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SUMMARY & CONCLUSIONS 
Calculations of Instantaneous MTBF have gotten sloppy since J. T. Duane [1] and E. O. Codier [2] 
published their papers on the subject 43 years ago. Codier made the following notes on plotting the line 
through the points in his definitive description of Duane’s Reliability Growth calculation methods that 
he presented at the 1968 Annual Symposium on Reliability: 
 

• The latter points, having more information content, must be given more weight than earlier 
points and 

• The normal curve fitting procedure of drawing the line through the “center of gravity” of all 
the points should not be used. 

• Unless the data is exceptionally noisy, the best procedure is to start the line on the last data 
point and seek the region of highest density of points to the left of it. 

 
These principals for estimating MTBF from non-homogeneous data are not being followed and the 

result is a less than accurate estimation of current (aka, instantaneous) MTBF. 
This paper describes a spreadsheet method for following Duane and Codier’s original recommend-

dations that will avoid the errors in judgment that are common when “eyeballing” the growth line or the 
greater errors that result from using the all-to-available “trend line” method. The proposed method 
automatically weighs the cumulative points (each successive point weighing more), calculates their 
center of gravity, draws a line from the center-of-gravity point through the last point, and calculates an 
instantaneous MTBF. Calculations have been made using these methods as well as the common method 
of drawing a line through those same points using a spreadsheet trend line (aka, least squares fit) and 
been applied to a multi-year field reliability program. The calculation of instantaneous MTBF (MTBFi) 
for each of these methods was compared with a moving average centered about successive points over 
the life of the program and as a control measure of MTBF. 

We will show that if we adhere to the recommendations of the original papers by Duane and Codier 
and develop a method to weigh the latter points more, and draw the line through those weighted points 
and the last point, that significantly better estimates of instantaneous MTBF result. The error in 
calculation of MTBFi using an automated version of Duane and Codier’s recommendations was reduced 
by 34% compared with a non-weighted trend-line calculation. 
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1 INTRODUCTION 

1.1 Background 
The data for this paper was chosen from a large development program during initial field testing where 
there was a significant interest in reliability. It was important to decide what kind of information or data 
we had, given the nature of multiple products deployed with varying degrees of corrective actions 
implemented. Before we can attempt to plot Reliability Growth, we must decide what kind of data we 
are going to deal with. We will then briefly review Duane’s recommendations and three approaches to 
drawing a trend line through the data. We will then compare the accuracy of the estimates over a three 
year test period using both the common least squares fit line and an automated version following 
Duane’s directives. 

1.2 Ideal Reliability Growth Data Compared With Typical Field Reliability Growth Data 
We will be dealing with field data for a product that is still under development, and part of a Test-
Analyze-Fix program. The probabilities of occurrence of failure modes for ideal data are distributed 
evenly when plotted on a log scale, like white noise. This can be seen in the observations by J. T. Duane 
[1] in his initial paper where he noticed that reliability growth data plotted like manufacturing learning 
curves. Failure modes that plot like this are independent from each other and the data non-homogeneous. 
The less probable failure modes in the future are completely independent from those we have seen so 
far. Duane showed that we can proceed in correcting these failure modes as we see them and calculate 
cumulative reliability as we continue in our test and fix program. He also said that the cumulative MTBF 
vs. test times tend to form a straight line when the data are plotted on a log/log scale. This is the ideal 
case where failures are corrected on the test subjects when they are discovered, not a situation typically 
found in field data. However, Duane’s recommendations provide a method to track data that is 
somewhat noisy, but not so much that a new plot needs to be initiated. 

1.3 Ideal Reliability Growth Data 
We can generate ideal data to exercise our hypotheses on a subset of learning curve “data sets”. This 
data will be scripted for our purposes in that the “Probabilities of Occurrence” will be distributed 
perfectly evenly when plotted on a log-log scale (i.e., Log MTBF vs. Log test hours). An example of 
such data is summarized in Table 1 and plotted in Figure 1. This will never happen in reality, but it is 
consistent with the “white noise” premise and it provides a data set that allows us to test some of our 
ideas. 
 

Table 1: Test Times for White Noise 

Failure Mode Test Time (hours) @ failure 
1 20 

2 200 

3 2,000 

4 20,000 

5 200,000 

6 2,000,000 
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Figure 1. White Noise Failures vs. Test Hours 
 

White noise consists of an infinite number of failure modes with the probability of each one a 
common multiple (on a log scale) of the previous one, +/- some uncertainty factor. When electrical 
white noise is displayed on an oscilloscope, successive sweeps are always different from each other, yet 
the waveform always “looks” the same. Each of these failure modes is completely independent from the 
others. The Test and Fix program is most ideal when applied to a single unit that has perfect corrective 
action implemented for each failure as it is discovered. But we have multiple units deployed in the field, 
some with process, component or design corrective actions implemented, others not. For our ideal 
example, the uncertainty will be zero in order to see what the effects are for the way we test, do failure 
analysis, etc. This will serve as a basis for some manipulations. 

