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Abstract

The role of phenomena found in linguistics, physiology, and psychology is analyzed in various
computing applications, including cryptology, image processing, and software engineering. Simple
mathematical concepts (statistics, probability, graphs, and approximation formulas) contribute to the
successful merge of sciences. Java applets and software tools are developed to demonstrate these
applications.

1. Introduction

The merge of mathematics, electrical engineering, and electronics has successfully contributed to the
development of computing devices and numerous applications of computers in various aspects of
everyday life of people, social groups, and sciences. The objective of this paper is to review various
computing applications that involve unique phenomena acquired from other sciences (e.g., linguistics,
physiology, and psychology), as well as to explore some practical applications with the developed
computing tools. The algorithms and codes were examined by undergraduate and graduate students in
Discrete Mathematics, Algorithms, Computer Science Fundamentals, Computer Networks, Computer
Security, Software Engineering, and other courses taught by the author.

2. Deciphering with the Linguistic Letter-Frequency Analysis

Modern methods of deciphering use traditional mathematical concepts from the theory of numbers,
Galois Fields, and probability. For several decades the substitution cipher approach with the Letter
Frequency Analysis [1, 2, 3] has been also effectively used. To explore this approach, which is based on
applying the linguistic properties of an original plaintext, students make some assumptions about the
plaintext:

That the plaintext consists of characters, not some kind of binary code.

That it is written in some natural language with known linguistic properties (e.g., English).
That we know the frequency of letters in a typical large piece of text in that language.

That the plaintext is typical of normal English text, and so we expect the same frequencies of
letters (approximately, within statistical fluctuations).

As long as we know that there is a 1-to-1, unique mapping from plaintext to ciphertext (and,
therefore, from ciphertext to plaintext), we can employ our knowledge of those letter frequencies to
crack a substitution cipher. It is important to note that we need a large enough piece of text to give us
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some expectation that we have a large statistical sample. The longer the message, the better statistical
sample we are likely to have.

Known letter frequencies in typical English text may be found on the web [3]. A typical
representation of the letter frequencies in traditional English (E, T, A, O, I, N, S ...) is shown on the bar
chart (see Fig. 1, right). The Java tool [4] allows a student to view the letter frequencies for the
ciphertext being examined (Fig. 1, center). Students may display letter frequencies in alphabetic order,
or in order by frequency. If one of the characters has a 20%, then the language may be German since it
has a very high percentage of E. Italian has 3 letters with a frequency greater than 10% and 9 characters
are less than 1% [5].
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Figure 1. Deciphering the structured ciphertext. Mono-Alphabetic Cipher Breaker (left) and letter
frequencies in typical English (right).

The linguistic analysis [5] also shows that common pairs in English are consonants TH and vowels
EA. Others are OF, TO, IN, IT, IS, BE, AS, AT, SO, WE, HE, BY, OR, ON, DO, IF, ME, MY, UP.
Common pairs of repeated letters are SS, EE, TT, FF, LL, MM and OO. Common triplets of text are
THE, EST, FOR, AND, HIS, ENT or THA.

The Mono-Alphabetic Cipher Breaker Java applet [4] (see Fig. 1, left) was used for deciphering the
structured ciphertext (620 words; 2,485 letters out of 3,533 characters), where the original word spacing,
punctuation, and style have been retained. Travis Brant, a CS graduate student, wrote in the assignment
report: “...The solution was reached by only using the statistical distribution for the first three
characters. Once those were in place, the text was long enough that searching for uncommon words with
only one missing character was easily done. Once this practice was put into place, decoding the bulk of
the message was reduced to an iterative process of searching for the next nearly-complete word.
Decoding this message took about fifteen minutes.”
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Figure 2. Deciphering the ciphertext organized in groups of four letters. MonoAlphabetic Cipher
Breaker (left) and letter frequencies in typical English (right).

