
InSight: RIVIER ACADEMIC JOURNAL, VOLUME 9, NUMBER 2, FALL 2013

Copyright © 2013 by Rivier University. All rights reserved. 1

ISSN 1559-9388 (online version), ISSN 1559-9396 (CD-ROM version).

Abstract

This paper describes an overview of adaptive bit-rate streaming as a content delivery technique.

General principles will be discussed as well as an introduction to several of the current leading adaptive

streaming technologies and how they function. Adaptive streaming is a technique used for client-driven

video streaming over HTTP, and aims to provide end users with higher-quality playback by adjusting

the stream to fit the client’s current network and processing conditions.

Introduction

In 2012, a reported 57% of all global Internet traffic was video. This figure is projected to reach 69% by

2017, not including peer-to-peer file sharing. Most of that traffic will be on mobile devices. [1] The

additional network load results in much higher congestion, which would reduce the quality of service

(QoS) for end users. Previously, video content delivery networks (CDN) would host videos and stream

them at a constant bit-rate, regardless of network congestion. In the event that a user’s downstream

bandwidth could not stream enough chunks of a video to maintain continuous playback, the video would

stop and the user would have to wait while enough chunks of the video download in order to resume

playback, often with a now-familiar icon appearing in the foreground (see Fig. 1).

Figure 1. Sample Buffering Icon

Especially during peak usage hours in the evening, having to constantly pause a video to wait for

the player’s buffer to refill proved to be unacceptable for any content provider looking to compete

against broadcast television and cable providers. Adaptive bit-rate streaming was developed as a

technique to mitigate this issue. [2] The CDN provides several available bitrates for streaming which the

client software can switch between seamlessly. Ideally, the difference between streams is gradual. This

way, playback can occur without any noticeable interruptions for the consumer. [3]

Predecessor Streaming Techniques

Traditionally, online video playback was handled by one of two major techniques: real-time streaming

and progressive download. Streams would only contain a single file, and transmit segments to clients in

the PLAY or RECORD states in real time relative to playback time on the server when the client is not

 ADAPTIVE BIT-RATE STREAMING
 Minimizing End-User Buffer Times in Real-Time Video Delivery

Ted D. Monchamp*

Graduate Student, M. S. Program in Computer Science, Rivier University

Ted D. Monchamp

 2

in the PAUSE state. [4] This technique is susceptible to network congestion, where segments may be

dropped if the client does not receive them quickly enough.

Progressive download sends segments of the video to the client where they are written to disk

(usually in the browser cache). The download will continue until the entire file has been transferred to

the client. The primary difference between this technique and a regular browser download is that

playback can begin using the existing file segments before the entire download is complete. However,

playback must pause if it catches up to the download of new segments and there is nothing left to play at

that point. [5] [6]

Overview of Adaptive Streaming Technique

Adaptive bit-rate streaming is a technique for video delivery using Hypertext Transport Protocol

(HTTP). The technique, being HTTP-based, is inherently stateless. This means that the server hosting

the video only knows of its current connections to client endpoints on the network. Each client must

manage its own state. That is, the streaming client must determine for itself what the optimal stream

characteristics should be based on local network and CPU load. [7]

The web server hosting a given video holds that video encoded in multiple different bitrates, each

broken down into small segments that can be sent as requested to the client. [8] The client is provided

with a manifest from the web server that contains information about the stream encodings available, and

it requests the encoded stream at a bit-rate appropriate for local conditions (see Fig. 2). [3] The server

maintains no record of what previous client request information was, and treats each HTTP request for a

new segment individually. [9]

Figure 2. Overview of Adaptive Streaming Architecture (D. Seddon, Public Domain)

Figure 3. Stream Bit Rate as a Function of Network Congestion

 3

ADAPTIVE BIT-RATE STREAMING

The client will generally start with a segment of video at the lowest bit-rate. If the download speed

of that segment indicates that more bandwidth is available and the CPU can handle playback, the

subsequent segment is requested from the highest bit-rate afforded by the measured bandwidth. If

bandwidth is observed at some point to decrease, and a segment download is taking too long, the client

will request the next segment at a lower bit-rate in order to maintain real-time playback (see Fig. 3). In

this manner, the video will only pause playback if the bandwidth decreases so much that the client

cannot download the lowest bit-rate segments as often as they are needed. [7] [8]

Benefits

Technical

The foremost benefit of the use of adaptive bit-rate streaming is the stream quality for the end user.