1.4 Effects on Growth Slope Due to Corrective Action Effectiveness for Ideal 
Given a set of ideal data, let us see what the effect of two levels of corrective action effectiveness would 
be. Assume that we may either correct each failure as we encounter it the first time, or we correct it after 
we have seen each failure twice. When we need to see it twice, we will assume that twice the amount of 
the test time for each failure mode passes before it is corrected. Then that failure mode will never occur 
again. Both instances are summarized in Table 2 and plotted in Figure 3. The surprising result is that 
correcting each failure the first time we see it (aka, 100% corrective action rate) does not result in a 
different “growth rate” than correcting failures after seeing each one twice (50% corrective action rate). 
It just displaces the curve to the right. Of course, the displacement is across a log scale. The reason it 
seems surprising is that we are not used to thinking in logarithmic terms. 
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Table 2: Corrective Action Effectiveness 
Corrective  

Action 
Effective- 

ness 

Test 
Time 

@ 
Failure 

Cumu- 
lative  

MTBF 

Cumu- 
lative 

Failures 

Log 
Test  

Times 
Log 

MTBF 
100% 20 20 1 1.30 1.30 
100% 200 100 2 2.30 2.00 
100% 2,000 667 3 3.30 2.82 
50% 20 20 1 1.30 1.30 
50% 40 20 2 1.60 1.30 
50% 200 67 3 2.30 1.82 
50% 400 100 4 2.60 2.00 
50% 2,000 400 5 3.30 2.60 
50% 4,000 667 6 3.60 2.82 
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Figure 2. MTBF Growth vs. Corrective Actions 

1.5 Real World Data 
Unlike our “ideal” where failure mode probabilities are spaced evenly on a log scale, typical field failure 
modes will have significant variability in spacing of probabilities. These are independent events so 
removing failure mode No. 1 from the design does not remove failure mode No. 2, etc. Current 
reliability growth estimates will ultimately be verified by moving average estimates that have not yet 
been seen. We know from experience that the spacing of these failure modes on a logarithmic scale is 
‘roughly’ even. However, there are several sources of variability in the spacing of these failure modes 
along the log axis besides the natural differences in the probabilities of the failure modes themselves. 
These include: 
 

• Corrective actions are not perfect so failure modes are not removed uniformly. 
• Simultaneous testing of multiple units in the field adds variability. 
• Not all of the fielded units have the same corrective actions implemented. 
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• Testing of fielded items adds other variances: 
• Time to determine corrective actions for field returns may be long compared to the MTBF. 
• Design changes can significantly affect reliability of new items put in the field along side 

existing ones (could be better or worse). 
• Field units added regularly give variability of age to the test sample. 

2 RELIABILITY GROWTH MODEL DEVELOPMENT 

2.1 Our Requirements for Handling Noisy Field Data 
Since variances cause irregularities in the data plots, we will consider it part of our requirement to deal 
with these sources of variation. We will show an example wherein all of the sources of variation exist 
but that the calculated estimate we use adapts to and that it is far superior to using a least squares fit. We 
will use data from a field reliability growth program and plot Reliability growth based on the learning 
curve methods proposed by Duane and compare the results with estimates using a least squares fit. Our 
reliability growth model requirements are: 
 

• The growth model must allow us to estimate current reliability with all the variability 
inherent in our test environment. 

• Root cause and corrective action will be determined for each failure but: 
• Not always the first time and 
• There will not always be a recall when corrective action is identified. 
• We will plot MTBF against total system accumulated operating hours. 
• With each ‘fix’, the residual sample of failure modes and their probabilities is changed, so 

the test sample will not be homogeneous. 
• Judgment factors need to be removed from the estimating process, (such as ‘eyeballing’ the 

data to determine where a line should be drawn) so the calculations will have to be done 
automatically. 

 
Because of: 
 

• variability in the data and  
• because the test population is not homogeneous and  
• the estimate is for reliability at some future time when new failure modes will determine 

reliability, we will not calculate confidence on these MTBF estimates. 

