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Coding Theory Basics 
Coding theory is an important study which attempts to minimize data loss due to errors introduced in 
transmission from noise, interference or other forces. With a wide range of theoretical and practical 
applications from digital data transmission to modern medical research, coding theory has helped enable 
much of the growth in the 20th century. Data encoding is accomplished by adding additional informa-
tion to each transmitted message to enable the message to be decoded even if errors occur. In 1948 the 
optimization of this redundant data was discussed by Claude Shannon from Bell Laboratories in the 
United States, but it wouldn’t be until 1950 that Richard Hamming (also from Bell Labs) would publish 
his work describing a now famous group of optimized linear codes, the Hamming Codes. It is said he 
developed this code to help correct errors in punch tape. Around the same time John Leech from 
Cambridge was describing similar codes in his work on group theory. 

Notation and Basic Properties 

To work more closely with coding theory it is important to define several important properties and 
notation elements. These elements will be used throughout the further exploration of coding theory and 
when discussing its applications. 

There are many ways to represent a code, but perhaps the simplest way to describe a given code is 
as a set of codewords, i.e. {000,111}, or as a matrix with all the codewords forming the rows, such as: 

 

 
 
This example is a code with two codewords 000 and 111 each with three characters per codeword. 

In future examples it will be shown that there are more efficient methods of describing a code than to list 
all of its codewords. There are many mathematical advantages that can be derived simply by 
representing a code in a specific way. 

Several notation elements will be used consistently and will be defined now. Let n be the number of 
characters or symbols making up each codeword (vector) of the code and let M represent the number of 
total codewords. A code with properties n and M will form a  matrix. In the previous example, the 
code {000,111} forms a  matrix. Let q be the total number of possible characters in each codeword 
position. This is known as the alphabet of the code. Examples: A binary code uses 0 and 1, hence , 
whereas a ternary code uses 0, 1 and 2, hence  Codes with larger alphabets are referred to as q-ary 
codes. For example 5-ary codes use the symbols 0, 1, 2, 3 and 4. 
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There are also important relation functions involving codewords. Perhaps the most important is the 
minimum distance. The minimum distance between codewords is the minimum number of positions in 
which each codeword must be different from any other codeword. Example:  with the 
changed positions highlighted. 

With this notation defined, a code can now be described by its properties. For example, {000,111} 
is a binary (3,2)-code, or by specifying its minimum distance it is a binary (3,2,3)-code. 

Besides notation, these properties describe important aspects about how the code will work. Since 
the point of coding theory is to improve the accuracy of received messages, it is obviously concerned 
with how many errors can be detected or corrected. It is the minimum distance between any two 
codewords of a given code which tells how many errors the code is able to detect and how many it can 
correct. It can be shown that to detect s errors in a codeword then , or a code can detect one 
less error than the minimum distance between any two of its codewords. Similarly, a code can correct 
errors in up to t positions if . In the example {000,111} there is  thus this code 
can detect  errors or correct exactly  errors. Of course, with only two codewords there is a 
significant limit on the diversity of data that can be transmitted using this code. 

One of the most basic types of decoding is based solely on the minimum distance between a 
received vector and one of the codewords in the code. This is known as nearest neighbor decoding. If 
vector V is received, the minimum distance is calculated relative to each codeword, , 
etc. The codeword having the least distance from the received vector is determined to be the intended 
codeword. Thus, V is decoded as . If the codeword was received without error, of course there would 
be . Back to the example of {000,111}: if 010 was received, then  and 

, thus the received vector is closer to 000 than to 111 ( ), and the vector is decoded 
as 000. Note that in this example if there are more than two positions in error in the received codeword 
that error cannot be reliably corrected. 

Equivalent codes have different codewords, but share common properties and structures. Strictly 
speaking, equivalent codes are those which can be derived from one other by either swapping the 
positions of codewords, or by swapping the position of symbols in the codeword. 

Another important function is the weight of given codeword. This is the number of non-zero 
elements in the codeword, or the minimum distance between a codeword and the 0 vector of length n. In 
{000,111}, codeword 000 has weight 0, 111 has weight 3. This is typically denoted  and 

. 
Codewords can be compared and combined using sums and intersections. To calculate the sum of 

two vectors simply add the values in corresponding positions.  
  
For example:  
 
To calculate the intersection of two vectors multiply corresponding positions.  
  