When properly implemented, though quality of the video stream may vary, the effect should be nearly

unnoticeable, as opposed to having a break in playback from network congestion. There also won’t be

danger of firewall conflicts for the transmission with HTTP-based streaming as all traffic occurs on port

80, as opposed to an assortment of obscure UDP ports that are used for other streaming protocols. [5] [9]

For the end user, the process of consuming adaptive video streams is seamless by design.

The content producers can also benefit from adaptive streaming. Extra encoding equipment is

required initially to create the necessary streams in several bitrates, but ultimately the workflow is more

streamlined, as the encoding and hosting software often work together to manage the videos

automatically. Hosting of HTTP-based streams also doesn’t require specialized hardware beyond regular

web servers for serving content over the Internet. [9] [10]

Commercial

Fragment URIs listed in the manifest do not have to refer to chunks of video in the current stream.

Absolute URIs can be used to splice in segments from external CDNs. [11] These paths are often used

for inserting advertisements into streams. As they can point to any script that returns a valid video

segment, personalized ads can be added to the video content. The content provider will have to be aware

though, that requests for video segments are made by the client and can be either altered or ignored. [12]

The client video player should be designed accordingly so that such exceptions can be handled to

maintain a balance between uninterrupted playback and ad revenue.

Leading Implementations

Adobe Dynamic Streaming for Flash

HDS is a technology designed jointly by Adobe and Akamai for use with Adobe’s Flash Media Server.

This adaptive streaming model is built to handle streaming using both HTTP and Adobe’s pre-existing

Real Time Messaging Protocol (RTMP), combining the features for progressive download and

streaming. [13] This allows users to have instantaneous playback and the ability to seek to any point

within the video. [10]

HDS streams videos packaged as either of two industry standards: MPEG4 (H.264/AAC) or Flash

video (FLV). Both formats support multiple bit-rate streaming. When preparing a video for deployment

on the web server, the file must be repackaged in the F4F format. These packages each contain a

manifest to be sent to client machines indicating available stream formats (see Fig. 4), an index of the

Ted D. Monchamp

 4

included video fragments, and segments of the original source file which contain the URL-addressable

video fragments. [10] [14] [15]

Figure 4. Sample F4F Manifest (OSMF Wiki) [14]

Client playback of HDS video streams requires the user to install only Adobe’s Flash Player plug-

in or their Air framework. Access to hosted video is handled by a custom application utilizing the

Adobe/Akamai-designed Open Source Media Framework. The application can then request manifests

from the server in order to retrieve the locations of the necessary video fragments for the stream (see

Fig. 5). As users will generally have Flash installed already, minimal effort is required on their part, if

any, in order to support Adobe HDS playback. [10]

Figure 5. HTTP Dynamic Streaming Model

Apple HTTP Live Streaming

HLS is an HTTP-based streaming protocol developed for use with iOS devices. The protocol is designed

to enable video transmission over port 80, allowing more flexibility for mobile devices, which could

attach to a variety of network and therefore won’t have to deal with blocked obscure UDP ports. [16]

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns="http://ns.adobe.com/f4m/1.0">