The second ciphertext (25,955 words; 103,818 letters out of 129,772 characters) was organized in
groups of four letters and word spacing and punctuation have been removed. The absence of the content
clues (word spacing and punctuation) makes it more difficult to decipher the ciphertext, while the larger
sample allows greater use of letter frequency analysis (see Fig. 2). Travis Brant reported:

“... Deciphering this example was much more difficult than anticipated. The lack of preserved
whitespace and punctuation made searching for possible word separation difficult. Once
statistical analysis was performed on the text, there was little exposed that seemed correct. The
only word that stuck out was the end of the first line, “ENAT IONS”. | figured that this was as
good of a start as any. Next, | caught some word pairings on the first three sections of line thirty,
“OCIM ONTI NUED”. At this point, | swapped M for C to create “O?IC ONTI NUED”. At this
point swapping Z for R brought more words forth. A large breakthrough was reached when L
was swapped for G, spelling “GULL IVER” as the first words. From here, | looked up a sample
of the text from this story “Gulliver’s Travels” and saw that the message was the text from
Jonathan Swift’s work. | used the text from the book to identify and fix the remaining glitches in
the decoded text, and was finished. The message was indeed the story of “Gulliver’s Travels” by
Jonathan Swift. This problem took about one-and-a-half hour of analysis to decipher”.

To reduce the time of deciphering this unstructured ciphertext, one student even wrote the
customized UNIX scripts and a standard UNIX dictionary to help with the mechanics of the solution [1].
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3. Reduction of the Programming Code Complexity

In the second case study, the structured testing methodology [6, 7] and graph-based metrics (cyclomatic
complexity, essential complexity, module design complexity, system design complexity, and system
integration complexity) have been reviewed by students and applied for studying the C-code complexity
and estimating the number of possible errors and required unit and integration tests for the Carrier
Networks Support system [8]. Comparing different code releases, it is found that the reduction of the
code complexity leads to significant reduction of errors and maintainability efforts.

For each module (a function or subroutine with a single entry point and a single exit point), an
annotated source listing and flowgraph is generated as shown in Fig. 3. The flowgraph is an architectural
diagram of a software module’s logic.

Statement Code “main” Flowgraph
Number
1 main()
9 { node: statement or block
3 printf(“Hello!”); of sequential statements
; if S’E}: 10) -« condition
6 else o
7 h; — X
8 printf(“End”);
) } . « end of condition

edge: flow of control

e <« between nodes

Figure 3: The annotated source listing and the related flowgraph.

Cyclomatic complexity, v, is a measure of the complexity of a module’s decision structure [6, 7]. It
is the number of linearly independent paths and, therefore, the minimum number of paths that should be
tested to reasonably guard against errors. A high cyclomatic complexity indicates that the code may be
of low quality and difficult to test and maintain. In addition, empirical studies have established a
correlation between high cyclomatic complexity and error-prone software [8]. The results of
experiments by Miller [9] suggest that modules approach zero defects when the McCabe’s Cyclomatic
Complexity is within 7 + 2. Therefore, the threshold of v-metric is chosen as 10. Miller’s psychological
experiments have led to the reduction of the programming-code complexity.

A node is the smallest unit of code in a program. Edges on a flowgraph represent the transfer of
control from one node to another [6]. Given a module whose flowgraph has e edges and n nodes, its
cyclomatic complexity is v = e - n + 2. This complexity parameter equals the number of topologically
independent regions of the graph and correlates with the total number of logical predicates in the module
[6, 7] (see Fig. 4).
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Edges and Nodes Method:
v=e—-n+2
e=12,n=8
v=12-8+2=86

Predicate Method:

V=2 + 1

21 = 5, sum of predicates
v=5+1=6

Region (Topological) Method:
v = kR, sum of regions R
2R=6

V=6

Figure 4: Three methods of evaluating the cyclomatic complexity (v) of the graph.
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Branching out of a loop. Branching into a loop. Branching into a decision. ~ Branching out of a decision.

Figure 5: Examples of the unstructured logical constructs.

Essential complexity, ev, is a measure of unstructuredness, the degree to which a module contains
unstructured constructs [7, 8] (see Fig. 5), which decrease the quality of the code and increase the effort
required to maintain the code and break it into separate modules. When a number of unstructured
constructs is high (essential complexity is high), modularization and maintenance is difficult. In fact,
during maintenance, fixing a bug in one section often introduces an error elsewhere in the code [7, 8].

Essential complexity is calculated by removing all structured constructs from a module’s flowgraph
and then measuring the cyclomatic complexity of the reduced flowgraph [7, 8] shown in Fig. 6. The
reduced flowgraph gives you a clear view of unstructured code. When essential complexity is 1, the
module is fully structured. When essential complexity is greater than 1, but less than the cyclomatic
complexity, the module is partly structured. When essential complexity equals cyclomatic complexity,
the module is completely unstructured. The unstructured modules should be recommended for
redesigning.
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Original flowgraph, v =5. Reduced flowgraph, v =3, ev =3. Superimposed flowgraph, v =5, ev = 3.

