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Abstract 

Students have used computer programs and created their own programming codes based on exponential 

box-scheme approximations for solving systems of nonlinear differential equations that contain small 

parameters for the highest derivative terms or singularities in boundary conditions. The uniform second-

order accuracy is obtained for functions and derivatives in this approach. The methodology is widely applied 

to practical studies of boundary layers with gas injection and combustion. 

In the Memory of Ludwig Prandtl and Paul Richard Heinrich Blasius 

  
Dr. Ludwig Prandtl. From [R1] Dr. Heinrich Blasius. From [R7] 

 

Ludwig Prandtl (Feb. 4, 1875 — Aug. 15, 1953) was a German physicist who is considered to be the 

father of aerodynamics [R1]. From 1904 to 1953, he served as professor of applied mechanics at 

the University of Göttingen, where he established a school of aerodynamics and hydrodynamics that 

achieved world renown [R2]. In 1925 he became director of the Kaiser Wilhelm (later the Max Planck) 

Institute for Fluid Mechanics. His discovery (1904) [R3] of the boundary layer, which adjoins the 

surface of a body moving in air or water, led to an understanding of skin friction drag and of the way in 

which streamlining reduces the drag of airplane wings and other moving bodies [R1]. On August 

8th 1904, he delivered a groundbreaking paper, Über Flüssigkeitsbewegung bei sehr kleiner 

Reibung (On the Motion of Fluids in Very Little Friction), at the Third International Mathematics 

Congress in Heidelberg [R3]. In this paper (republished in [R4] and discussed in detail in [R5, R6]), he 

described the boundary layer and its importance for drag and streamlining. Several of his students made 
attempts at closed-form solutions, but failed. 
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Paul Richard Heinrich Blasius (9 August 1883 – 24 April 1970) was a German fluid dynamics 

physicist [R7], one of the first students of Dr. Ludwig Prandtl [R8], who first successfully computed (in 

1908) the steady two-dimensional laminar flow in the boundary layer that forms on a semi-infinite plate, 

which is held parallel to a constant unidirectional flow, as an explicit solution of the Prandtl equations 

[R9]. 

STATEMENT 

Motivation 

This case study promotes the development of numerical methods for solving singular (ordinary or 

partial) differential equations with small coefficients for the highest derivative terms. This singularity 

leads to the formation of regions with small linear dimensions where gradients of functions are large 

thus making numerical steps unsteady. (The analytical analyses of these zones do not provide reliable 

quantitative data estimations). The numerical analysis of such problems by traditional box-schemes is 

restricted by non-uniform convergence or even divergence of numerical solutions. In this case study, 

students will find the numerical solutions of the model singular ordinary differential equation evaluated 

for the linear boundary value problem. The developed numerical method (based on exponential box-

schemes) can be used for the analysis of gas flow parameters in boundary layers and viscous shock 

layers under the conditions of gas injection from the body surface. The practical applications of this 

methodology include the active heat protection methods for spacecraft and analyses of supersonic 

hydrogen combustion regimes in engines of modern hypersonic vehicles. 

1. Introduction 

Experimental, analytical, and numerical studies of fluid flows are challenging, but they are always 

promising with strong practical applications in sciences and engineering. 

 

 
Figure 1. Blasius boundary-layer profile on a flat plate. Photograph by F. X. Wortmann. From Milton 
Van Dyke’s “An Album of Fluid Motion” [R10, page 22]. 
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As an example, Milton Van Dyke [R10] describes the tangential velocity profile in the laminar 

boundary layer on a flat plate (see Figure 1), discovered by Ludwig Prandtl in 1904 [R3] and calculated 

accurately by his student, Paul Richard Heinrich Blasius in 1908 [R9], which is made visible by 

tellurium. Water is flowing (from left to right) along the plate at 9 cm/s. The Reynolds number (Red = 

ρ∞u∞d/μ∞) is 500 based on distance d from the leading edge, and the displacement thickness [1] is about 

5 mm. (Here index ∞ indicates parameters in the upstream flow, ρ is density, u – steam velocity, and μ – 

medium viscosity). A fine tellurium wire perpendicular to the plate at the left is subjected to an electrical 

impulse of a few milliseconds duration. A chemical reaction produces a slender colloidal cloud, which 
drifts with the steam and is photographed a moment later to define the velocity profile. The photograph 

was taken by F. X. Wortmann [R10].  

