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Abstract 

Mathematical models and numerical algorithms are explored for several technological challenges in 

physics, chemistry, aerothermodynamics, and evolution of dynamic systems in economics and weather 

forecast. Various mathematical concepts are examined to evaluate multifold integrals, dynamics of 

strange attractors, and solutions of differential equations with small parameters at the highest 

derivatives. 

1. Introduction 

A course on Numerical Methods typically covers introductory topics in numerical analysis for students 

of engineering, science, mathematics, and computer science who have completed elementary calculus, 

linear algebra and matrix theory. The course is usually limited to exploring basic algorithms [1] for 

solving traditional simple problems in sciences and engineering. As a result, the students have become 

inadequately prepared to construct proper mathematical models and explore more sophisticated 

algorithms of modern technological challenges. To reduce this gap, the author has offered a series of 

case studies [2], which provide concrete examples of the ways numerical methods lead to solutions of 

some scientific problems. The similar approach was promoted in [3]. 

Topics involve familiarity with Math concepts that are not often taught, or inadequately covered, 

including differential equations with singularities, Monte-Carlo simulation, asymptotic theory, 

attractors, and theories of chaos, instabilities, and catastrophes. Students demonstrate usually a lack of 

experience and knowledge of how to develop an adequate math model for a complex scientific or 

engineering problem. Therefore, we encourage all students to strengthen their abilities in various 

problem-solving techniques.  

The numerical analysis course material is likely to change rapidly. Just staying up to date with the 

latest threats and techniques is a real challenge for both an instructor and a student, and can consume 

large amounts of time and resources [2, 3]. 

2. Estimations of Multifold Integrals 

Many technological problems (e.g., calculations of transport coefficients and chemical-reaction rates) 

require estimations of multifold integrals under the conditions when classical Newton-Cotes formulas 

for numerical integration [1, 3] could not be applied. Instead, Monte-Carlo simulation methods [4, 5] 

could be effectively used. In the first case study, students analyzed the rotational relaxation of a gas of 

homonuclear diatomic molecules. The realistic model of the intermolecular interaction [6] was used for 

calculating the redistribution of the rotational and translational energies upon collision. 

The process of establishing equilibrium with respect to the rotational degrees of freedom in terms 

of the τ-approximation can be described by the relaxation equation Eq. (1) [7] with the following 

parameters (see Eq. 2 [7]) that determine the relaxation time τR1: 
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The expression for the energy ΔE = ΔE/μv
2
/2 = ΔEi + ΔEj transferred at the time of collision from 

the translational to the rotational degrees of freedom takes the form: 
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Here the following analytic expressions for the resulting angular velocities of the molecules are 

used [7]: 
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where pi and i are the initial reduced angular momenta and initial phases counted from the 

direction of the initial velocity of relative motion of the molecules, and various molecular interactive 

parameters have been defined in Refs. 6 and 7. 

To estimate the rotational relaxation time, the sixfold integrals were calculated at 200 points over 

the range of temperatures from 200 K to 10,000 K, using the Monte Carlo simulation technique [5], with 

4000 tests at each point. The data for intermediate points were determined by means of the interpolation 

technique using cubic splines of defect 1 with smoothing. The accuracy of the calculations was 

estimated as 1.5%. The experimental data (filled squares) [8, 9] for molecular nitrogen correlates well 

with the numerical results (empty squares) as shown in Fig. 1. 
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Figure 1. Parameter p∙τR1(T) as a function of temperature: □, solution of Eq. (2) at the molecule parame-

ter d* = 0.62 [6]; and ■, experimental data [8, 9]. 

3. Solving Singular Differential Equations 

Various problems of applied mathematics, thermophysics, and aerodynamics (e.g., stability of 

mechanical systems and flow boundary layers, fuel combustion, and heat protection of spacecraft) come 

to solving differential equations with small coefficients at the highest derivatives. This phenomenon 

leads to the formation of regions with small linear dimensions where gradients of functions are large. 

The numerical analysis of such problems by traditional box-schemes is restricted by non-uniform 

convergence or even divergence of numerical solutions. In this case study, the numerical solutions of the 

model singular ordinary differential equation have been evaluated for the linear boundary value problem 

[10]. The developed numerical method [11, 12] was used for the analysis of gas flow parameters in 

boundary and viscous shock layers under the conditions of blowing on the body surface and 

nonequilibrium chemical reactions. 

