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Abstract 
The basic premise of modern cryptography is that the encryption and decryption processes should be 
computationally easy when the secret key is known, but very difficult without the key. Very difficult may well mean 
that with the current state of computation, it would take longer than the estimated age of the universe. One typical 
problem of this class is the factoring of a large composite integer that was generated by the multiplication of two 
large prime numbers. The multiplication of integers consisting of hundreds of digits is trivial for a computer. The 
factoring of a similar size number is a very difficult problem. 

1  Historical Notes 
Number theory may be traced back to the Greeks. Diophantus (c. 250) was interested in integer solutions 
to various equations. Several other great mathematicians have made contributions to number theory 
including Fermat, Gauss, and Euler. [1, page 120] It is only recently that great interest in number theory 
has developed due to its application to cryptography.  

2  Preliminaries 

2.1 Prime  
The number , with  is called prime if and only if the only positive factors of  are  and . If  

 is not prime, it is called composite. [2, page 210] [3, page 109] 

2.2 Greatest Common Divisor  
Let , not both . The largest  such that is called the greatest common divisor of  
and . [2, page 215] [1, page 80 

2.3 Fundamental Theorem of Arithmetic  
Every positive integer greater than  can be written uniquely as a prime or the product of two or more 
primes where the prime factors are written in order of nondecreasing size. [2, page 211] [4, page 210] [3, 
page 110] [1, page 97] 

2.4 Infinite number of primes  
A proof of this theorem was provided by Euclid. [2, page 212] [4, page 11] This proof illustrates the 
classic “proof by contradiction” method. 
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Assume the contrary, that there is only a finite number of primes, n.  These prime numbers may be 
listed as . Consider the number . This number yields a remainder of  when 
it is divided by any prime. We have just produced a number that is not divisible by any prime on 
our list. This contradiction leads us to the conclusion that our initial assumption is false and that 
there are in fact an infinite number of primes. 

 
An alternative direct proof is found in [1, pages 66–67]: 
 

Consider the value . This value is not divisible by any integer from  to . By the 
Fundamental Theorem of Arithmetic, it must be either prime or divisible by a prime. Either way, it 
has a prime factor , which must be greater than . Since we have found a prime greater than n, for 
every positive integer , there must be infinitely many primes. 

2.5 Pseudo-prime to the base b  
Let ,  composite. If  then  is called a pseudo-prime to the base . [2, page 
240] [5, pages 95–97] [4, page 36] 

2.6 Carmichael Number  
If a composite integer  is a pseudo-prime  such that  then  is called a Carmichael 
number. [2, page 240] [4, page 37] [1, page 207–208] 

2.7 Inverse modulo m  
If  are relatively prime, then  such that . (If two integers , and  
have no common divisors, then there is a unique integer  such that  times  has a remainder of 1 when 
divided by ). [2, page 234][4, page 24] [1, pages 140, 200] 

2.8 Euler’s Totient ϕ function  
The Totient function is defined as the number of positive integers less than or equal to n that are 
relatively prime to . Two numbers  and  are said to be relatively prime to each other if and only if the 
Greatest Common Divisor of  and  is . [3, page 104] [4, page 30] [5, page 129–131] 

2.9 Multiplicative function  
If a function  defined for all positive integers  is called multiplicative if  
whenever  and  are relatively prime. [1, page 222] 

2.10 Mersenne Numbers  
A Mersenne Number,  is defined as where  is a non-negative integer. [5, pages 51–53] 
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3 Totient Function ϕ(n) 
If  is a prime, then . All of the numbers from  through  are relatively prime to . There 
are  of these numbers. It should be noted that the converse is also true: If there are  numbers 
relatively prime to  that are less than , then  must be prime. Otherwise,  would have a factor greater 
than  and less than . [3, page 104] [4, page 30] [5, page 129–131]  
 
The Totient function is a Multiplicative function. If n and m are relatively prime, then 

. [1, page 224] It is these two properties of the Totient function that make the 
calculation of the Totient function computationally equivalent to factoring a number. If  and  are two 
large prime numbers, factoring  is prohibitly expensive. 

4 Mersenne Numbers 
If  is a Mersenne Number, and n is composite, then  is also composite. [5, page 52] Consider 

, where  and  are positive integers. Then we have: 
 

  
  
  
  

 
If  divides , then  divides . The converse, however, is not true. Consider the Mersenne number 

. The number  is prime, however, . 

5 Prime Testing 

5.1 Fermat’s Little Theorem 
If p is a prime and a is a positive integer where p does not divide a (since p is a prime, this is the same as 
the condition that a and p have no common factors greater than 1) then . [3, pages 128, 
135, 190] [1, pages 199–201]  
 
Fermat’s Little Theorem may be used to prove a given number is composite. Unfortunately, the 
converse is not true. A counter example is provided by the number 341. We have 2340 ≡ 1 (mod 341), but 
341 = 11・31 is clearly composite. 
 
For any chosen base, there are Pseudo-primes to that base. It has been proved that there exists an infinite 
number of Pseudo-primes. [1, page 206] 

5.2 Euler’s Theorem 
If m is a positive integer and a is an integer that is relatively prime to m, then . It 
should be noted that this is a generalization of Fermat’s Little theorem, replacing the restriction that the 
modulus be prime with the condition that a and m have no common factors greater than 1. This is true 
since 1 for all prime numbers p. [5, pages 25–26] [1, page 217] 
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5.3 Lucas-Lehmer Test 
The Lucas-Lehmer Test may be used to determine if a Mersenne number is prime or composite. [5, 
pages 146-149] [3, page 193] [1, page 243] A sequence of positive integers is defined recursively as: 
 

 
 
Let p be a prime number. The Mersenne number  is prime if and only if . 