In general, the fluid flow of a continuous medium is described by the Navier-Stokes differential 

equations (see [1, pp. 47-69] and [R11, p. 406]. These equations are nonlinear, and, in the subsonic 

range, they are of elliptic type [R11]. Only a few explicit solutions are known; also, it is quite difficult to 

determine approximation solutions [R12, R13]. Therefore, several attempts were made to simplify the 

Navier-Stokes equations [R14] by omitting nonessential terms. In 1904 [R3], Ludwig Prandtl obtained 

his famous boundary-layer equations [R11, p. 407] that are also nonlinear, but parabolic ones, and hence 

much “simpler” from the theoretical and practical points of view than the “classical” Navier-Stokes 

differential equations. Right after Prandtl’s discovery, the boundary-layer theory has become an 

invaluable modeling approach in various practical applications related to fluid flow studies [R14]. In 

1908, Blasius [R9] first successfully computed the flow over a flat plate as an explicit solution of the 

Prandtl equations. Many other new results [1] were obtained in the XX century with the aid of the 

Prandtl concept, including the studies of two- and three-dimensional, steady, and unsteady flows of an 

incompressible or compressible medium consisting of one or multiple components, with or without 

energy addition, under the influence of electromagnetic or gravitational forces, etc., etc. [R11]. 

Herbert Keller [R15] made an overview of numerical methods used in boundary-layer theory. 
Many scholars continue these efforts offering new computing techniques [5-8] and programming codes 

[R16, R17] with adaptations to new complex practical applications. 

Recommended Preliminary Readings 

Students are encouraged to read a few articles before starting the simulation of gas injection into a 

boundary layer: 

[R10] Van Dyke, Milton. An Album of Fluid Motion. Stanford, CA: Parabolic Press, 1982, 176 p. 

[Online] http://courses.washington.edu/me431/handouts/Album-Fluid-Motion-Van-Dyke.pdf  

○ Read Chapter 2 “Laminar Flow” (pp. 18-23); 

○ Review Photograph #30 “Blasius boundary-layer profile on a flat plate” (p. 22). 

[1] Schlichting, H. Boundary-Layer Theory, 7th edition. New York: McGraw-Hill, 1979. [Online} 

http://ae.sharif.edu/~viscousflow/Schlichting - Boundary Layer Theory.pdf 

o Review the properties of Navier-Stokes differential equations (pp. 47-69).  

o Review the properties of boundary-layer equations for two-dimensional flow (pp. 127-143). 

Exploring Numerical Solutions of Prandtl-Blasius Boundary Layer Equation using Maple and 

MATLAB Codes 

Students could use the Maple code [R16] (available in the Supplements folder) that utilizes the Runge-

Kutta method to explore numerical solutions of Prandtl-Blasius boundary layer equation: 



Vladimir V. Riabov  

 

                       4  

[R16] Sun, Bo-Hua. “Solving Prandtl-Blasius Boundary Layer Equation Using Maple.” Preprint. 5 

Sept. 2020. DOI:10.20944/preprints202008.0296.v2. Available from 

https://pdfs.semanticscholar.org/. 
 

Optionally, the similar study can be conducted using the MATLAB code [R17] (also available in 

the Supplements folder): 

[R17] Bani-Hani, E.H., and Assad, M. E. H. “Boundary-Layer Theory of Fluid Flow past a Flat 

Plate: Numerical Solution Using MATLAB.” International Journal of Computer Applications, 
2018, 180(18): 6-8. DOI: 10.5120/ijca2018916374. [Online] 

https://www.researchgate.net/publication/323218834_Boundary-

Layer_Theory_of_Fluid_Flow_past_a_Flat-Plate_Numerical_Solution_using_MATLAB. 