2.2 Duane’s Recommendations 
J. T. Duane provided the following example: “In an effort to determine the manner in which reliability 
performance changes during development and design improvement activity, data was analyzed for a 
total of five different products. Available reliability data was analyzed in search of consistent patterns 
which might apply for a wide range of equipment types. A remarkably consistent pattern finally 
emerged when cumulative failure rate (defined as total malfunctions since program start, divided by 
total operating hours since start) was plotted on log-log paper as a function of cumulative operating 
hours. Figure 3 from Duane’s paper shows the change in cumulative failure rate over operating hours, 
plotted on a log-log graph.  
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Figure 3. Planned Improvements in Reliability 

 
The end point includes all of the information up to that time and because of this, we can have the 

best calculation of cumulative failure rate there. Our Method must be able to calculate current reliability 
based on the cumulative reliability at the last point and the fact that the data tends to fall on a line. These 
plotting criteria were described by E. O. Codier, [2] a contemporary of Duane at General Electric 
Aerospace, in his paper presented at the 1968 Annual Symposium on Reliability: 

 
• “The latter points, having more information content, must be given more weight than earlier 

points and 
• The normal curve fitting procedure of drawing the line through the ‘center of gravity’ of all 

the points should not be used. 
• Unless the data are exceptionally noisy, start the line on the last data point and seek the 

region of highest density of points to the left of it.” 
 
He also said that “...for presentation purposes...” we should plot a point which includes all the test 

time accumulated up to “time now”, even though the last failure occurred some time ago. He added that 
it “...yields a slightly optimistic point which does not have the same information content as a failure 
point, and should not be included in curves for slope determination.” 

Duane observed that the points will eventually fall on a straight line, with a slope ‘m’, much the 
same as learning curves do in time studies for tasks in a manufacturing environment. He did not say that 
this line will extend forever, just that for several cycles on the log-log graph, they will fall on a straight 
line. 

There were three parameters of interest, (λc, ΣF and ΣH): 
 

• Cumulative failure rate λc or alternatively, its reciprocal, MTBFc, cumulative MTBF. The 
measure for cumulative failure rate is Σ(Failures)/Σ(Hours), and is best represented by the 
last point on the graph, since it includes the most and latest (most ‘fixes’ incorporated) data. 
Symbolically, this is: λc = ΣF/ΣH 

• Cumulative failure rate will vary in a manner directly proportional to some negative power 
of cumulative operating hours = kT(-m) 
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• Instantaneous failure rate, �i, is the time derivative of ‘F’. MTBFi (Instantaneous MTBF) is 
it’s reciprocal. The full derivation for �i is: 
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The slope of the line (on a log/log scale) was in the range of -0.4 to -0.5 as can be seen in Figure 3. 

J. T. Duane published a few papers around 1964 that described a method for estimating current and 
instantaneous reliability. His observations were simple [1]. If you are involved in a program to test 
hardware and find root cause and correct failures, then: 

 
• Collect data: 
• Failure count 
• Hours of test time or 
• Number of test samples for one-shot items, (e.g., rockets). 
• Plot on a log-log scale: 
• Failure count 
• Hours of test time or 
• Number of test samples. 

 
As we stated initially, we must draw the growth line through the last point and through the center of 

gravity. We will automate the method to avoid the impulse of the casual observer to influence the 
calculation of current reliability by ‘tilting’ the line in his favor by changing the slope ‘m’, a factor in the 
reliability calculation. 

These criteria, along with the equations above, constitute our method to satisfy our requirements. 
We will literally find the ‘center of gravity’ by assigning ‘weight’ (=’n’ for the nth point) to the points 
(except for the last one), each successive point having more weight than the one before it. We will then 
draw a line through the center of gravity of those weighted points and through the last point. When we 
have done that, we will have complied with Codier and Duane’s guidelines and we will have satisfied 
our requirement to “Draw the growth line as objectively as possible”. 

2.3 Least Squares Fit and the Effects of Weighing the Latter Points More 
We want to be able to implement the criteria in the System Design, above, into a “Detailed Design”. 
Requirements 1 through 3 and requirement 5.b. in System Design talk about the latter points having 
more information and about the center of gravity of the points. This is a modification to the common 
process of making a least-square fit through all of the points. For example, the normal curve fitting 
procedure of drawing the line through the “center of gravity” of all the points should not be used. We 
will want to compare results of least squares fit to our method to be sure that there is an improvement. 
Dhillon [3] describes one way to do a weighted fit of the points, although he does not go through the last 
point. Dhillon describes both the least squares fit (aka, “trend line”) and the “weighted” least squares fit: 
[3, p.150]. 
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“If the plotted points are not independent, then proportional weighting the cumulative number of 
failures at each point is a reasonable way to improve accuracy of these estimates. This technique assigns 
greater weight to the preceding data point (the most recent one). This method is based on the assumption 
that each data point is plotted m number of times at that point.” 

2.4 Weighted Least Squares Fit Through the Last Point 
We want to go one step further than weighing the latter points more. We also want to go through the last 
point. We will do this by giving each point a weight according to its failure number (F), except for the 
last point and find the resulting “center of gravity” of those points. We will then want the line to go 
through the “center of gravity” and also the last point. We will then have an objective way of adhering to 
Duane’s “notes on plotting the line through the points” without “eyeballing” the line. We will, in fact, 
find a center of gravity as if the points were rocks on a [weightless] board. See Table 3 for a simple 
example. 