Figure 6: Evaluation of the essential complexity of the flowgraph.

Applying this approach, students in the Software Quality Assurance course were required to
identify major factors that forced programmers to change the code [8] in the project redesign efforts.
After analysis of the project software (about 300,000 lines of C-code), 271 modules of the old Code
Release 1.2 [8] were recommended for redesign. The re-engineering efforts resulted in the deletion of 16
old modules and in the addition of 7 new modules for the new Code Release 1.3. Analyzing the deleted
modules, students found that 7 deleted modules were unreliable (v > 10) and 6 deleted modules were
unmaintainable (ev > 4). Also, 19% of the deleted code was both unreliable and unmaintainable.
Moreover, all new modules were reliable (v <10) and maintainable (ev < 4).

4. Estimating the Number of Errors in the Programming Code

The third case study is designed to introduce Halstead’s metrics [10] and explore the physiological
phenomenon of human-brain restrictions [11] in estimating the number of projected errors in the
programming code. The McCabe IQ™ tool has been used in producing Halstead metrics [10] for codes
written in selected programming languages. Supported by numerous industry studies [7], the B-metric of
Halstead represents the estimated number of errors in the program.

The concept of event-discriminations was introduced by John M. Stroud, a psychologist, in “The
Fine Structure of Psychological Time” [11], where he defined a “moment” as “the time required by the
human brain to perform the most elementary discrimination” [10, p. 48]. He reported that, for all
waking, conscious time, these “moments” occurred at a rate of “from five to twenty or a little less” per
second, which is known nowadays as the Stroud number, S [10]. His study was based on the analysis of
the internal processing rate of the brain that correlates with the range of the number of frames per second
which a motion picture should have to appear as a continuous picture rather than as single frames.
Halstead [10] applied this concept to the evaluation of discriminations in input/output program events.
Finally, the Stroud number, S, was used by Halstead in estimating the programming time, 7 = E/S,
where E is the number of elementary mental discriminations required for the program implementation.

The linguistic complexity of various languages (English, PL/I, Algol, Assembly, and others) was
studied by Halstead [10, pp. 62-70] for estimating the language level parameter (1 = 2.16) that was used
in calculating the mean number of elementary discriminations between potential errors in programming
(Eo = 3000), and, finally, the number of “delivered” bugs, B = E”/Eq.
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5. Exploring How Pictures Resolved in Human Vision Are Represented on a Computer

In the last case study, we explore how pictures resolved in human vision are represented on a computer.
In nature, visible light is a continuous spectrum with wavelengths between 370 and 730 nanometers. But
the human perception of light is limited by how human eye color sensors work [12]. Perception of color
begins with specialized retinal cells containing pigments with different spectral sensitivities, known as
cone cells. In humans, there are three types of cones sensitive to three different spectra, resulting in
trichromatic color vision. The cones are conventionally labeled according to the ordering of the
wavelengths of the peaks of their spectral sensitivities: short (S), medium (M), and long (L) cone types.
While the L cones have been referred to simply as red (R, 620-740 nm) receptors,
microspectrophotometry has shown that their peak sensitivity is in the greenish-yellow region of the
spectrum (see Table 1 and Fig. 7, below). Similarly, the S- and M-cones do not directly correspond to
blue (B, 450-495 nm) and green (G, 495-570 nm), although they are often described as such. The RGB
color model, therefore, is a convenient means for representing color, but is not directly based on the
types of cones in the human eye.

Table 1. Characteristics of the cone cells in the human eye [12]

[Cone type|[Name|| Range _||Peak wavelength|
[ s | p |400-500 nm|[ 420440 nm |
[ M ][ y |450-630 nm|| 534-555nm |
[ L | p |500-700 nm|| 564-580 nm |

N\

e T S S [ T S S S
450 500 550 600 650 700
Wavelength (nm)

Figure 7: Normalized response spectra of human cones, to monochromatic spectral stimuli, with
wavelength given in nanometers [12].

Normalized cone response (linear energy)

P
400

Many species can see light with frequencies outside the human "visible spectrum". Bees and many
other insects can detect ultraviolet light, which helps them to find nectar in flowers. Birds can also see
into the ultraviolet (300-400 nm), and some have sex-dependent markings on their plumage that are
visible only in the ultraviolet range. Many animals that can see into the ultraviolet range, however,
cannot see red light or any other reddish wavelengths. Mammals in general have color vision of a
limited type, and usually have red-green color blindness, with only two types of cones [12].