Modern Challenges 

Various modern problems of applied mathematics, thermophysics, and aerodynamics (e.g., stability of 

boundary layers [1], supersonic hydrogen combustion in hypersonic-vehicle engines [2], and active 

methods of heat protection of aerospace vehicles [3]) lead to solving differential equations with small 

coefficients for the highest derivatives and/or at singular boundary conditions. The latter leads to the 

formation of regions with small linear dimensions where gradients of functions are large. The numerical 

analysis of such problems by traditional box-schemes [4] is limited by non-uniform convergence or even 

divergence of numerical solutions. In this study, the numerical solutions of the model singular ordinary 

differential equation [5] have been evaluated for the linear boundary value problem. The developed 

numerical method is used for the analysis of gas flow parameters in boundary and viscous shock layers 
under the conditions of gas injecting from the body surface. 

From a mathematical point of view, the increase of the flow rate of gas injection or chemical-

reaction rates is equivalent to the existence of a small coefficient for the highest derivative in the 

boundary-layer (BL) equations [4, 6]. A sublayer with large gradients of functions is created. The gas 

flow in the boundary layer is studied using a three-point uniform exponential box-scheme [6] and an 

effective regularization algorithm [7]. The identical problem was considered in [7] by using a two-point 

exponential box-scheme. 

A similar phenomenon is observed in the case of hydrogen combustion at small Reynolds number 

Re0 < 100 [3, 8]. In this study the models of diffusive combustion of hydrogen, which is injected with 

different intensity from the surface of a parabolic cylinder into airflow, are considered by using the thin-

viscous-shock-layer (TVSL) approach [9] at moderate Reynolds numbers 1500 > Re0 > 100. 

2. The Model Linear Boundary Value Problem 

2.1 Analytical Solution of the Model Second-Order Ordinary Differential Equation with Constant 

Coefficients 

In general, this method is designed for solving the following model equation: 
 

    εu′′ + au′ – bu = d       (1) 
 

Here the parameter ε can take on very small magnitudes, and a ≥ 0, b ≥ 0. The solution of (1) with 

constant coefficients is the following [6]: 

 
(2) 

https://pdfs.semanticscholar.org/
https://www.researchgate.net/publication/323218834_Boundary-Layer_Theory_of_Fluid_Flow_past_a_Flat-Plate_Numerical_Solution_using_MATLAB
https://www.researchgate.net/publication/323218834_Boundary-Layer_Theory_of_Fluid_Flow_past_a_Flat-Plate_Numerical_Solution_using_MATLAB
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(3) 

 

(4) 

 

where A and B are arbitrary constants, and η is the independent variable. 

Finding the Solution of the Model Equation 

Students are asked to find the general solution (2) of the model equation (1) with constant parameters ε 

> 0, a ≥ 0, and b ≥ 0. 

2.2 Designing the Box Scheme 
 

 
 

Figure 2. The box-scheme for the three-point u-function approximation. 
 

The three-point uniform exponential box-scheme was introduced in [6] (see Figure 2 for details). The 

entire x-argument domain is divided by N intervals (cells) of the same size h = xi – xi-1, i = 1, …, N. We 

are trying to numerically calculate the values of function ui in the corresponding points xi. The solution 

(2-4) that includes exponents is used to obtain the box-scheme characteristics by considering that the 

functions as well as the derivatives are continuous in the cells [6, 7]. The identical problem was 

considered in [7] by using a two-point exponential box-scheme with estimating functions only in centers 

of two neighboring cells.  

