
will queue encrypted messages of conversations between PetUsers. This will allow the PetUsers
to log into the server and retrieve messages on a regular basis. Support for this model will allow
users behind a corporate firewall to act as Client Only applications where all messages are posted
and received with the PetServer. Since a server isn’t running on the client machine, peer PET
clients do not require ports to be opened in the firewall.

• Add support for logging a conversation to a file.

3.2 The PET System’s Network Layout
The PET System is a Client-Server, Client-Client (Peer-to-Peer) application. As the following

diagram illustrates (see Fig. 2), all communication between Java Applications happen over XML-RPC.
XML-RPC is a Remote Procedure Call library obtained from Apache. Details on XML-RPC can be
found in reference [1]. PetUsers are able to log into and out of the PetServer via XML-RPC function
calls. When a client initiates a conversation, it contacts the PetServer to check to see the user is still
actively logged in, and get the IP address and port number of the peer it wishes to communicate with.
After this information is obtained, the chat session between the two peers is a client-to-client
conversation and the PetServer is no longer involved.

PetServer

PetClient
PetClient

Pet Clients
Login & Logout

of PetServer

Pet Clients get User List
containing IP & Port

of PetUsers
from PetServer

Network
Transport

via XML-RPC
over IP

Encrypted Peer to Peer
Communications

between Pet Clients
without PetServer intervention

Figure 2: PET System Network Layout

Copyright © 2005 by David Snogles. Published by Rivier College, with permission. 5

PERSONAL ENCRYPTED TALK – SECURING INSTANT MESSAGING
WITH A JAVA APPLICATION

3.3 State Chart for the PET System User Operations

The following state chart (Fig. 3) provides more detail into the interaction of multiple users with
the PET application, and what’s going on behind the scenes within the PET system. Notice the exchange
of public keys to agree on a shared secret key. This exchange is an asymmetric key agreement protocol
called Diffie-Hellman. It sets up the shared secret between the two PetUsers, which is used to create the
shared 3DES secret key. Cryptographic research utilized references [2] & [3] and more details on the
JCA and JCE are available from those sources.

PetUser A Logs into PetServer PetUser B Logs into PetServer

Server Contains PetUser A & B in PetUserList

PetUser A gets PetUser List from PetServer

PetUser B gets PetUser List from PetServer

PetUser A & PetUser B perform Personal Encrypted Chat

PetUser A Opens Chat Window & sends Hello to PetUser B

PetUser B Opens Chat Window & sends Hello Acknowledge to PetUser A

PetUser A and B exchange public keys and create shared secret keys

PetUsers say Goodbye, & may logout of PetServer

Figure 3: State Chart for PET System User Operations

Snogles, David

Copyright © 2005 by David Snogles. Published by Rivier College, with permission. 6

4 System design issues

This section highlights several of the stages of development the PET project went through before the
initial prototype was ready for a system demonstration. Included in this section is an example of a
sequence diagram, and examples of several UML (Unified Modeling Language) class diagrams. The
sequence diagrams together with several state machine diagrams and CRC cards (CRC: Classes,
Responsibilities, and Collaborators) were used to formalize eleven Java objects in the final design.
These Java objects were specified in UML prior to writing any Java code for the system.

During development Unit, Integration, and System Level test plans were developed. As blocks
were finished the test plan was executed and the system debugged until all the tests in the System Level
test plan passed and the features in the functional specification were operational.

Reference [4] was heavily utilized for the UML system analysis and design processes followed in
the development of this project. Java language references utilized during the programming of the system
included [5], [6], and [7].

4.1 PET System Sequence Diagram

The following Figure 4 contains the initial sequence diagram developed during the software
architecture phase of the design. Sequence diagrams like this were used to solidify the interaction of the
main components of the system and the end users of the system.

Copyright © 2005 by David Snogles. Published by Rivier College, with permission. 7

PERSONAL ENCRYPTED TALK – SECURING INSTANT MESSAGING
WITH A JAVA APPLICATION

Figure 4: PET System Sequence Diagram

Snogles, David

Copyright © 2005 by David Snogles. Published by Rivier College, with permission. 8

4.2 Examples of UML (Unified Modeling Language) Class Diagrams

The PetServer and PetClient applications are contained in the com.snogles.pet Java package. This
package contains eleven Java objects implementing the PET system. UML diagrams were developed for
all eleven classes and integrated into a system level UML class diagram. This section contains two
example classes, PetCipherEngine and PetChatFrame, from the final project report.

4.2.1 UML Diagram for the PetCipherEngine

The PetCipherEngine is the heart of the Java encryption features implemented in the project (see

Fig. 5). The arrows pointing away from the PetCipherEngine illustrate other Java objects this class
encapsulates and interacts with. The lower half of the PetCipherEngine diagram lists functions this class
contains. Two functions of interest are the encrypt() and decrypt() methods. These are used by the
PetChatFrame while communicating with its peer PetChatFrame during an encrypted conversation.

Figure 5: UML Class Diagram for PetCipherEngine

Copyright © 2005 by David Snogles. Published by Rivier College, with permission. 9

PERSONAL ENCRYPTED TALK – SECURING INSTANT MESSAGING
WITH A JAVA APPLICATION

4.2.2 UML Diagram for the PetChatFrame

The PetChatFrame (see Fig. 6) contains the GUI (Graphical User Interface) for the chat window
used when two PetUsers communicate in the PET system. Notice it contains an instance of the
PetCipherEngine used for encrypting and decrypting messages as well as the JTextArea’s used for
displaying and typing messages.