 <id>myvideo</id>

 <duration>253</duration>

 <mimeType>video/x-flv</mimeType>

 <streamType>recorded</streamType>

 <baseURL>http://example.com"</baseURL>

 <drmAdditionalHeader url="http://mydrmserver.com/mydrmadditionalheader"/>

 <bootstrapInfo profile="named" url="/mybootstrapinfo"/>

 <media url="/myvideo/low" bitrate="408" width="640" height="480"/>

 <media url="/myvideo/medium" bitrate="908" width="800" height="600"/>

 <media url="/myvideo/high" bitrate="1708" width="1920" height="1080"/>

</manifest>

 5

ADAPTIVE BIT-RATE STREAMING

HLS operates by breaking a video stream into short chunks a few seconds in length. The server

then maintains an extended M3U playlist that contains codec, bit-rate, and URI information about the

video segments in the stream (see Fig. 6). The segments themselves must be valid MPEG-2 (DVD) or

MPEG-4 (H.264/AAC) encoded files. When a client connects to the web server, it downloads a copy of

the playlist for the desired video stream. Provided that the playlist parses correctly, the client then

requests a segment of video at the appropriate bit-rate. Segments need not be downloaded in any

particular order. Random access is allowed, so the client program is responsible for correct playback in

any desired manner. [6] [16]

Figure 6. Extended M3U Master Playlist with Alternate Audio (E. Pantos) [16]

Throughout playback, the client must periodically reload the playlist unless the EXT-X-ENDLIST
tag is present in the data. The web server can append data to the playlist, either with new segments, or
URLs for other streams to be inserted into the current playback. This allows for the server to host live
streaming content as well as video-on-demand. As the connection to clients is stateless, the server has
no knowledge as to which clients require updates, so the clients must check the hosted playlist for any
updates.

Digital rights management for HLS is handled using existing industrial standards. Encryption of
streamed videos uses 128-bit AES with secret key sharing using HTTPS, along with either a device-
based login or HTTP cookie. The necessary keys for decrypting a video for playback are provided in
the playlist downloaded from the server. [16]

Microsoft Smooth Streaming

Microsoft’s Smooth Streaming technology was among the earliest implementations of adaptive

streaming. Very primitive precursors to the present technique began in 1998 with NetShow Services 3.0,

which allowed Windows Media Player to detect deteriorating bandwidth and reduce the frame rate of a

video stream or, at worst, stream only audio. Between 2000 and 2003, the ASF wrapper was introduced

with Windows Media Service 4.1, which allowed for multiple videos with varying bitrates to be

#EXTM3U

#EXT-X-VERSION:3

#EXT-X-MEDIA-SEQUENCE:7794

#EXT-X-TARGETDURATION:15

#EXT-X-KEY:METHOD=AES-128,URI=https://priv.example.com/key.php?r=52s

#EXT-X-MEDIA:TYPE=AUDIO,GROUP-ID="aac",NAME="English", \

DEFAULT=YES,AUTOSELECT=YES,LANGUAGE="en", \

URI="main/english-audio.m3u8"

#EXT-X-MEDIA:TYPE=AUDIO,GROUP-ID="aac",NAME="Deutsch", \

DEFAULT=NO,AUTOSELECT=YES,LANGUAGE="de", \

URI="main/german-audio.m3u8"

#EXT-X-MEDIA:TYPE=AUDIO,GROUP-ID="aac",NAME="Commentary", \

DEFAULT=NO,AUTOSELECT=NO,URI="commentary/audio-only.m3u8"

#EXT-X-STREAM-INF:BANDWIDTH=1280000,CODECS="mp4a.40.5",AUDIO="aac"

low/video-only.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=2560000,CODECS="mp4a.40.5",AUDIO="aac"

mid/video-only.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=7680000,CODECS="mp4a.40.5",AUDIO="aac"

hi/video-only.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=65000,CODECS="mp4a.40.5",AUDIO="aac"

main/english-audio.m3u8

Ted D. Monchamp

 6

contained in the same file. Protocols developed at that time supported the ability of the player to switch

bitrates during playback. However, a proprietary format was still required, and there was not yet any way of

aligning the video streams or the audio in any timely manner, making switching between videos difficult, and

certainly not seamless. Progressive download was not an option either, as only the server could manage the

streaming sessions. [5]