2.3 Numerical Solution of the Linear Boundary Value Problem 

The linear boundary value problem is studied for the following model singular ordinary differential 
equation [5] and boundary conditions: 
 

εu′′ – (1 + x2)u = – (4x2 – 14x + 4)(1 + x)2   (5) 

  u(0) – u′(0) = 0      (6) 

  u(1) + u′(1) = 0      (7) 
 

We can expect that the solution of (5)-(7) is sensitive to the value of ε near the x-variable domain 

boundaries. (A similar effect is observed in the boundary layers [1]). The numerical solutions of (5) with 

boundary conditions (6) and (7) have been calculated by using the three-point exponential box-scheme 
[6] described above (the FORTRAN program RPMEB is listed in Appendix-A). The results for the 

function u and its derivative u′ calculated at the cell sizes h = 1/128 are shown in Figure 3. At various 

parameters ε, these demonstrate the formation of regions with small linear dimensions where gradients 

of functions are large. 
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a) Function u b) Function u′ 
 

Figure 3. Functions u and u′ as solutions of the linear boundary-value problem (5) – (7). 

Solving Numerically the Model Singular Ordinary Differential Equation 

Students are instructed to use the FORTRAN program RPMEB (listed in Appendix-A) for solving 

numerically the model singular ordinary differential equation (5) with boundary conditions (6)-(7) at the 
cell size h = 1/128 and various values of parameter ε = ½, ¼, 1/8, 1/16, 1/32, 1/64, 1/128, and 1/256, and 

observe the behavior of function u and its derivative u′ near the interval boundaries at x ≥ 0 and x ≤ 1. 

3. Uniform Convergence of Box-Schemes 

The three-point box-scheme was offered by El-Mistikawy and Werle [6] for the solution of the boundary 

value problems, which could be described by (5). They assumed that this box-scheme is uniform and of 

the second order. These properties of the box scheme were proven by Doolan et al. [5] under the 

conditions b = 0 (see (1) above). An accurate numerical analysis of the determination of the order of 

uniform convergence of both the two-point and three-point box-schemes has been conducted in [7] by 

the method of Doolan et al. [5] Two steps (A and B) of calculations were used. 

 

Step A: The parameters zk,ε are calculated: 
 

zk,ε = max│uj
h/m(k) – u2j

h/m(k+1)│, where m(k) = 2k, k = 0, 1, ...         (8) 
 

The maximum is estimated in all grid cells. The parameter h is the size of the largest cell. 

 

Step B: The criterion of the uniformity is assessed: 
 

               zk,ε ≤ C(h/2k)P,   k = 0, 1, ...               (9) 
 

Here P is the order of uniform convergence. Assume, that the criterion (9) is equivalent to the 

criterion: 

zk,ε ≤ Cε(h/2k)Pε,    k = 0, 1, ...                   (10) 
 

where parameters Cε and Pε are independent of the parameter k, and therefore, the parameter Pε 

could be estimated by formula: 
 

Pε = log2(zk,ε/zk + 1,ε)                       (11) 
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Compared to the study of Doolan et al. [5] the calculations of the parameters in (11) have been 

conducted with double precision. The order of uniform convergence Pε has been estimated by the 

considered procedure of calculations at constant ε and at h → 0. The values of the parameter Pε have 

been calculated for the linear boundary-value problem (5)-(7) using the FORTRAN program RPMEB 

(listed in Appendix-A). 

Studying the Uniform Convergence of Exponential Box-Schemes 

Students are instructed to use the FORTRAN program RPMEB (listed in Appendix-A) for solving 

numerically the model singular ordinary differential equation (5) with boundary conditions (6)-(7) at 

various values of parameter ε = ½, ¼, 1/8, 1/16, 1/32, 1/64, 1/128, and 1/256, and various cell sizes h = 

1/8, 1/16, 1/32, 1/64, and 1/128. Following algorithm (8)-(11), they calculate values of the parameter Pε 

(the estimated order of uniform convergence) for function u and its derivative u′ at various values of ε 

and h. The results are shown in Tables 1 and 2, correspondingly (see the sample of students’ report 

below). 