For example:  
 
Note that addition and multiplication are calculated modulo q which in binary examples is 

always . Further analysis of the concept of modular arithmetic is left to a future section. 
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Code Capacity and Efficiency 

Much in coding theory discusses the optimization of codes for specific purposes. If a certain number of 
errors need to be reliably detected or corrected then coding theory seeks to find the smallest code that 
can fulfill this task. Smaller codes and smaller codewords result in more efficient encoding, transmission 
and decoding. To better understand code efficiency some familiarity with binomial coefficients is 
required. Binomial coefficients are written in the form  and are read aloud as ‘n choose m’. 

Mathematically  with  and   

For example: 
 

 
 
The binomial coefficient represents the number of unordered selections of distinct objects (m) from 

a set of unique objects (n). In the previous example, the coefficient  means that from a set of 5 
possible distinct objects it is possible to make 10 unordered selections of 3 objects. If the 5 distinct 
objects are 1, 2, 3, 4 and 5 then the possible unordered selections are: 

 
 

 
This concept has immediate applications to coding theory in determining the number of possible 

codes meeting specific criteria. For example, to determine the number of binary codes with 4 codewords 
where each codeword is 6 positions ( ) calculate  Binomial coefficients 

are also useful for determining the number of codewords of a given weight in a specific alphabet. For 
example, to find the number of possible binary codewords of length 5 and also of weight 3 
( ) calculate . There is an obvious one-to-one correspondence between these vectors 
and the unordered selections listed in the previous example above. 

The term sphere is used to describe the vectors of minimum distance  where r is the radius of 
the sphere. Spheres are denoted as . The example sphere: . Since 
this set is by definition the vectors of minimum distance r from x, is follows that if any of these vectors 
are received they will be decoded as x using nearest neighbor decoding. It also follows that any two 
spheres of radius r centered on different codeword cannot have any vectors in common. There are  

possible ways of choosing the r positions where each position differs in  ways. In the next 
position they can differ in  possible ways and so forth. Eventually it is seen that any sphere 

contains exactly  vectors. 
From this definition of binomial coefficients and spheres a sphere-packing or Hamming bound can 

be derived which shows the maximum number of possible codewords in a code with certain parameters. 
Take a q-ary (n, M, 2t+1) code, remember that any two spheres or radius t are unique and the total 
number of possible codewords in a given alphabet are . Then it is easily seen that 
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. With , the equation for a binary (n, M, 

2t+1) code is .  
Note that while using these equations it is possible to determine the theoretical maximum number 

of codewords, this does not imply that such a code actually exists. In fact, a code which exactly matches 
the sphere-packing bound is known as a perfect code. In such a code, all  possible vectors are included 
in a sphere. Each is a distance  from exactly one codeword. As will be shown very few perfect codes 
are known to exist up to equivalence.  

Block Design 

Balanced block designs are structures that can be used to describe the relationships of elements in a set. 
The  individual elements in such a design are called points. The set is organized into subsets called 
blocks, . A block contains precisely  elements, and each element is in  blocks. Every pair of elements 
is contained in  blocks. With each of these properties defined, it is possible to describe the block design 
as . 

An example that is frequently used is the . The elements of this design are 
 divided into blocks , .  

By listing each block as a column an incidence matrix can be used to illustrate which elements 
occur in which blocks: 

 

 
 
Geometrically this is known as the projective plane of order 2 or the Fano plane: 
 

�
 
Numerous applications of coding theory use balanced block designs, for example the Solomon-

Reed codes used in the data storage and transmission of digital data. 
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Fields and Vector Spaces 

Fields are algebraic structures that define the operations of addition and multiplication (and by proxy, 
subtraction and division). While these are commonly considered as standard mathematical operations, 
the elements of a field need not be numbers. Although fields can be infinite or finite, for the purposes of 
coding theory the latter is more appropriate.  

Specifically, fields have the following characteristics by definition. If a  
 

i.  (Closed under addition and multiplication) 
ii.  

iii.  
iv.  

Additive and multiplicative inverses exist (except for 0 where no multiplicative inverse exists) such 
that for all : 

 
v.  

vi.  
vii.  

viii.  

Some important fields in mathematics include the set of all complex numbers under the usual 
addition and multiplication and the set of all real numbers under the usual additional and multiplication. 
Fields are also sometimes referred to as division rings or commutative division rings. A ring is an 
algebraic structure in which there is no requirement for a multiplicative inverse (viii above need not be 
true). 