The present iteration of Smooth Streaming was built as an extension of Internet Information Service

(IIS) 7.0, Microsoft’s web hosting platform. As with other adaptive streaming techniques, IIS Smooth

Streaming is based on HTTP, so that the video hosting extension can be easily integrated with the rest of the

hosted content on a web server. Web applications for consuming these video streams are developed using the

Silverlight platform, which runs a subset of the .NET runtime designed for deploying applications to run

entirely within the client browser. [5]

Videos encoded for streaming use the ISO standard MPEG-4 format as opposed to the original ASF

package. The H.264 codec used for encoding the video itself has better compression and lower overhead for

client parsing. The MP4 format is also supported across more platforms and already has built-in support for

payload fragmentation (see Fig. 7). This means a single file can be hosted on-disk on the server that already

contains the necessary segments to send to a client at any of several specified bitrates that have been encoded

and stored within that file. Each fragment is also addressable by its timestamp instead of an arbitrary index.

Creation of these files is also designed to be seamless for ease of implementation. Neither live nor video-on-

demand encoding requires special dedicated hardware. The video feeds need only be run through MS

Expression Encoder, which can handle the multiple bit-rate encoding, payload fragmenting, and deployment

once the output stream parameters are configured. [5] [17]

Figure 7. Fragmented MP4 File Format

Client programs using Smooth Streaming are generally custom-built interfaces built using Silverlight.

Initially, for any sort of playback, the client requests an XML manifest containing information about

available aspects of the desired video stream (see Fig. 9): the codecs used to encode and compress the

content, resolutions available (with their respective bitrates), and a list of the video chunks with either a start

time or duration. [17] The client can then request any fragment from the server using a RESTful URL (see

Fig. 8).

http://video.foo.com/TITLE.ism/QualityLevels(400000)/Fragments(video=610275114)

Figure 8. Sample RESTful Address for a Smooth Streaming Video Fragment [5]

 7

ADAPTIVE BIT-RATE STREAMING

<SmoothStreamingMedia

 MajorVersion="2"

 MinorVersion="1"

 Duration="5964800000">

 <StreamIndex

 Type="video"

 Name="video"

 Chunks="312"

 QualityLevels="2"

 Url="QualityLevels({bitrate})/Fragments(video={start time})">

 <QualityLevel

 Index="0"

 Bitrate="6000000"

 FourCC="WVC1"

 MaxWidth="1920"

 MaxHeight="1080"

 CodecPrivateData="250000010FDBBE3BF21B8A3BF8EFF18044800000010E5A0040" />

 <QualityLevel

 Index="1"

 Bitrate="4176000"

 FourCC="WVC1"

 MaxWidth="1920"

 MaxHeight="1080"

 CodecPrivateData="250000010FDBBE3BF21B8A3BF8EFF18044800000010E5A0040" />

 <QualityLevel

 Index="0"

 Bitrate="330000"

 FourCC="WVC1"

 MaxWidth="480"

 MaxHeight="272"

 CodecPrivateData="250000010FDB8A3BF21B8A3BF8EFF18044800000010E5A0040" />

 <QualityLevel

 Index="1"

 Bitrate="230000"

 FourCC="WVC1"

 MaxWidth="320"

 MaxHeight="180"

 CodecPrivateData="250000010FDB863BF21B8A3BF8EFF18044800000010E5A0040" />

 <c d="19999968"/>

 </StreamIndex>

 <StreamIndex

 Type="audio"

 Index="0"

 Name="audio"

 Chunks="299"

 QualityLevels="1"

 Url="QualityLevels({bitrate})/Fragments(audio={start time})">

 <QualityLevel

 FourCC="WMAP"

 Bitrate="128000"

 SamplingRate="44100"

 Channels="2"

 BitsPerSample="16"