Table 1: Parameters Pε for function u at various values of ε and h 

ε h=1/8 h=1/16 h=1/32 h=1/64 h=1/128 

1/2 1.998 1.999 2.000 2.000 2.000 

1/4 1.995 1.999 2.000 2.000 2.000 

1/8 1.990 1.997 1.999 2.000 2.000 

1/16 1.979 1.995 1.999 2.000 2.000 

1/32 1.959 1.989 1.997 1.999 2.000 

1/64 1.921 1.978 1.994 1.999 2.000 

1/128 1.924 1.958 1.989 1.997 1.999 

1/256 1.932 1.983 1.992 1.994 1.999 
 

Table 2: Parameters Pε for function u′ at various values of ε and h 

ε h=1/8 h=1/16 h=1/32 h=1/64 h=1/128 

1/2 1.988 2.000 2.000 2.000 2.000 

1/4 1.996 1.997 2.000 2.000 2.000 

1/8 1.992 1.997 1.999 2.000 2.000 

1/16 1.984 1.992 1.999 2.000 2.000 

1/32 1.959 1.992 1.998 1.999 2.000 

1/64 1.934 1.980 1.996 1.999 2.000 

1/128 1.874 1.966 1.991 1.998 1.999 

1/256 1.772 1.931 1.982 1.995 1.999 
 

In the case of the three-point box-scheme, the magnitudes Pε are shown in Tables 1 and 2 for 

functions u and u′, correspondingly, which represent the solutions of (5)-(7). The obtained data leads to 

the conclusion that this exponential box-scheme is of second order (Pε ≈ 2.0) for the uniform 

convergence characterized by the criteria (8)-(10). 

4. Gas Injection into a Boundary Layer 

Consider the perfect-gas flow in the boundary layer (BL) near the flow-stagnation point of a blunt body 

with uniform gas injection from the body surface [1]. The flow properties can be characterized by the 
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tangential component of the velocity U, enthalpy S, and their derivatives U´, U´´, S´, and S´´ along the 

normal Y. The system of BL equations acquires the following form [4, 7]: 
 

U´´ + fU´ + β(S + 1 – U2) = 0               (12) 

f´ = U´                    (13) 

S´´ + σfS´ = 0                   (14) 
  

where the Faulkner-Scan constant [1] β = (1 + j)-1 characterizes the pressure gradient in inviscid 

flow; j = 0 or 1 in plane and axisymmetric cases (e.g., near the blunt plate or axisymmetric cylinder) 
correspondingly; and σ = ν/κ = 0.72 is the Prandtl number (here ν is kinematic viscosity and κ – 

coefficient of thermal diffusivity).  

Boundary conditions are the following: 
 

At the body surface (Y = 0) considering the gas injection: 
 

    f = fw = const, U´ = 0, S = Sw                  (15) 
 

At the external boundary of the layer (Y → ∞): 

    U = 1, S = 0.               (16) 
 

In (15) the parameter fw characterizes the mass flow rate of the gas injected from the body to the 

boundary layer. Special box-schemes with uniform convergence [5, 10] or exponential schemes [4, 6, 7] 

should be used in order to solve the problem at large values of the parameter │fw│. The exponential 

box-schemes developed [6, 7] have the second order of uniform convergence. The above-considered 

three-point exponential box-scheme has been used for the numerical solution of (12)-(16) under the 

conditions of moderate and intensive gas injection (│fw│ > 0) from the thermally isolated body surface 

(Sw = 0). (The FORTRAN program RPEBOX3 is listed in Appendix-B). 

Studying the Effects of Gas Injection into a Boundary Layer 

Students are instructed to use the FORTRAN program RPEBOX3 (listed in Appendix-B) for solving 

numerically the system of BL equations (12)-(14) with boundary conditions (15)-(16) at various gas-

injection parameters (fw = 0, –2.5, –10, –25). We expect that students obtain the profiles of the tangential 

component of the velocity U and its derivative U´ along the normal Y at the stagnation point on the 

surface of the axisymmetric blunt body (β = 0.5) that are similar to those shown in Figure 4 for various 

gas-injection parameters (fw = 0, –2.5, –10, –25). The presence of the injected gas flow significantly 

changes the flow structure. As the gas-injection rate │fw│ increases, the boundary layer becomes thicker 
(see the changes of profiles of the tangential component of the velocity U shown in Figure 4a), and the 

friction on the body surface decreases (see the changes of profiles of derivative of the tangential 

component of the velocity U´ shown in Figure 4b). 
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a) Function U b) Function U´ 

 

Figure 4. Functions U and U´ across the boundary layer for various gas injection factors. 