Earlier it was mentioned that only finite fields would be discussed in relation to linear codes. The 
exact number of elements in a field is known as its order. An important theorem in the study of finite 
fields was proven by Evariste Galois. He demonstrated that for a field of order q to exist, q must be a 
prime power. That is to say q=pn with p as a prime number and n a positive integer. Per this theorem a 
field of order q is said to be a Galois field and is expressed using the notation GF(q). 

Important to the study of coding theory, a finite field GF(q) is the set of integers  
with addition and multiplication modulo p. For a brief review of modular arithmetic it is necessary only 
to look at what it means to be congruent modulo p. Two integers, a and b, are said to be congruent 
modulo q if  is divisible by q. This would be notated . For example, under addition 
modulo 7 the following uncanny result appears: . Another way of notating this would be 

. Working with addition modulo 2 it is clear that  or . 
The elements in GF(q) form subsets of ordered n-tuples known as vector spaces and denoted 

. 
 
�
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Linear Codes 

Definition and Basic Properties 

Of particular importance in the study of coding theory is a group of codes known as linear codes. 
Specifically, a linear code is a vector subspace of a Galois field GF(q). From the earlier definition of a 
vector subspace, a subset C of GF(q) is a linear code if and only if: 
 

ix.  (closed under vector addition) 

��  (closed under scalar multiplication)�

For binary codes requirement ii above is self evident (since scalar multiplication can only be by 0 
or 1), meaning that the only real requirement is closure under addition. 

The dimension k of this vector subspace is the number of codewords, and the linear code is denoted 
as a q-ary [n, ]-code. If a minimum distance is specified this is a [n, , d]-code. Note the use of 
square brackets to denote the linear aspect of the code. 

An interesting feature of linear codes is the correlation between the weight of the codewords and 
the minimum distance of the code itself. In fact it can be shown that the weight of the smallest, non-
trivial codeword is the minimum distance of the code itself. To prove this, note first that the minimum 
distance of any two binary codewords is equal to the weight of their sum. This is obvious since the 
resultant codeword can only have a 1 in places where the original codewords had different values. 
Symbolically:  Let  be the smallest weight of any codeword in the code, then it 
follows that the minimum distance of the code and the combination of any two codewords will be equal 
to or greater than this minimum weight: . Also, by the definition of  at 
least one codeword has this minimal weight and that the distance from this codeword to the 0 vector 
(included in every linear code) must be at least the minimum distance of the entire code. In other words, 
let z be the codeword with the smallest weight, , then . Using these equations 
see that  and  which can only mean . Thus it is proven that the 
smallest weight of any codeword of a linear code is equal to the minimum distance of the code itself. 

Generator Matrices 

Another special feature of linear codes is that they can be entirely defined by listing only the basis 
vectors of the code’s subspace, as opposed to listing every single codeword. This generator matrix can 
be obtained from the matrix of the entire code by the use of row reduction. A binary [n, ]-code will 
reduce to a generator matrix of dimensions . The entire code can then be “re-generated” by 
expressing all linear combinations of the rows of the generator matrix. Also, any generator matrix of the 
form , with  being the identity matrix of dimension k, is said to be in standard-form. For 
example: 
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The [4, 8]-code  has  and reduces to the generator matrix  

 
The code can then be “re-generated” by creating all linear combinations of the rows of the 

generator matrix: 
 

 
 

As an example, letting  and  generates the second codeword in the original 
codeword list as follows: 
 

 
 

Repeating this process for all possible combinations of values 0 and 1 for x, y and z will eventually 
result in the generation of the entire linear code. The discussion will return to the subject of encoding 
after a brief discussion of equivalence.  

The use of the generator matrix to represent the code brings up the notion of the equivalence of 
linear codes. Equivalent codes share the same minimum distance, codeword length and number of 
codewords, but contain at least some different codewords. However, these characteristics are not 
sufficient to show that two codes are equivalent. By definition, two linear codes are said to be equivalent 
if it is possible to obtain the generator matrix for one through the following permutations:  
 

i. Swapping the order of rows 
ii. Multiplying any row by a non-zero scalar (in the binary case this is generally discarded) 

iii. Addition of a scalar from one row to another 
iv. Swapping the order of columns 
v. Multiplying any column by a non-zero scalar (in the binary case this is generally 

discarded) 

If only the first three operations are used (the row operations), then the resultant matrix is simply 
another basis of the same subspace and it will generate the exact same code. If the last two operations 
(the column operations) are used then the resultant matrix will generate an equivalent, but potentially 
different, code.  