 PacketSize="5945"

 AudioTag="354"

 CodecPrivateData="1000030000000000000000000000E0000000" />

 <c d="20433560"/>

 </StreamIndex>

</SmoothStreamingMedia>

Figure 9. Sample Smooth Streaming Client Manifest [17]

Ted D. Monchamp

 8

<?xml version="1.0" encoding="UTF-8"?>

<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="urn:mpeg:DASH:schema:MPD:2011"

 xsi:schemaLocation="urn:mpeg:DASH:schema:MPD:2011"

 profiles="urn:mpeg:dash:profile:full:2011"

 type="static"

 mediaPresentationDuration="PT0H9M56.46S"

 minBufferTime="PT15.0S">

 <BaseURL>http://www-itec.uni-klu.ac.at/dash/js/content/</BaseURL>

 <Period start="PT0S">

 <AdaptationSet bitstreamSwitching="true">

 <Representation id="0" codecs="vp8" mimeType="video/webm" width="854"

height="480" startWithSAP="1" bandwidth="329040">

 <SegmentBase>

 <Initialization sourceURL="sintel_200k.webm" range="0-4767"/>

 </SegmentBase>

 <SegmentList duration="2">

 <SegmentURL media="sintel_200k.webm" mediaRange="4768-82046"/>

 <SegmentURL media="sintel_200k.webm" mediaRange="82047-162639"/>

 <SegmentURL media="sintel_200k.webm" mediaRange="162640-240275"/>

 </SegmentList>

 </Representation>

 <Representation id="0" codecs="vp8" mimeType="video/webm" width="854"

height="480" startWithSAP="1" bandwidth="573804">

 <SegmentBase>

 <Initialization sourceURL="sintel_500k.webm" range="0-4767"/>

 </SegmentBase>

 <SegmentList duration="2">

 <SegmentURL media="sintel_500k.webm" mediaRange="4768-122324"/>

 <SegmentURL media="sintel_500k.webm" mediaRange="122325-280293"/>

 <SegmentURL media="sintel_500k.webm" mediaRange="280294-435129"/>

 </SegmentList>

 </Representation>

 <Representation id="0" codecs="vp8" mimeType="video/webm" width="854"

height="480" startWithSAP="1" bandwidth="812312">

 <SegmentBase>

 <Initialization sourceURL="sintel_800k.webm" range="0-4767"/>

 </SegmentBase>

 <SegmentList duration="2">

 <SegmentURL media="sintel_800k.webm" mediaRange="4768-195920"/>

 <SegmentURL media="sintel_800k.webm" mediaRange="195921-458392"/>

 <SegmentURL media="sintel_800k.webm" mediaRange="458393-692430"/>

 </SegmentList>

 </Representation>

 <Representation id="0" codecs="vp8" mimeType="video/webm" width="854"

height="480" startWithSAP="1" bandwidth="1281002">

 <SegmentBase>

 <Initialization sourceURL="sintel_1400k.webm" range="0-4767"/>

 </SegmentBase>

 <SegmentList duration="2">

 <SegmentURL media="sintel_1400k.webm" mediaRange="4768-203054"/>

 <SegmentURL media="sintel_1400k.webm" mediaRange="203055-586870"/>

 <SegmentURL media="sintel_1400k.webm" mediaRange="586871-949866"/>

 </SegmentList>

 </Representation>

 </AdaptationSet>

 </Period>

</MPD>

Figure 10. Sample MPEG-DASH MPD Manifest (ITEC) [23]