5.4 Miller Test 
As seen by Fermat’s Little theorem,  is sufficient to demonstrate that the number p is 
not prime. The pseudo-prime numbers (and the Carmichael numbers in particular) demonstrate that it 
does not lead to a test for primeness. The Miller Test will eliminate some additional composite number 
from consideration, but, like Fermat’s Little Theorem, it can only prove some numbers are composite. 
The test proceeds as follows (given an odd number and a base , where ): [5, pages 
100–102] [1, pages 209–210] 
 

1. Divide n−1 by 2 until an odd factor, q is found. We now have . 
2. Set i = 0 and . 
3. If i = 0 and r = 1 terminate the test with an inconclusive result. 
4. If i ≥ 0 and r = n − 1 terminate the test with an inconclusive result. 
5. Increase i by 1 and set  
6. If i < k proceed to step 4, otherwise, n is composite. 

6 Diffie–Hellman 
As strange as it may seem, it is possible for two individuals to decide on a secret number by only 
exchanging public messages. Using the typical Bob and Alice cryptography character names, the 
procedure works as follows: [4, pages 50–51] [3, pages 270–271] [1, pages 299–300] [6, pages 188–
190] 
 

Alice and Bob first agree on a large prime  and an integer  with  such that the order 
of  is sufficiently high. The order of  is defined as the smallest integer  such that 

. It should be noted that for all a  has a unique inverse, . The 
values  and  are publicly known. Alice also chooses a random positive integer  and 
calculates . The value A is transmitted to Bob (over the insecure channel), while the 
exponent a is kept secret. Bob chooses a random positive integer  and 
calculates , which is then transmitted to Alice. 
 
Both Alice and Bob are able to now calculate the common key K. Alice, knowing a in addition to  
and  calculates , which is equal to . In a similar manner, Bob calculates , 
which is also equal to . (The multiplication of the exponents  and  is commutative). 

 
The selection of  deserves further discussion. If  is a primitive root mod p, then it has an order of 

. For a given prime, , there are  primitive roots mod  [6, page 66]. Finding one of these 
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primitive roots is computationally equivalent to factoring the integer . Give the size of , 
factoring is in general intractable. However, if p is chosen such that  is also prime, say , 
we can use an efficient method to test whether a randomly chosen g is a primitive root. (We have chosen 
 such that we know the prime factorization of  ). 

 
The number of primitive roots mod  is , but since , we can calculate 

. Roughly half of the values between  and  are 
primitive roots. A randomly chosen  can be quickly tested by calculating  and . If both 
of these values are not equal to 1, then g is a primitive root mod p. 

7 RSA 
Two large prime numbers p and q are chosen and kept secret. The product  is calculated and 
another small integer  which is relatively prime to  is chosen.  is easy to calculate if  and  are 
known, since . The pair of numbers ( ) is the public key. Two 
functions are defined: 

 
 

 
The function  is used to encrypt the message (which has been broken into a sequence of numbers , 
with ). The number  is the inverse of . We know such an inverse exists since 

and  are relatively prime. The extended Euclidean algorithm may be used to easily calculate , 
provided  and  are known. The public key is the pair ( ) which may be used by anyone to encrypt 
a message. The private key is the pair ( ), which is required to decrypt a message. Combining results, 
we have: 

 
 
However,  is the inverse of  modulo . It can further be shown that   and 

. At this point, we have  divides . Since , we finally have . 
[5, pages 163–171] 
 
Calculating  knowing only  and ( ) is computationally equivalent to factoring . It may also 
be viewed as the discrete logarithm problem. That is determine the value  such that . [3, 
page 205] [1, pages 332–333] [6, pages 186–187, 213–214] 

8 Exponentiation mod n 
There is a very efficient method to calculate . It is reminiscent of Horner’s rule to evaluate a 
polynomial for a particular value of . [6, page 46] [4, pages 34–35] The procedure is as follows: 
 
The exponent  is expressed in binary, where each  is chosen such that . (Each  
is a binary digit for the binary expansion of ,  being the least significant bit. Here  is the number 
of bits required to represent  in binary). The following equations illustrate how  may be calculated: 
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The following pseudo-code demonstrates how this may be done: 
 

int power(int base, int exponent) 
{ 

int result = 1; 
while (e > 0) { 

if (exponent & 1) 
result = result * base; 
base = base * base; 
exponent = exponent / 2; 

} 
return result; 

} 
 

The process only requires  multiplications and divisions, plus another  multiplications, where  is the 
number of one bits in the binary expansion of the exponent. For cryptographic purposes, the result and 
base would be reduced modulus  after each iteration. The running time for the procedure above to 
calculate  is . This is a substantial improvement over the naïve approach which has a running 
time of . 

9 Conclusion 
As seen in the sections describing Diffie–Hellman key exchanges and the RSA encryption algorithm, the 
ability to find large (200 decimal digits) prime numbers is of critical importance. Methods to perform 
modular arithmetic, in particular raising a number to a very large power are also necessary. The security 
relies upon the fact that calculating the Totient function for a large number is equivalent to finding the 
prime factorization of the number. In the applications discussed above, two large primes are multiplied 
to give a number n for which calculating the Totient function is very difficult. 
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