From a mathematical point of view, the increase of the flow rate of blowing gas or chemical-

reaction rates is equivalent to the existence of a small coefficient at the highest derivative in the 

boundary-layer equations [10]. A sublayer (of uncertain location) with large gradients of functions is 

created. The gas flow in the boundary layer was studied using a two-point exponential box-scheme and 

an effective regularization algorithm [11]. The uniform second-order convergence was obtained for 

functions and derivatives in the full range of small parameters such as blowing factors and inverse 

chemical-reaction rates. The approach could be applied to boundary layers with gas injection and 

combustion [10, 11]. 

3.1. The Model Linear Boundary Value Problem 

In general, the method is designed for solving the following model equation: 

 

      εu′′ + au′ – bu = d     (8) 
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Here the parameter ε can accept very small magnitudes, and a ≥ 0, b ≥ 0. The solution of the 

equation (8) with constant coefficients is the following [11, 12]: 

 

 

(9) 

 

(10) 

 

(11) 

 

where A and B are arbitrary constants, and η is the main variable parameter. 

The solution (9-11) is used to obtain the box-scheme characteristics by considering that the 

functions as well as the derivatives are continuous in the cells [10, 11]. The two-point uniform 

exponential box-scheme was introduced in [11]. The identical problem was considered in [12] by using 

a three-point exponential box-scheme.  

 

  

a) Function u 

 

b) Function u′ 

Figure 2. Functions u and u′ as solutions of the linear boundary-value problem (12-14). 

The linear boundary value problem is studied for the following model singular ordinary differential 

equation [13] and boundary conditions: 

 

     εu′′ – (1 + x
2
)u = – (4x

2
 – 14x + 4)(1 + x)

2
       (12) 

 

     u(0) – u′(0) = 0          (13) 

 

     u(1) + u′(1) = 0          (14) 
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The numerical solutions of the equation (12) with boundary conditions (13) and (14) have been 

calculated by using the two-point exponential box-scheme [11]. The results for the function u and its 

derivative u′ are shown in Fig. 2. At various parameters ε, they demonstrate the formation of thin regions 

where gradients of functions are large. 

3.2. Gas Blowing into a Boundary Layer 

Consider the perfect-gas flow in the boundary layer (BL) near the stagnation point of a blunt body with 

uniform blowing at the surface [14]. The system of BL equations acquires the following form [10, 15]: 

 

     U´´ + fU´ + β(S + 1 – U
2
) = 0      (15) 

 

     f´ = U´         (16) 

 

     S´´ + σfS´ = 0        (17) 

 

where the Faulkner-Scan constant [14] β = (1 + j)
-1

 characterizes the pressure gradient in inviscid flow; j 

= 0 or 1 in plane and axisymmetric cases correspondingly; and σ = 0.72 is the Prandtl number. 

Boundary conditions are the following: 

On the body surface (Y = 0) considering the gas blowing: 

 

     f = fw = const, U´ = 0, S = Sw      (18) 

 

On the external boundary of the layer (Y → ∞): 

 

     U = 1, S = 0        (19) 

 

In Eq. (18) the parameter fw characterizes the mass flow rate of the blowing gas. Special box-

schemes with uniform convergence [16] or exponential schemes [10, 12] should be used in order to 

solve the problem at large  │fw│. The principal advantages of the two-point box-schemes are: 1) any 

type of boundary conditions "estimated" accurately [11]; 2) algorithmic changes of the grid-cell are 

simple [17]; and 3) fluxes of the flow parameters are calculated without additional procedure [11], and 

the approximation error of the fluxes is the same as that of other terms of the equations. The two-point 

exponential box-scheme developed [10] has the second order of uniform convergence. The scheme and 

its regularization algorithm [11] have been used for the numerical solution of Eqs. (15)-(19) under the 

conditions of moderate and intensive blowing from the thermally isolated body surface (Sw = 0). The 

profiles of the tangential component of the velocity U and its derivative U´ along the normal at the 

stagnation point on the surface of the axisymmetrical blunt body (β = 0.5) are shown in Fig. 3 for 

various blowing parameters (fw = 0, –2.5, –10, –25). The presence of the blowing flow significantly 

changes the flow structure. As the rate of blowing increases, the boundary layer becomes thicker, and 

the friction on the body surface decreases. 