 9

ADAPTIVE BIT-RATE STREAMING

<?xml version="1.0"?>

<MPD

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="urn:mpeg:DASH:schema:MPD:2011"

 xmlns:drm="http://example.net/052011/drm"

 xsi:schemaLocation="urn:mpeg:DASH:schema:MPD:2011 DASH-MPD.xsd"

 type="static"

 mediaPresentationDuration="PT3256S"

 minBufferTime="PT10.00S"

 profiles="urn:mpeg:dash:profile:isoff-on-demand:2011">

 <BaseURL>http://cdn.example.com/movie23453235/</BaseURL>

 <Period>

 <!-- Audio protected with a specified license -->

 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.0x40" lang="en"

 subsegmentStartsWithSAP="1" subsegmentAlignment="true">

 <ContentProtection schemeIdUri="http://example.net/052011/drm">

 <drm:License>http://MoviesSP.example.com/protect?license=kljklsm</drm:License>

 <drm:Content>http://MoviesSP.example.com/protect?content=oyfYvpo</drm:Content>

 </ContentProtection>

 <Representation id="1" bandwidth="64000">

 <BaseURL>audio/en/64.mp4</BaseURL>

 </Representation>

 </AdaptationSet>

 <!-- Audio protected with embedded information defined by 'ZZZZ' -->

 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.0x40" lang="fr"

 subsegmentStartsWithSAP="1" subsegmentAlignment="true">

 <ContentProtection schemeIdUri=" urn:mpeg:dash:mp4protection:2011" value="ZZZZ"/>

 <Representation id="3" bandwidth="64000">

 <BaseURL>audio/fr/64.mp4</BaseURL>

 </Representation>

 </AdaptationSet>

 <!-- Timed text in the clear -->

 <AdaptationSet mimeType="application/ttml+xml" lang="de">

 <Representation id="5" bandwidth="256">

 <BaseURL>subtitles/de.xml</BaseURL>

 </Representation>

 </AdaptationSet>

 <!-- Video protected with a specified license -->

 <AdaptationSet mimeType="video/mp4" codecs="avc1"

 subsegmentAlignment="true" subsegmentStartsWithSAP="2">

 <ContentProtection schemeIdUri="http://example.net/052011/drm">

 <drm:License>http://MoviesSP.example.com/protect?license=jfjhwls</drm:License>

 <drm:Content>http://MoviesSP.example.com/protect?content=mslkfjs</drm:Content>

 </ContentProtection>

 <BaseURL>video/</BaseURL>

 <Representation id="6" bandwidth="256000" width="320" height="240">

 <BaseURL>video256.mp4</BaseURL>

 </Representation>

 <Representation id="7" bandwidth="512000" width="320" height="240">

 <BaseURL>video512.mp4</BaseURL>

 </Representation>

 <Representation id="8" bandwidth="1024000" width="640" height="480">

 <BaseURL>video1024.mp4</BaseURL>

 </Representation>

 </AdaptationSet>

 </Period>

</MPD>

Figure 11. Sample MPD with Encryption Defined (ISO) [23]

Ted D. Monchamp

 10

Encryption is available through Microsoft’s proprietary PlayReady DRM scheme. When initially

accessing encrypted content, the Silverlight client contacts the content host’s PlayReady license server

to request a license for playback. However, PlayReady requires that the content have a secure path

between the video player and the output hardware for HD content. Because of this, Silverlight is not

supported on open-source clients such as Linux, despite only being a browser plug-in. [18]

MPEG-DASH

Dynamic Adaptive Streaming over HTTP is a technology recently developed by the Moving Picture

Experts Group, and was published as an international standard in November 2011 (ISO/IEC 23009-

1:2012). [19] DASH is designed to be codec-agnostic, but the specification recommends use of MPEG-4

files or MPEG-2 streams. [20] However, as the specification does not require a particular codec when

hosting a stream, there is no guaranteed compatibility with any given MPEG-DASH client, as the client

would have to handle virtually any codec in order to maintain constant compatibility. There also remains

the question of whether or not the DASH standard will be royalty-free. Some potential client developers,

particularly those in the open-source software community, will not build DASH-compatible clients

unless it can be implemented using only free/libre software. [21] These shortcomings have slowed the

adoption of DASH relative to other stream formats.

