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Abstract 

The Lorenz system is discussed as a simple basic model of chaotic behavior. Java code for an animation 

of the waterwheel model of the Lorenz system is included. The simulation demonstrates chaotic behavior 

of the numerical solution of the Lorenz’ system of nonlinear ordinary differential equations. 
 

 

Edward Lorenz (1917–2008) was an MIT meteorologist and mathematician best known for his 

pioneering work in chaos theory. His first paper on unpredictable chaotic behavior, Deterministic 

Nonperiodic Flow, was published in 1963. In this paper, he introduced a system of three nonlinear 

ordinary differential equations modeling chaotic behavior, which became known as the Lorenz system: 

 
 

 
 

 
 

The three parameters, σ, ρ, and β, determine the behavior of the system. Some sets of values of the 

parameters result in a repeating pattern, while other sets result in chaotic behavior. The values Lorenz 

used in Deterministic Nonperiodic Flow, and the values used throughout this project, are σ = 10, ρ = 28, 

and β = 8/3. 

The Lorenz system is a simplification of a system of twelve equations that Lorenz had developed to 

model atmospheric processes. The solutions of this system of twelve equations exhibited what Lorenz 

described as the ‘butterfly effect’, later termed ‘sensitive dependence on initial conditions’. While the 

simpler system of three equations was not intended to model any natural phenomenon, it was later found 

to accurately describe a simplified model of atmospheric convection. In this model, a torus-shaped tube 

forming a closed loop is filled with a fluid and heated from below, causing the heated fluid to rotate to 

the top of the tube. The rate of heating and the rate of cooling can be adjusted so that the fluid will 

occasionally change direction, never settling into any predictable pattern. This motion is accurately 

modeled by the Lorenz equations. An equivalent model, simulated in the included Java program, 

replaces the circular tube with a waterwheel: cups are arranged around the wheel and are filled with 

water when they pass under a faucet located above the wheel (which corresponds to the heating of the 

fluid at the bottom of the tube). The water leaks from the cups as they move around the wheel (which 

corresponds to the cooling of the fluid). The heavier cups will rotate to the bottom of the wheel, just as 

the heated fluid rises to the top of the tube. 
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In the Java program simulating the waterwheel, the angular acceleration of the wheel is calculated 

according to the laws of physics based on the changing mass of each cup, and this acceleration modifies 

the angular velocity on each iteration of the code. 

The acceleration of the simulated waterwheel over time is shown in Fig. 1 below. 

 

 
Figure 1.  Angular velocity as a function of time. 

 

  

 
Figure 2.  Variable y of the Lorenz system as a function of time. 
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THE LORENZ SYSTEM SIMULATION 

The graph in Fig. 2 shows variable y of the Lorenz system as it changes over time. Figure 3 shows 

the same process as one in Fig. 2 with y on the horizontal axis and z on the vertical axis. 

 

 
 

Figure 3. Relation between y and z coordinates in the Lorenz system. 

 

In Fig. 1, positive values of angular velocity represent rotation of the wheel in the positive direction 

while negative values represent rotation in the negative direction. Consequently, changes between 

positive and negative values represent changes in the direction of the wheel’s rotation. Positive values of 

y in Fig. 2 correspond to the right attractor in Fig. 3, while negative values of y in Fig. 2 correspond to 

the left attractor in Fig. 3. Changes between positive and negative values of y in Fig. 2 represent 

transfers between the two attractors. Thus, the two attractors in Fig. 3 correspond to the two directions of 

rotation of the waterwheel. The chaotic nature of the Lorenz system makes the transfers between the two 

attractors, and, consequently, the changes in direction of the waterwheel it models, unpredictable. 

The Java code included below (see Appendix) creates an animation of the waterwheel model of the 

Lorenz system. The program also outputs the values of the position and velocity of the waterwheel as a 

text (.txt) file. This animation demonstrates chaotic behavior of the numerical solution of the Lorenz’ 

system of nonlinear ordinary differential equations. 

I would like to thank Dr. Vladimir Riabov, my computer science professor at Rivier University, for 

help and inspiration. 
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Appendix: Java code for waterwheel animation 

 
import javax.swing.*; 
import java.awt.*; 
import java.io.*; 
 
class LorenzSimulation{ 
    public static void main(String[] args){ 
        JFrame frame = new JFrame("The Lorenz System"); 
        frame.setSize(600,760); 
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
        Panel pane = new Panel(); 
        pane.setBackground(Color.black); 
        frame.setContentPane(pane); 
        frame.setVisible(true); 
    } 
} 
 