Table 3: Examples Data 
�F 
=  

Wt. �H 

MTBFc 
= �H/  
�F 

Log 
(�H) 

Log 
(MTB

Fc) 

Weight 
x 

Log�H 

Weight 
x Log 

(MTBFc) 

1 25 25 1.40 1.40 1.40 1.40 

2 55 27.5 1.74 1.44 3.48 2.88 

3 95 31.7 1.98 1.50 5.93 4.50 

4 140 35 2.15 1.54 8.58 6.18 

5 200 40 2.30 1.60 - - 

10   1.94 1.50 19.40 14.96 

 
The first four data points in the table are used to calculate the center of gravity. That point (CGx = 

19.4/10 = 1.94, CGy = 14.96/10 = 1.50 for the first four points) and the last point (2.30, 1.60) will be 
used to draw the line and to calculate MTBFi. The resultant plot is shown in Figure 4. It is evident that a 
trend line would have a different slope and end point and result in a different MTBFi, but our line 
follows the most recent data better. 
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Figure 4. Sample Plot 
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3 STUDY RESULTS 

As we stated initially, we want to be able to deal with conditions where there are many sources of 
variability in spacing of failure mode probabilities. In fact, we want to see if we can estimate current 
reliability when we have all of the following sources of variability present: 
 

• Imperfect corrective action effectiveness 
• Significant delays in implementing corrective actions into fielded units 
• Component failures 
• Process failures 
• Design failures 
• Multiple units being tested, some old, some new 
• Significant design changes made to some of the fielded units but not others. 
• Delayed measure of continuous improvement initiatives 

 
These conditions have, in fact, all been present in the testing of units for the following Reliability 

Growth Plot, Figure 5. By emphasizing the most recent data points more and by drawing the line 
through the last point, Duane’s methods adapt to changes on slope much better than a trend line that 
relies as much on old data as on new. The last MTBFi estimate has a much closer fit to the six month 
moving average. 
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Figure 5 - Reliability Growth Plot of Fielded Units 

 
In comparison, the least squares fit methods used against the same data do not keep up with the 

changes in growth slope (See Figure 6). 
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MTBF Using a Trend Line
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Figure 6 - Reliability Growth Plot of Fielded Units � Least Squares Fit 

 
The effectiveness of the two methods in question can be compared with a moving average +/- three 

months about that point. The results and comparisons are shown in Table 4. 
 

Table 4: Comparison of Results � Duane vs. Trend Line 

Time  
(Months) 

Moving 
Ave. 

MTBF 

MTBFi, 
Wt’d, 
Last 
Point 

Wt’d, 
Last 
Point 
Error 

MTBFi 
Trend 
Line 

Trend 
Line 
Error 

0 69 118 49 69 0 
3 81 69 12 78 3 
6 107 100 7 81 26 
9 112 103 9 86 26 

12 131 137 6 95 36 
15 134 131 3 102 32 
18 128 117 11 112 16 
21 121 129 8 117 4 
24 112 124 12 119 7 
27 137 139 2 128 9 
30 167 157 10 138 29 
33 197 171 26 149 48 

Sum of 
errors 

  155  236 

Average 
error 

  13  20 
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It can be seen from the results shown in Table 4, that the trend line estimate resulted in a 54% increase 
in average error compared with the weighted, last point criteria of Duane. That’s because weighing the latter 
points more and going through the last point helps it adjust to changes in slope due to the sources of 
variability inherent in fielded systems still under development. The final MTBFi estimate of 171 hours 
compared with the 197 hour MTBF moving average over 6 months is much closer than the 149 hour MTBFi 
estimate using a trend line. This was for noisy unfiltered field return data where there was no objective way 
to decide what to censor or where to restart the plot. Different people would have chosen different failures to 
censor or places to restart, and that is not an objective way to estimate MTBFi. It was not always obvious 
what the causes in variation were or when things were stable. But that is the point – this is non-homogeneous 
data and everything is in a constant state of change. 

Our experience is that the method initially described by Duane and Codier works best for estimating 
current MTBF from field development testing, especially when there are numerous sources of noise in the 
data. Some will say that this “noisy” data does not lend itself to MTBFi estimates, but the owner of these 
units wants to know the MTBF of what he has in the field and what progress is being made. We maintain that 
these situations do not warrant confidence calculations. It’s just the best estimate available, like in learning 
curves for touch labor in manufacturing or cost projections for the nth unit. This paper shows that for the 
typically noisy field test data, significant error is introduced when the conventional approach of using a least 
squares fit is employed and that following Duane’s original recommendations for line drawing is the best 
way. 
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