Figure 6: UML Class Diagram for PetChatFrame

5 Implementation issues

The implementation issues overcome in this project all revolved around the use of Java encryption in the
System. Before encryption technology could be used in the system, research into the field of
cryptography and into the Java Cryptography Architecture (JCA) and Java Cryptography Extension
(JCE) in particular were required. Several weeks of experimentation using the JCA and JCE led to the
final implementation of the PetCipherEngine Java class in the project. The symmetric cipher chosen for
Version 1.0 of PET system was 3DES (aka: Triple-DES). The asymmetric key (public key) exchange
protocol used to create the 3DES secret key was Diffie-Hellman.

The majority of ideas for the PetCipherEngine class came from Section 3.5 “The KeyAgreement
Engine” in Reference [2]: Java Cryptography Extensions by Jason Weiss.

Snogles, David

Copyright © 2005 by David Snogles. Published by Rivier College, with permission. 10

6 Prototype properties and demonstration

The PET system project was presented on May 3rd 2005 to fellow students in the Rivier College CS699
Professional Seminar lab and was open to the student body, Computer Science professors and invited
guests.

An overview of the project was presented, followed by a demonstration of the Version 1.0
prototype of the PET system. The following list contains highlights of the demonstration:

• An install of Version 1.0 of the PET System was performed on a Windows 2000 laptop.
• A PetServer and three PetClient Applications were started.
• All three PetClient applications logged into the PetServer.
• Each PetClient’s friend list was updated as new users logged into the PetServer.
• An encrypted conversation was started between the users.
• Encrypted messages were sent between the Pet chat windows of each PetUser.
• Examples were provided of how conversations were terminated from the chat window, the

main PetClient window, or from the peer connection.
• Corner case testing of PetServer login failures and exception handling for PetClient network

disruptions were demonstrated.
• An overview of the Java code developed during the project and steps taken to create the

NSIS Installer were finally presented.

6.1 Screen Shots of the Prototype

Figure 7: PET Installation Options Window

Copyright © 2005 by David Snogles. Published by Rivier College, with permission. 11

PERSONAL ENCRYPTED TALK – SECURING INSTANT MESSAGING
WITH A JAVA APPLICATION

Figure 8: PetServer window with login and logout status updates

Figure 9: PetClient application login window

Snogles, David

Copyright © 2005 by David Snogles. Published by Rivier College, with permission. 12

Figure 10: PetClient example chat window between user Dave and user Liam

7 Conclusions

Implementing the Personal Encrypted Talk application provided an excellent opportunity to put into
practical use many of the software design skills the author developed over the last 2 years at Rivier
College. The application meets the functional specifications for Version 1.0 as outlined in the Design
Requirements section of this report. It meets the primary objective of securing Instant Messaging
between two remote clients while bypassing an intermediate server. The project was designed with the
ability to quickly implement advanced functionality in the future. One of the first advanced features that
will be implemented in the next version is a Graphical User Frame for the PetServer with the ability to
create user accounts with encrypted passwords. Enhancements to the Personal Encrypted Talk
application after Version 1.0 will provide an excellent test bench for further study into the Java
Cryptography Architecture and Java Cryptography Extensions.

Copyright © 2005 by David Snogles. Published by Rivier College, with permission. 13

PERSONAL ENCRYPTED TALK – SECURING INSTANT MESSAGING
WITH A JAVA APPLICATION

8 References

[1] Simon St. Laurent, Joe Johnston & Edd Dumbill, Dave Winer, Programming Web Services with XML-RPC. O’Reilly &

Associates, Inc., 2001
[2] Jason Weiss, Java Cryptography Extensions: Practical Guide for Programmers. Morgan Kaufmann Publications, 2004.
[3] Jonathan Knudsen, Java Cryptography. O’Reilly & Associates, Inc., 1998.
[4] Alan Dennis, Barbara Haley Wixom, David Tegarden, Systems Analysis & Design An Object-Oriented Approach with

UML. John Wiley & Sons, Inc., 2002.
[5] Cay S. Horstmann, Gary Cornell, Core Java 2 Volume I – Fundamentals. Sun Microsystems Press, 2003.
[6] Cay S. Horstmann, Gary Cornell, Core Java 2 Volume II – Advanced Features. Sun Microsystems Press, 2005.
[7] Ralph Morelli, Object-Oriented Problem Solving Java, Java, Java, Second Edition. Prentice Hall, 2003.
[8] Wayne C. Booth, Gregory G. Colomb, Joseph M. Williams, The Craft of Research, Second Edition. The University of

Chicago Press, 2003.

* DAVID SNOGLES is a Senior Hardware Engineer specializing in the development and verification of Application

Specific Integrated Circuits (ASIC’s) for networking applications. He received his Bachelor of Science degree in Computer
Engineering Technology, summa cum laude, from the State University of New York at Utica in 1996. Graduate work was
done at UMASS Lowell and Rivier College in Nashua, New Hampshire. He received his Master of Science in Computer
Science degree from Rivier in 2005. David's research interests include: Electronic Design Automation (EDA)
Technologies, Hardware Description and Verification Languages, Constrained Random Testing, Encryption Technologies
and Object-Oriented Programming.