 



Vladimir V. Riabov 

            

                               6  

  

a) Function U 

 

b) Function U´ 

Figure 3. Functions U and U´ across the boundary layer for various blowing factors. 

4. Exploring Algorithms for Uniform Calculations of Flows under Various States 

The purpose of the fourth case study was to analyze heat-transfer processes at the catalytic materials of 

the shock-tube end after shock wave refraction in terms of the model of the nonsteady-state 

nonequilibrium thermal boundary layer [18]. The major challenge was to develop the algorithm that 

could correctly and uniformly calculate flow parameters under all possible states (chemically “frozen”, 

nonequilibrium, and equilibrium ones) right behind the moving reflected shock wave. The types of 

governing differential equations are significantly different in these three cases, and the algorithm should 

automatically “adapt” to these changes across the flow. 

4.1. Gas Flow behind the Incident Shock Wave 

Students considered the simplest model [18, 19] of the one-dimensional inviscid dissociating gas flow 

behind the incident shock wave, which propagated in an ideal air with parameters of pressure p1 = 1 and 

100 Pa, and temperature T1 = 295 K at constant velocity US = 5 km/s. The system of chemical reactions 

occurring in the five-component mixture and reaction constants used in the present study was described 

in [20].  

The algorithm of calculation of the parameters behind the incident and reflected shock waves was 

described in [18] in detail. The system of algebraic-differential equations [19] was solved at each point 

of the flow field behind the incident shock wave under the assumption that air is not dissociated on the 

shock wave front. A modified Newton’s method [21] with optimal choice of iteration step was used for 

numerical solution of the equations. The flow parameters behind the incident shock wave are shown in 

Fig. 4 (left). The solutions obtained for temperature and pressure are typical for dissociating gas flows 

with nonequilibrium relaxation [19, 22, 23]. For small time interval (t ≈ 10
−8

 sec) the gas state is frozen 

[19], while at large distances from the shock wave (at t ≥ 10
−5

 sec and p1 = 100 Pa) the flow parameters 

tend to their limiting equilibrium values [18]. With decrease in initial pressure up to p1 = 1 Pa the 

equilibrium state is reached at significantly distances, while at t < 10
−5

 sec the flow parameters differ 

little from frozen. 
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Figure 4. Temperature T2 and pressure p2 behind the incident shock at distances from the wave front 

(left), and velocity of the reflected shock wave UR as a function of time (right) at various initial pressure 

parameters: p1 = 1 Pa (squares) and p1 = 100 Pa (triangles). 

4.2. Gas Flow behind the Reflected Shock Wave 

The reflected shock is propagated in the disturbed field after the incident shock [23]. The velocity of the 

reflected shock wave UR as a function of time, for two cases of pressure p1 = 1 and 100 Pa, is plotted in 

Fig. 4 (right) (squares and triangles, correspondingly). The decrease of values UR indicates the 

nonequilibrium type of chemical reactions behind the incident shock wave [23]. The magnitude of 

pressure p1 defines the time required for attainment of the steady-state distribution. This time is less by 

approximately a factor of 100 for p1 = 100 Pa. Therefore, the parameter UR can be used for experimental 

verification of nonequilibrium states in the areas behind the shock and near the tube end.  

Using the computational technique [19], the distribution of temperature T3 and pressure p3 behind 

the reflected shock wave was calculated. The computational results are shown in Fig. 5 (left) at the same 

cases of the initial pressure p1. The distribution of temperature T3 [see Fig. 5 (left)] is similar to the 

distribution of UR and it can be used for the identification of the type of chemical processes behind the 

shocks [18, 23]. Figure 5 (left) presents also the computational results for pressure p3(t) behind the 

reflected shock. This parameter is the most conservative one. Nevertheless, for the large value of initial 

pressure p1 = 100 Pa (triangles) the significant increase of the values p3 is observed after the short initial 

time-interval of decreasing. This is a result of the influence of different types of chemical processes 

behind the incident wave with initial pressure p1 [19, 23].  