Supplements  

The case-study supplementary materials (computer codes and files listed in Appendix C) will be 

available for students and instructors from the website: https://www.simiode.org/resources/8640. 

Downloading Software 

If your school does not have a license for running MATLAB software, then a student can get MATLAB 

for a 30-day trial. Details and downloads are available from 

https://www.mathworks.com/campaigns/products/trials.html. 

A free 15-day trial of Maple software (Student’s Edition) can be downloaded from 

https://www.maplesoft.com/products/maple/free-trial/. 

The FORTRAN software free-license kit (as a part of the Intel® oneAPI Base Toolkit) can be 

downloaded from https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-
toolkit/download.html. It can be installed on Windows, macOS or Linux operating systems. 

Concluding Remarks on Students’ Involvement  

The numerical results (obtained by students) demonstrate the effectiveness of using the exponential box-

scheme that has a property of uniform second-order convergence in the full range of small parameters 

such as the inverse gas-injection factors. They could lead to the finding that moderate gas injections lead 

to decreasing friction on the body surface. 

After in-class discussions of the considered case studies, each student can continue working on a 

selected case analyzing in-depth mathematical models, creating computer codes (in MATLAB, Maple, 

C/C++, Java, or FORTRAN), running the codes with various parameters, comparing computations with 

experimental data, and presenting the findings to classmates. 

Comments 

At the beginning of case-study activities, students are introduced (in historical retrospective [R3-R5, R9, 

R14]) to the concept of boundary layer [1], mathematical properties of Prandtl-Blasius equations [R11], 
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and their numerical solutions using Maple [R16] and MATLAB codes [R17]. Students should be 

instructed on how to run programming codes in Maple and/or MATLAB environment. 

The existence of singularities in the fluid-motion nonlinear differential equations that contain small 

parameters for the highest derivative terms or singularities in boundary conditions requires the 

utilization of exponential box-scheme approximations for finding reliable numerical solutions of the 

equations. Students find the analytical solution of the model second-order ordinary differential equation 

with constant coefficients [7] and apply it in the study of uniform convergence of exponential box-

schemes [5, 7] using the FORTRAN program RPMEB (listed in Appendix-A). Students should be 
instructed on how to run programming codes in FORTRAN environment. 

Finally, the unique practical case of uniform gas injection from the body surface to boundary layer 

[6, 7] is analyzed in detail by students using the FORTRAN program RPBOX3 (listed in Appendix-B). 

The values of gas-injection rate significantly affect the flow structure, boundary-layer thickness, and the 

friction on the body surface. A similar approach can be used in the analyses of even more complicated 

cases of injecting chemically reactive gases (e.g., hydrogen) into multicomponent boundary layer, 

simulating supersonic combustion in a hypersonic-vehicle engine [8]. 
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Appendix-A: FORTRAN Program RPMEB for Solving the Model Singular Ordinary Differential 

Equation 

      PROGRAM RPMEB 

C************************************************************************* 

C****** PROGRAM 'RPMEB' IS FOR SOLVING MODEL SINGULAR EQUATION *** 

C****** BY USING A THREE-POINT BOX-SCHEME            ****** 

C************************************************************************* 

      DOUBLE PRECISION A(201),D(201),C(201),B(201), DY1, DYL1, DYL5, 
    *C0,C1,C5, SIM, BETA, PR, FW, TW, SW, YN, Y0, DYL, XMAX, 