Take for example the following binary [7, 4]-code, in random order, which can be reduced to its 
generator matrix and further permutated into standard form: 
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After one more permutation the generator matrix (basis) for the code (vector subspace) remains: 
 

 
 

Using column operations the resultant matrix can be put into standard form. This standard form will 
produce an equivalent, but potentially different, code from the original: 
 

 
 

The resultant generator matrices produce two different, but equivalent, [7, 4, 4]-codes: 
 

 
 

Codewords themselves are encoded messages. Part of the codeword is the message digits, and the 
additional portion of the codeword is redundancy to allow for error detection and correction. Earlier 
examples demonstrated the encoding process which will now be further discussed.  

Let be the message vectors to be encoded. Multiplying these with the generator matrix 
G on the right produces the codeword. The rows of the generator matrix G are represented as 

. Symbolically:  
Encoding message vector  using the example generator matrix from the earlier example: 
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If the generator matrix is in standard form the resulting codeword can be further analyzed. 
Encoding message vector  using the example standard form generator matrix from the earlier 
example: 
 

 
 

Because this codeword is generated from a matrix in standard form, the first  digits of the 
codeword will match the message vector. The remainder of the codeword is redundancy bits. Dissecting 
the codeword generated in the previous example shows: 
 

 

Coset Array Decoding 

Decoding the received vector can be done in several ways. One basic way of decoding is done using 
cosets and coset arrays. A coset is a set of vectors that results when a specific vector is added to each 
codeword. Continuing with the standard-form-generated [7, 4, 4]-code in the previous example: 
 

 
 

Suppose a vector is received as  it is located in the array. This vector is located in the third 
row, second column above. The codeword is then decoded by subtracting the coset leader of that row 
from the received vector, thus  is decoded as .  

The following is a ternary example: 
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If a vector  is received, it is located in the fifth row and coset leader 1000 is subtracted to 
decode as follows: . Another example: . 

Dual-codes and Parity Check Matrices 

For any linear code, the set of all vectors orthogonal to every codeword is known as the dual-code and 

denoted . For example . The generator matrix for  is a parity check 

matrix for  itself. The parity-check matrix H can be obtained from , the generator matrix of , as 
follows: 
 

 
 

 
 

 
 

In the binary case the negative signs have no effect since . Using the standard form matrix 
from the previous example: 
 

 
 

 
 

 
 

Using the parity-check matrix it is possible to describe the entire code C as follows: 
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Syndrome Decoding 

The parity-check matrix is especially useful for generating the syndrome of a given coset. The syndrome 
a vector x length n is defined as . Any two vectors in the same coset will have the same 
syndrome. The proof for this is straightforward. Let x and y be vectors in a given coset such that 

(from the definition of coset). It follows that . From the definition of the parity 
check matrix  which means that . Thus from the definition of syndrome this 
proof has shown that . 

Using this concept of a syndrome the coset array can be augmented using the parity check matrix: 
 

  

 
It then becomes possible to represent the decoding scheme using only two columns which greatly 

speeds up the decoding process. Instead of searching a possibly large coset array for exact position of 
every codeword received, it is now possible to decode by simply calculating the syndrome of the 
received vector and then subtract from it the corresponding coset leader. The standard coset array is 
truncated into a syndrome lookup table with only two columns: 
 

 
 

Thus to decode : 
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Using only the syndrome and coset leader columns this vector is decoded as  
. 

One key principle of the parity-check matrix is what it reveals about the minimum distance of the 
code. If a linear code has minimum distance  then the parity-check matrix of this code has precisely 

 linearly independent columns, but there are at least  dependant columns. The proof for this is 
based on earlier theorems discussed. Based on the definition of the parity-check matrix if a vector  
then . This implies  with  representing the column 
vectors of the parity check matrix. Therefore for any vector  of weight  there exists at least  linealy 
dependent columns of . If there were only  linearly dependent columns it would imply that there 
exists a codeword of weight less than  such that . It was proven earlier however that the weight 
of the smallest codeword of a linear code is in fact its minimum distance. Thus, the parity check-matrix 
must have at least  linearly dependent columns and has exactly  linearly independent columns. 

Hamming Codes 

Hamming codes are linear codes with parity-check matrices of dimension  such that the 
columns of  are exactly the unique, non-zero vectors of length . Hamming codes are denoted as 

 with prime. Binary Hamming codes are denoted similarly as . The length of the 
codewords in a binary Hamming code will be . Listing the columns of the parity-check in a 
different order results in a simple permutation of the rows and columns of the generator matrix which 
will generate an equivalent Hamming code (as shown in an earlier example). Hamming codes always 
achieve their sphere-packing bounds making every Hamming code also a perfect code. 