DASH remains similar to earlier adaptive streaming technologies in that the client requests an

XML manifest called a Media Presentation Description (MPD) with information about the properties of

the stream (see Fig. 10), and still must request each new segment individually. [22] The MPD can also

list multiple different representations of the same media for separate platforms. Though each platform

implementing DASH may have different codec requirements, the DASH specification does dictate a

common scheme for how encryption must be implemented, so that client platforms with differing built-

in DRM processes can decrypt and decode the same stream.

Stream encryption, when present, is defined in the MPD, along with the supported DRM schemes.

Different components of the stream can use different encryption and licensing schemes as long as

licensing information is provided (see Fig. 11). [19] An MPD can also reference other dynamically

created MPDs. This allows for seamless stream splicing. In this manner commercial content that would

normally have interstitial advertisements can have the ads easily injected into the video stream. [12] [19]

Criticisms

The primary drawback to adaptive streaming is precisely what makes it so versatile for users once

implemented: encoding several bit-rates. Having several encodings of the same video increases cost, as

the copies require more storage and new encoding equipment must be purchased to encode those copies.

The encoding process also adds substantial latency for broadcasting live events as the video must be

encoded in multiple bitrates and segmented as it is being recorded before those segments can be sent to

users as requested. Usually video quality and size are sacrificed to compensate for finite computing

power in order to keep the feed as close to live as possible. [9] [24]

Adaptive streaming also does not yet open standard for digital rights management (DRM) for

commercial content. Presently, any encryption of content is handled by proprietary implementations.

This often results in a CDN having to provide delivery using several control protocols, increasing the

complexity and cost of implementation. In the case of Netflix, a different protocol is required depending

on the client platform: Microsoft Silverlight for Mac OSX and Windows, and a custom SDK for iOS and

Android-based mobile devices. [24]

 11

ADAPTIVE BIT-RATE STREAMING

Conclusion

For now, the benefits of implementing adaptive streaming for commercial content outweigh the

complexity and cost of using the technique. The end result of having such a system is improved quality

of service for the end user. Existing broadcast television programming is provided in a manner that is

seamless to use and without any playback interruptions as long as the physical broadcasting

infrastructure remains intact. Internet-based content streaming is still susceptible to deteriorating

bandwidth resulting from higher traffic on a shared connection. For the foreseeable future, as long as

bandwidth is a limiting factor, streaming will need to be able to adapt to local conditions in order to

remain competitive to television service.

Abbreviations

AAC – Advanced Audio Coding

AES – Advanced Encryption Standard

CDN – Content Delivery Network

DRM – Digital Rights Management

HTTP – Hypertext Transfer Protocol

HTTPS – Secure Hypertext Transfer Protocol

MPEG – Moving Picture Experts Group

RTMP – Real-Time Messaging Protocol

RTSP – Real-Time Streaming Protocol

SDK – Software Development Kit

UDP – User Datagram Protocol

URI – Uniform Resource Identifier

URL – Uniform Resource Locator

References

[1] Cisco Systems, Inc., "Cisco Visual Networking Index: Forecast and Methodology, 2012-2017,"

White Paper, 2013.
[2] Thomas Stockhammer, "Dynamic Adaptive Streaming over HTTP – Standards and Design

Principles." In Proceedings of the Second Annual ACM Conference on Multimedia Systems, New

York, NY, 2011, pp. 133-144.
[3] Robert Kuschnig, Ingo Kofler, and Hermann Hellwagner, "An evaluation of TCP-based rate-

control algorithms for adaptive internet streaming of H.264/SVC." In Proceedings of the First

Annual ACM SIGMM Conference on Multimedia Systems, New York, NY, 2010, pp. 157-168.
[4] H. Schulzrinne, A. Rao, and R. Lanphier. (1998, April) Real Time Streaming Protocol (RTSP).
[5] Alex Zambelli, "IIS Smooth Streaming Technical Overview," Microsoft Corporation, 2009.
[6] Luca De Cicco, Saverio Mascolo, and Vittorio Palmisano, "Feedback Control for Adaptive Live

Video Streaming." In Proceedings of the Second Annual ACM Conference on Multimedia Systems,

New York, NY, 2011, pp. 145-156.
[7] Stefan Lederer, Christopher Müller, and Christian Timmerer, "An evaluation of dynamic adaptive

streaming over HTTP in vehicular environments." In Proceedings of the 4th Workshop on Mobile

Video, New York, NY, 2012, pp. 37-42.