Based on the human perception of light, each pixel is encoded as a triplet of numbers that represent
the amounts of red, green, and blue. Therefore, any human-visible color can be made up by combining
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red, green, and blue. This concept is known as the RGB color model [12, 13]. Each color channel in a
pixel is typically represented with a single byte (1 byte = 8 bits), which can represent 28 = 256 patterns.
Finally, three channels in a pixel can use 3-8 = 24 bits to represent 224 = 16,777,216 patterns of different
colors.

The set of simple programs written in Jython (Python implemented in Java) [13] can be effectively
used for manipulating pictures by making a picture object out of a JPEG file, then changing the pixels
(the red, green, and blue components) in the picture. This approach can be used for increasing or
decreasing color components, clearing any color component from a picture, lighten or darken the
picture, creating a negative, converting to grayscale, mirroring the image, copying a picture to a canvas,
creating a collage, rotating (flipping) a picture, reducing red-eye, blurring the image, etc. The example
of creating the negative image with the Jython program is shown in Fig. 8, below.

a) Original image (© V. Riabov’s photograph) k b) Negative image

Figure 8: Creating the negative image with the Jython program

The Jython program code listing and the commands of the code execution are shown in Fig. 9.

def negative(picture): >>> file=pickAFile ()
for px in getPixels(picture): >>> print file
red=getRed(px) C:\Users\VladimirnDocuments\JES-Cases\JES-
green=getGreen(px) ICTCM-2017\First_flowers_small.jpg
blue=getBlue(px) >>> picture=makePicture (file)
negColor=makeColor( 255-red, 255-green, >>> show (picture)
255-blue) >>> =—====== Loading Program =======
setColor(px,negColor) >>> negative(picture)
>>> repaint(picture)
a) “Negative” Program in Jython b) JES Jython commands

Figure 9: The Jython program code listing and the commands of the code execution in the negative
image generation case.

The other example (below) demonstrates the creation of the mirror image symmetrical to the
central vertical line.
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a) Original image (© V. Riabov’s photograph) b) Symmetrical image

Figure 10: Creating the mirror image (symmetrical to the central vertical line) with the Jython program

The Jython program code listing and the commands of the code execution for creating the mirror
image are shown in Fig. 11.

def mirrorVertical(source): >>> file=pickAFile ()
mirrorpoint=getWidth(source)/2 >>> picture=makePicture (file)
for y in range(1,getHeight(source)): >>> show (picture)
for xOffset in range(1,mirrorpoint): >>> ======= | pading Program =======

pright=getPixel(source, xOffset+mirrorpoint,y) | >>> mirrorVertical(picture)
pleft=getPixel(source, mirrorpoint-xOffset,y) >>> repaint(picture)

c=getColor(pleft)
setColor(pright,c)

a) “mirrorVertical” program in Jython b) JES Jython commands

Figure 11: The Jython program code listing and the commands of the code execution in the mirror-
image creation case.

These exercises have been effectively used in the introductory Computer Science courses that
motivated non-CS majors to explore in depth the image-processing techniques and create simple
programs, applications, and tools. Jython Environment for Students (JES) is available on the CD in the
back of the Guzdial’s textbook [13] or can be downloaded from http://coweb.cc.gatech.edu/mediaComp-
plan/MediacompSoftware/.

After in-class discussions of the case studies, each student continued working on a selected case
analyzing algorithms, creating computer codes (in Java/Jython or C/C++), running them at various
parameters, comparing numerical results with known data, and presenting the findings to classmates.

6. Conclusion

The author has described several computing applications that involve unique phenomena acquired from
linguistics, psychology, and physiology: deciphering with the linguistic letter-frequency analysis;
reduction of the programming code complexity using the data from Miller’s psychological experiments;
estimation of the number of errors in the programming code using the Stroud’s concepts of event-
discriminations and “psychological time”; and exploring how pictures resolved in human vision are
represented on a computer. These theoretical concepts, algorithms, practical applications, and the
developed computing tools and codes were thoroughly examined by undergraduate and graduate
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students in Discrete Mathematics, Algorithms, Computer Science Fundamentals, Computer Networks,
Computer Security, Software Engineering, and other courses taught by the author. In the course
evaluations, students stated that they became deeply engaged in course activities through examining the
challenging problems related to the advanced concepts from the described theories and practical
applications. m
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