From this definition it is easy to construct the parity-check matrix representing  by simply 
listing every possible column vector of length 3: 
 

 
 

Another example is a  code: 

 
In this previous example only the four columns with exactly one entry of 1 are linearly 

independent, which implies that  and this code can detect up to one error in each codeword. 
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The same basic principles apply to q-ary Hamming codes such as the  code: 
 

 
 

Binary Hamming codes become easy to manipulate using only their parity check matrix if the 
columns are listed in order of increasing binary value. Rearranging the columns of the parity-check 
matrix for the  code in the previous example in increasing binary order yields: 
 

 
 

Since each of the column vectors are also the syndromes of , it is possible to determine the digit in 
error simply by calculating the syndrome of a received vector. For example, the received vector X: 
 

 
 

Since  is the 14th vector of  this implies that an error has occurred in the 14th digit and the 
vector is decoded as the codeword . 

Another example using the same parity-check matrix: 
 

 

Extended Hamming Codes 

Binary Hamming codes can be extended by adding a row and column and are denoted âm(r, 2). This 
modification increases the minimum distance from 3 to 4 which slows down the transmission of the 
codewords, but also enables the code to simultaneously detect two errors while it corrects one. For a 
binary Hamming code with parity-check matrix , the parity-check ��of the extended code is: 

�

���

�
�

Taking the earlier example of a  code, extending it and putting it in increasing binary 
order yields: 
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Decoding with an extended code uses a process called incomplete decoding. When a vector x is 
received, its syndrome is calculated as normal:  The the following scenarios 
describe how to decode the received vector: 
 

i. If , then there were no errors and x is a codeword 

ii. If , then at least two errors have occurred and the vector 

will need to be retransmitted 
iii. If , then a single error has occurred in the last digit 

iv. If , then a single error has occurred in the digit represented 

by the binary number  

Note that although this extended binary Hamming code can detect two errors in a single codeword 
it is unable to correct both errors and must seek retransmission of the vector. 

The following examples decode sample vectors w, x, y, and z using the extended binary Hamming 
code in the previous example: 

 

 

 

 

 

Perfect Codes 

It has been mentioned that the Hamming codes  are perfect codes for any prime number q. In 
fact, the only non-trivial perfect codes besides the Hamming codes are two codes known as the Golay 
codes. They were discovered by Marcel Golay in 1949. The first perfect Golay code is a binary [23, 12, 
7]-code. Using the definition of a perfect code described earlier it is easy to see: 

. The other perfect Golay code is a ternary [11, 6, 5]-code. Perfect codes 
are of interest because they are the most efficient codes for their corresponding codeword length and 
minimum distance. For this reason they are commonly used in the transmission of digital data. 

Applications and Examples 

There are many applications of coding theory in the modern world. In computer science, where coding 
theory originated, powerful error detection and correction codes are used in the transmission of digital 
data.  

Hamming codes and DRAM 

Traditional DRAM (dynamic random access memory) uses Hamming codes for error correction 
purposes. However, Hamming codes have a minimum distance  which enables them to correct 
only one bad bit per codeword. As computers have progressed from 8-bit machines to 16-bits, 32-bits or 
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even 64-bits, the ability to correct only a single bit error introduces the increasing possibility of data 
corruption. In the presence of ever increasing data throughput even extended Hamming codes seem to 
fall short of the required error correction.  

Reed-Solomon Codes 

A more powerful family of codes is the Reed-Solomon codes which are used to protect data from 
defects in the storage or transmission media. The Reed-Solomon code is crucial to the success of the 
audio CD, allowing CD players to interpolate data lost due to scratches or dust on the disks. The code 
allows the CD player to correct over 2mm of damaged or missing disk surface. This means that almost 
any “skips” the user hears when listening to a CD are almost certainly related to tracking errors by the 
laser itself. Although CDs were the first commercially marketed use of error correcting codes, they are 
most certainly not the last. Cellular telephones employ these codes to overcome interference from high-
strength radio transmitters. Digital televisions, high-speed DSL modems, the Space Communications 
Protocol and common bar code scanners also rely on these powerful codes. Protocols used in computer 
networks almost universally apply redundancy to data transmissions to protect against errors. One of the 
most common networking protocols used in Windows networks is Transmission Control Protocol or 
TCP. 