class Panel extends JPanel{ 
    Waterwheel wheel; 
    protected Panel(){ 
        wheel = new Waterwheel(new Point(300,400), 200, 12); 
    } 
    protected void paintComponent(Graphics g){ 
        super.paintComponent(g); 
        g.setColor(Color.lightGray); 
        g.fillRect(0,20,285,30);      //horizontal pipe 
        g.fillRect(285,50,30,40);     //vertical pipe 
        g.fillArc(255,20,60,60,0,90); //curve in pipe 
        g.setColor(new Color(150,150,250)); 
        g.fillRect(295,90,10,110);    //stream of water 
        wheel.draw(g); 
        try{Thread.sleep(2);} 
        catch(InterruptedException e){} 
        wheel.calculate(); 
        repaint(); 
    } 
} 
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THE LORENZ SYSTEM SIMULATION 

 
class Waterwheel{ 
    final double FILL_SPEED = .4;  //.4 for chaotic motion; .9 for stable motion 
    final double DRAIN_SPEED = .02; 
    final double V_COEFFICIENT = 1/50.0;    //coefficient of rotational velocity  
    Point center;                             //added to angle in each iteration 
    int r; //radius 
    double a; //angle of shift from original position 
    double v; //velocity of rotation 
    int numCups; 
    Cup[] cups; 
    PrintWriter outFile; 
    public Waterwheel(Point c, int rIn, int n){ 
        center = c;                                     //Waterwheel constructor 
        r = rIn; 
        a = 0.0; 
        v = 0.01; 
        numCups = n; 
        cups = new Cup[numCups];                                 //array of Cups 
        for(int i=0; i<numCups; i++) cups[i] = new Cup(i*(2*Math.PI/numCups)); 
        try{outFile = new PrintWriter("Waterwheel_Output.txt");} 
        catch(IOException ignore){} 
        outFile.printf("%10s%10s%n","Angle","Velocity"); 
    } 
    public void calculate(){ //recalculate position and conditions of Waterwheel 
        double m = 0; 
        for(int i=0; i<numCups; i++){ 
            if(Math.abs(Math.cos(a+cups[i].a)) <.1 && Math.sin(a+cups[i].a) > 0 
               && cups[i].volume < 50) cups[i].volume += FILL_SPEED; 
            if(cups[i].volume > 0) cups[i].volume -= DRAIN_SPEED; 
            v -= (cups[i].volume) * Math.cos(a+cups[i].a) * V_COEFFICIENT; 
            m += cups[i].volume; 
        } 
        v /= m; 
        a += v; 
        outFile.printf("%10.5f%10.5f;%n",a,v); 
    } 
    public void draw(Graphics g){                              //draw Waterwheel 
        g.setColor(Color.gray); 
        g.drawOval(center.x - r, center.y - r, 2*r, 2*r); //draw large circle 
        g.setColor(new Color(50,50,200));//new Color(0,0,100)); 
        for(int i=0; i<numCups; i++) cups[i].draw(center, a, g); //draw cups 
    } 
     
    private class Cup{                                      //internal Cup class 
        private double volume; //radius of cup circle 
        private double a;      //position on wheel 
        private Cup(double aIn){                               //Cup constructor 
            a = aIn; 
            volume = 0; 
        } 
        //draw individual cup: 
        private void draw(Point center, double aWheel, Graphics g){ 
            g.fillOval((int)(center.x + r*Math.cos(a+aWheel) - volume - 3), 
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                       (int)(center.y - r*Math.sin(a+aWheel) - volume - 3), 
                       2*(int)volume + 6, 2*(int)volume + 6); 
        } 
    } 
} 

 

Figures 2 and 3 show solutions of the Lorenz system generated by the following Java code (based on C 

code from http://paulbourke.net/fractals/lorenz). 
   
import java.io.*; 
class LorenzEquations{ 
    public static void main(String[] args) throws IOException{ 
        double h = .001; 
        double a = 10; 
        double b = 28; 
        double c = 8/3; 
        double x0 = 0.1; 
        double y0 = 0; 
        double z0 = 0; 
        double x1,y1,z1; 
        PrintWriter outFile = new PrintWriter("Equations_Output.txt"); 
        outFile.printf("%10c%10c%10c%n",'x','y','z'); 
        for(int i=0; i<50000; i++){ 
            x1 = x0 + h*a*(y0-x0); 
            y1 = y0 + h*(x0*(b-z0) - y0); 
            z1 = z0 + h*(x0*y0 -c*z0); 
            x0 = x1; 
            y0 = y1; 
            z0 = z1; 
            outFile.printf("%10.5f%10.5f%10.5f;%n",x0,y0,z0); 
        } 
        outFile.close(); 
    } 
} 
 
 

NOTE: Figures 1, 2, and 3 were generated from output of the included programs using MATLAB. 
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