
RIVIER COLLEGE ONLINE ACADEMIC JOURNAL, VOLUME 1, NUMBER 1, FALL 2005

Copyright © 2005 by Rivier College. All rights reserved. 1

Abstract

This paper describes the methodology used in developing a discrete event simulation model of a
SeaChange® digital video cluster network. The SeaChange digital video cluster uses a complex fabric of
heterogeneous network technologies to achieve the performance and reliability required for video on
demand applications. The cluster network consists of three different interconnect technologies: PCI2.2,
StarFabric and InfiniBand. I used OMNeT++ to handle the link contention, buffer contention and PCI
arbitration challenges.

1 Introduction

The goal of this simulation is to predict performance and find the bottlenecks in a digital video cluster
network. The SeaChange digital video cluster consists of massive storage arrays with redundancy, a
high-speed internal network and many Gigabit Ethernet devices that transmit the video streams into the
cable network and to the home [3].

The scope of the simulation will be traffic in the cluster network. The disk drive systems where the
video is stored and the Gigabit Ethernet devices where the video is transmitted are abstracted to
distribution models [2]. Therefore, the key areas of interest in the simulation will be the contention for
the fabric links, the contention for the fabric buffers, and contention for the PCI bus which connects the
two fabrics (StarFabric and InfiniBand) together.

2 Simulation Components

Simulation models created with OMNeT++ software are constructed of three primary components:
modules, links and messages [5]. The modules are the agents in the simulation that create, send and
receive messages. The modules will take information received in the message, and use it to change the
state of the simulation. The messages themselves carry information between the modules across the
links. The messages may be used for control or to represent an entity in the simulation. The links may be
control path (and take no simulation time to transfer the message) or represent a data path. When a link
is acting as a data path, the message is delivered after the necessary simulation time has passed to
transmit that much data at the speed of the link.

The modules in this simulation which control the flow of messages throughout the fabric are
InfiniBand switches, StarFabric bridges and switches and the PCI bus modules. The remaining RAID
controller and Gigabit Ethernet modules simply create and destroy messages.

USING OMNET++ TO SIMULATE A HETEROGENOUS
DIGITAL VIDEO CLUSTER FABRIC

Martin N. Milkovits*

SeaChange International

Keywords: simulation, networks, performance, contention

Martin N. Milkovits

Copyright © 2005 by Rivier College. All rights reserved. 2

The data messages (dMsg) in this simulation represent 1024Byte data packets. The dMsg’s contain
their target node and card information and the modules use this information to determine the routing of
the message through the system. There are two main types of control messages. The first (rqst) are used
to request buffer and link resources between modules. The second (qcheck) prompt the PCI bus module
to check the receive queues.

3 Managing Link and Buffer Contention

In order to transfer data across a network fabric, the device must have control of the transmission link
and there must be a destination buffer that can accept the data. In this simulation model, each module in
the system is responsible for accessing the necessary resources to transfer the dMsg and ensure a
destination buffer. If the module also manages buffers, it must release the local buffers that the dMsg
occupied when it is transmitted to the next component.

3.1 Sending a Message

Before a module transmits the dMsg message, it must gain access to the link or bus and the destination
buffer. The rqst messages are used to manage these transactions over the control links. Each rqst
message contains information about the access of the link/bus and destination buffer. For example, the
module representing the disk controller will send the rqst message to the PCI bus module. If the bus is
available, a component in the rqst message that represents the link access is set to true and is returned to
the disk controller module. If the bus is not available, the PCI bus module would hold the rqst message
until the bus becomes available. Holding a rqst message is the mechanism to manage flow control in the
simulation network.

Once the rqst message is returned to signal link access, the disk controller module will attempt to
grab a destination buffer on the StarFabric bridge (note there are no buffers in the PCI bus). Therefore,
the rqst message is sent along the control link to the StarFabric bridge module. When the buffer is
available, the StarFabric bridge module sets the buffer access message component to true and returns
the rqst message. When both messages are sent and returned, the dMsg message may be sent. Any new
dMsg messages that are received at the disk controller module during this process are simply added to
the queue (see Figure 1).

3.2 Receiving a Message

When a dMsg message arrives, the receiving module checks to see if there are any rqst messages being
held before releasing the link. If any rqst messages are found, they are returned to the requesting
module. Likewise, when a dMsg message is sent from a module, the module checks if there is an
outstanding rqst message before it releases the buffer. If so, the rqst message is returned and the
resources remain used, otherwise, the buffer resources are released.