Reed-Solomon codes are denoted as  with  symbol bits. Each codeword consists of  data 
symbols of  bits each for a total codeword length of . These codes can correct up to  incorrect 
symbols in each codeword with . A very common Reed-Solomon code in digital applications 
is the  code with 8-bit symbols. Since  this implies that this 
code can correct up to 16 symbol errors per codeword. This is a significant improvement over the single-
error correcting Hamming codes.  

 
The following diagram illustrates a sample Reed-Solomon codeword: 

 
 
 

 
 
 
 

 
Figure 1: Reed-Solomon Codeword diagram (Harries, 2007) 

Coding Theory and Genetic Research 

There are many new frontiers of science that coding theory is finding applications in. One such 
application which arouses great excitement is the use of coding theory in the study of evolution and 
genetic mutations. In their short paper, A Coding Theory Framework for Genetic Sequence Analysis, 
M.A Vouk, D.L. Bitzer and D.I. Rosnick summarize how mathematical code models are used to 
interpret and predict various processes in modern genetics and evolution.  

Genetic information in the form of DNA is taken as input, transmitted via the process of replication 
and then ultimately output as amino acid proteins. Errors are introduced by fluxuations in heat, 
radioactivity and other factors. One scientist referenced in the paper, Eigen, suggests that some type of 



Jay Grossman 

                            16 

error-correcting code must be employed in this process to ensure the survival of the species. DNA 
molecules contain “complementary interactions” which serve as the alphabet of the code. These DNA 
sequences are mapped to a space of discrete points. This space is similar in concept to the idea of a 
sphere, with n length sequences surrounding an n-length codeword. The symbol difference between the 
n-length sequences and the n-length codewords they surround is the minimum distance of the code. The 
following figure describes the proposed structure of the encoding/decoding process: 

 
 

Figure 2: Gene Sequence Encoding/Decoding (May, 2004) 
 

A major challenge in defining a coding theory approach to genetics is the ability to encode and 
manipulate genetic data in DNA. In what is known as DNA computing, a problem or question is 
encoded into a strand of DNA. Various laboratory experiments are used to manipulate the DNA in an 
attempt to “solve” the problem. Coding theory played a central role in determining which combinations 
of genetic sequences could serve as codewords as well as identifying the “reading frames” or sections of 
the DNA which need to be specifically identified. 

One model used in an attempt to validate the above processes was a  block code which 
outputted a parity check code. Based on the known genetic bases, codewords of length  and  
were developed and evaluated based on a minimum distance (nearest neighbor) decoding scheme. 
Another model used was a convolutional code model. Convolutional coding allows for immediate past 
and future information to be used in the encoding/decoding process. Both models were evaluated on 
several criteria: recognition of certain sections of mRNA sequences, the ability to differentiate between 
sequences which had been translated and those which had not, and the synchronization of reading 
frames. While both models did surprising well in laboratory studies, the block based code model seemed 
to fit the observations closer. 

The results of these studies seem to suggest that it is possible to develop more powerful coding 
theory approaches to genetic analysis. Also, it is considered likely that organisms use some type of 
error-correcting mechanism in the replication of their genetic materials. 
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Network Communications 

Recent work on two families of codes known as Tornado codes and Luby Transform codes are 
improving the effectiveness and efficiency of network communications. One of the most common 
network protocols, TCP, maintains a single connection with each attached computer and transmits data 
in chunks called packets. Reed-Solomon codes are primarily used encode and decode packets. Receiving 
computers then send an acknowledgement back to the sender once they have successfully decoded the 
packet. If no acknowledgement arrives the sender assumes the packet was lost and it is resent. Another 
method of distributing data is known as multicasting. In this model packets are sent out to all computers 
simultaneously. This method is cheaper and more efficient than standard TCP, but the sender is quickly 
overwhelmed when a large number of acknowledgements are received at once. A better method of 
ensuring reliable data transmission was needed (Yamaguchi, 2000). 

Tornado codes and Luby codes are improvements which better fit the needs of enhancing network 
communication. Luby codes encode packets into metapackets. Metapackets are assigned a weight, and 
then a probability is associated with that weight. So for a metapacket of length n and of weight w, the 
probability is . To encode a metapacket w packets of weight w are chosen and added modulo 

two (as in previous binary examples). The result is a metapacket whose header contains data about 
which packets are encoded within it.  

Receiving machines collect metapackets and extrapolate on the packets they need. By collecting 
slightly more packets than is necessary the receiver is able to decode the packets with an extremely good 
success rate (Robinson, 1996). 
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