At p1 = 100 Pa, the flow behind the reflected shock is close to a state of local thermodynamic 

equilibrium [18], while at p1 = 1 Pa, the flow is significantly nonequilibrium [19, 23]. The function p3(t) 

can be used for the prediction of pressure in the thermal viscous layer near the tube end, and it correlates 

with the value of pressure pw(t) at the tube end. Additional important information is the distribution of 

air components αi behind the reflected shock wave shown in Fig. 5 (right).  
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Figure 5. Temperature T3(t) and pressure p3(t) behind the reflected shock wave at various initial 

pressure parameters: p1 = 1 Pa (squares) and p1 = 100 Pa (triangles) (left), and mass fractions αi in air 

behind the reflected shock wave at p1 = 100 Pa (right). 

5. Numerical Modeling of Strange Attractors 

The course topics cover mathematical foundations of evolution of dynamic systems that could be 

described in terms of strange attractors. The case studies examine numerical modeling of chaotic 

dynamic systems [24] (turbulence, weather forecast, and economic system development). They were 

introduced through classical examples of bifurcations of systems modeling equilibrium in chemical 

reactions, socio-economy (Rössler attractor) and atmospheric dynamics (Lorenz attractor) [25]. 

The Lorenz attractor was first studied by E. N. Lorenz in [25]. It was derived from a simplified 

model of convection in the Earth’s atmosphere. The system is most commonly expressed as the 

following three coupled non-linear differential equations:  

 

dx / dt = a (y - x)        (20) 

dy / dt = x (b - z) – y      (21) 

dz / dt = xy - c z        (22) 

 

Here (x, y, z) are the Cartesian coordinates, “t” is the time variable, "a" is the Prandtl number, "b" 

is the Rayleigh number, and “c” is the system parameter. The series does not form limit cycles nor does 

it ever reach a steady state (see Fig. 6). Instead, it is an example of deterministic chaos. As with other 

chaotic systems, the Lorenz system is sensitive to the initial conditions: two initial states no matter how 

close will diverge. 

The general assumption is that a, b, c > 0; a = 10, and c is varied [26]. The system exhibits chaotic 

behavior for b = 28, but displays knotted periodic orbits for other values of b. A saddle-node bifurcation 

occurs at c(b – 1) = 0. When a ≠ 0 and c(b – 1) ≥ 0, the equations generate three critical points. The 

critical points at (0,0,0) correspond to no convection, and the critical points at (±[c(b – 1)]
0.5

, ±[c(b – 

1)]
0.5

, b – 1) correspond to steady convection. This pair is stable only if b < a(a + c + 3)/(a – c – 1). 

When a = 10, b = 28, c = 8/3, the Lorenz system has chaotic solutions, but not all solutions are chaotic.  
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A) b=12, a=10, c=8/3 B) b=16, a=10, c=8/3 C) b=28, a=10, c=8/3 
 

Figure 6. Solutions of the Lorenz system (Eqs. 20-22) for different values of b. 

 

The Matlab calculations show the system evolution for different values of b (see Fig. 6). For small 

values of b, the system is stable and evolves to one of two fixed point attrac-tors. When b is larger than 

24.28, the fixed points become repulsors and the trajectory is repelled by them in a very complex way, 

evolving without ever crossing itself [26]. 
 

   

a) Time t=1 b) Time t=2 c) Time t=3 
 

Figure 7. Sensitive dependence of the solution on initial condition at a=10, b=28, c=8/3. 

 

Three time segments (received with the Java animation [27] and shown in Fig. 7 [26]) illustrate the 

3-D evolution of two trajectories (one in blue and the other in yellow) in the Lorenz attractor starting at 

two initial points that differ only by 10
-5

 in the x-coordinate. Initially, the two trajectories seem 

coincident (only the yellow one can be seen, as it is drawn over the blue one) but, after some time, the 

divergence is obvious [26]. 

6. Concluding Remarks on Students’ Involvement 

After in-class discussions of case studies, each student continued working on a selected case analyzing 

mathematical models, creating computer codes (in MATLAB, C/C++, Java, or FORTRAN), running 
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them at various parameters, comparing computations with experimental data, and presenting the findings 

to classmates. In the course evaluations, students stated that they became deeply engaged in course 

activities through examining the challenging problems with the advanced math concepts and numerical 

algorithms. 
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