Copyright © 2005 by Rivier College. All rights reserved. 3

USING OMNET++ TO SIMULATE A HETEROGENEOUS DIGITAL
VIDEO CLUSTER FABRIC

dMsg Queue empty?
yes

no

Enqueue dMsg

Send rqst
message

rqst Send rqst to
Buffer module

Send dMsgrqst Pop dMsg
From queue

Figure 1: Disk Controller Module Buffer/Bus Access

4 Simulating the PCI Bus
The PCI bus is the common component between every fabric in the system and, hence, every module in
this simulation. The PCI bus has the challenges of granting access to each device appropriately, of
assuring that no one device hogs the bus, and of transferring the data to its destination.

These requirements make a simulation of the PCI bus as a process more appropriate than as a simple
connection like the StarFabric or InfiniBand links. The PCI bus module was designed after the “Time-
Shared Computer Model” on page 129 of Simulation Modeling and Analysis [1].

4.1 Transferring Data According to PCI bus speed

The dMsg has a component transfer that represents the length of in bytes message upon entry to the PCI
bus module. Messages being transferred are held in the work array of the PCI bus module. While a
message is being transferred, the qCheck message is scheduled for an interval of 240 ns (16 clock
cycles). This simulates the time to transfer 128 Bytes of data. When the qCheck message fires, the
transfer value on the dMsg is decremented by 128. This continues, (as long as there are no other
messages arbitrating for the bus), until the transfer value is 0, at which time the dMsg message is sent to
the destination module. If there are other messages arbitrating for the bus, they are moved to the work

Martin N. Milkovits

Copyright © 2005 by Rivier College. All rights reserved. 4

array and an additional 45nS is added to the qCheck time to account for PCI overhead (see Figure 3) [4].
See Section 4.3 for more information about PCI bus arbitration.

4.2 Granting Bus Access

The PCI bus module’s pciBus table has an entry for each device connected to the PCI bus. When that
device requests the bus, the array value for that device is set to 0. When the transaction for that device
completes, the array value is incremented to 1. If a device requests the bus, but the pciBus[devNum]
entry is set to 0, the request message is held until the previous transaction completes and the bus is
released. At this point, the entry remains at 0, and the request message is returned to the device
requesting the bus (see Figure 2).

rqst pciBus[devNum]
> 0?

yes
no

Return rqst

store rqst in
reqArray[devNum]

Decrement
pciBus[devNum]

Figure 2: Granting Bus Access

4.3 Maintaining Bus Fairness

The qCheck message is used to maintain bus fairness. Note that every device can send a dMsg message
to the PCI bus, but only one message may be transferred at a time. Each additional dMsg message is
pushed to the queue. If the dMsg transfer is not 0 after the qCheck message fires, the queue is checked
for dMsg messages. If there is a dMsg message in the queue, it is copied to the work array and the dMsg
in the work array is pushed to the queue (see Figure 3).

Copyright © 2005 by Rivier College. All rights reserved. 5

USING OMNET++ TO SIMULATE A HETEROGENEOUS DIGITAL
VIDEO CLUSTER FABRIC

qCheck
Message

dMsg->transfer
== 0?

Decrement work
dMsg->transfer

yes

no

queue empty?
yes

no

Swap work and
queue dMsg

(add PCI overhead)

Restart qCheck
Message + 240ns

Send dMsg

queue empty?

no

Move dMsg from
queue to work

yes return
reqArray[devNum]reqArray[devNum]->

Exist?

yes Delete
qCheck

no
Increment

pciBus[devNum]

Figure 3: Bus Fairness Algorithm

Conclusion

Using OMNeT++, a simulation model of a heterogeneous digital video cluster fabric was built. The
simulation model handled buffer and link contention as well as PCI bus arbitration and contention. The
results of this simulation model helped to better understand the relationships of these three networks and
how the different buffer sizes, packet sizes and transfer rates affect multiple simultaneous streams of
data [2].

References
[1] Law, Averill M., and Kelton, David W. Simulation modeling and analysis. McGraw-Hill, NY. 2003.
[2] Milkovits, Martin N. Digital Video Cluster Simulation. Proceedings of the 2005 Winter Simulation Conference, M.E.

Kuhl, N.M. Steiger, F. B. Armstrong and J. A. Joines, eds. Orlando, Florida. 2005.
[3] SeaChange International, [online]. Available via <http://www.schange.com/products/mediacluster.asp> [accessed

August 17, 2005].
[4] Shanley, Tom, and Anderson, Don. PCI system architecture. Mindshare Inc., Reading, MA. 1999.
[5] Varga, Andras. OMNeT++ Version 3.0 user manual, [online]. Available via <http://www.omnetpp.org/> [accessed

August 17, 2005].

* MARTIN N. MILKOVITS received his B.A. in philosophy of mathematics from Colby College in Waterville, ME. He

received his Master of Science in Computer Science degree from Rivier College in Nashua, New Hampshire, in 2005. He
is currently a software engineer at SeaChange International. His research interests are in performance modeling and
analysis. Feel free to contact Martin at mmilkovits@alum.colby.edu.