Ted D. Monchamp

 12

[8] Stefan Lederer, Christopher Müller, and Christian Timmerer, "Dynamic adaptive streaming over

HTTP dataset." In Proceedings of the 3rd Multimedia Systems Conference, New York, NY, 2012,

pp. 89-94.
[9] Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis, "An experimental evaluation of rate-

adaptation algorithms in adaptive streaming over HTTP." In Proceedings of the Second Annual

ACM Conference on Multimedia Systems, New York, NY, 2011, pp. 157-168.
[10] David Hassoun. (2010, August) Dynamic streaming in Flash Media Server 3.5. 2013.
[11] R. van Brandenburg, O. van Deventer, F. Le Faucheur, and K. Leung, "Models for HTTP-

Adaptive-Streaming-Aware Content Distribution Network Interconnection (CDNI)," Internet

Engineering Task Force, Informational RFC 6983, July 2013.
[12] Stefan Kaiser, Stefan Pham, and Stefan Arbanowski, "MPEG-DASH enabling adaptive streaming

with personalized commercial breaks and second screen scenarios." In Proceedings of the 11th

European Conference on Interactive TV and Video, New York, NY, 2013, pp. 63-66.
[13] Adobe Systems, Inc., "Adobe’s Real Time Messaging Protocol," 2012.

[14] (2013, June) OSMF Wiki. [Online].

http://sourceforge.net/apps/mediawiki/osmf.adobe/index.php?title=Flash_Media_Manifest_%28F4

M%29_File_Format
[15] John Crosby. (2011, March) The Kuroko. [Online]. http://www.thekuroko.com/what-is-http-

dynamic-streaming/

[16] Ed Pantos and W. May. (2013, April) HTTP Live Streaming. Internet-Draft.

[17] Microsoft Corporation. (2010, March) The Protected Interoperable File Format (PIFF).

[18] Microsoft Corporation, "Microsoft PlayReady Content Access Technology," White Paper, 2008.

[19] International Organization for Standardization. (2012, April) ISO/IEC 23009-1: Information

technology — Dynamic adaptive streaming over HTTP.

[20] Christian Timmerer and Carsten Griwodz, "Dynamic adaptive streaming over HTTP: from content

creation to consumption." In Proceedings of the 20th ACM International Conference on

Multimedia, New York, NY, 2012, pp. 1533-1534.

[21] MPEG-DASH Industry Forum. (2013) Overview of DASH-MPEG Standard. [Online].

http://dashif.org/mpeg-dash/

[22] Christopher Müller and Christian Timmerer, "A VLC media player plug-in enabling dynamic

adaptive streaming over HTTP." In Proceedings of the 19th ACM International Conference on

Multimedia , New York, NY, 2011, pp. 723-726.

[23] Scott Sheridan. (2011, July) Realeyes. [Online]. http://www.realeyes.com/blog/2011/07/27/http-

dynamic-streaming-part-1-an-introduction/

[24] Q. Wu and R. Huang. (2010, October) Problem Statement for HTTP Streaming. Internet-Draft.

* TED D. MONCHAMP is a software developer at Creative Logistics Solutions. He graduated from Rivier University in

2011 with a B.S. in Computer Science, and is currently pursuing a Master's in Computer Science there as well. In the little

free time he has left over, Ted mentors students interested in programming with Londonderry High School's FIRST

Robotics team, and enjoys studying chemistry and foreign languages.