    *Y(201),U(201),U0(201), 

    *A1(201),B1(201),FI1(201),DU(201), 

    *DY(201),Y5(201), EPS, EPS1, AA, C4, C14, 

    *F15, U15, S15, T1, R1, S1, T2, R2, S2, EA, EB, AA1, BB1, SU 

C------- MAJOR CONSTANTS -------------------------------------------- 

      N = 201 

      N1 = N - 1 

      C0 = 0.0D0 

      C1 = 1.0D0 

      C5 = 0.5D0 

      C4 = 4.0D0 

      C14 = 14.0D0 

      AA = C0 

      EPS = C1/2.0D0 

      EPS1 = C1/EPS 

      YN = 1.0D0 
      Y0 = 0.0D0 

      DYL = (YN - Y0)/N1 

      DYL1 = C1/DYL 

      DYL5 = C5*DYL 

      ITER = 0 

      ITSTOP = 500 

      Y(1) = Y0 

      Y5(1) = DYL5 

      DO 14 I = 2, N1 

      Y(I) = Y(1) + DYL*(I-1) 

      Y5(I) = Y(I) + DYL5 

 14 CONTINUE 

      Y(N) = YN 

C------- INITIAL FIELD OF PARAMETERS/FUNCTIONS ---------------------- 

C      OPEN (UNIT = 8, FILE = 'RMES0') 

C      REWIND 8 
C      READ (8,905) ITER, EPS, DYL 

C      DO 810 I = 1, N 

C      READ (8,905) IP, Y(I), U(I), DU(I) 

C 810 CONTINUE 
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C      REWIND 8 

      DO 10 I = 1, N 

      U(I) = C0 

 10 CONTINUE 

C----------------------------------- 

      OPEN (UNIT = 9, FILE = 'RMES05') 

      REWIND 9 

C++++++++++++++++++  GLOBAL ITERATIONS  +++++++++++++++++++++++ 
  1  CONTINUE 

      ITER = ITER + 1 

      DO 11 I = 1, N 

      U0(I) = U(I) 

 11 CONTINUE 

C-------  U-SOLUTION  ----------------------------------------------- 

      DO 20 I = 2, N 

      IM = I - 1 

      DY(IM) = Y(I) - Y(IM) 

      S15 = -(Y5(IM)*(C14+C4*Y5(IM))+C4)*(C1+Y5(IM))*(C1+Y5(IM)) 

      F15 = -C5*AA*EPS1 

      U15 = EPS1*(C1+Y5(IM)*Y5(IM)) 

      A1(IM) = F15 + DSQRT(F15*F15+U15) 

      B1(IM) = F15 - DSQRT(F15*F15+U15) 

      FI1(IM) = EPS1*S15/(A1(IM)*B1(IM)) 

20 CONTINUE 

      DO 21 I = 2, N1 
      IM = I - 1 

      T1 = C1 - C1/DEXP((A1(IM)-B1(IM))*DY(IM)) 

      R1 = (A1(IM)-B1(IM))*DEXP(B1(IM)*DY(IM))/T1 

      S1 = (A1(IM) - (C1-T1)*B1(IM))/T1 

      T2 = C1 - C1/DEXP((A1(I)-B1(I))*DY(I)) 

      R2 = (A1(I)-B1(I))/DEXP(A1(I)*DY(I))/T2 

      S2 = (A1(I)*(C1-T2)-B1(I))/T2 

      A(IM) = R1 

      D(I) = -(S1+S2) 

      C(I) = R2 

      B(I) = (R1-S1)*FI1(IM) + (R2-S2)*FI1(I) 

 21 CONTINUE 

C-------  U-BOUNDARY CONDITIONS  ------------------------------------ 

      D(1) = C1 + DYL1 

      C(1) = -DYL1 

      B(1) = C0 
      A(N1) = -DYL1 

      D(N) = C1 + DYL1 

      B(N) = C0 

      CALL TRI(N, A, D, C, B, U) 
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C-------------------  END OF THE U-SOLUTION  ------------------------ 

C-----------  DU-SOLUTION ------------------------------------------------ 

      DO 25 I = 1, N1 

      I1 = I+1 

      EA = DEXP(DY(I)*A1(I)) 

      EB = DEXP(DY(I)*B1(I)) 

      AA1 = ((U(I1)-U(I)*EB)-FI1(I)*(C1-EB))/(EA-EB) 

      BB1 = ((U(I1)-U(I)*EA)-FI1(I)*(C1-EA))/(EB-EA) 
      DU(I1) = AA1*A1(I)*EA+BB1*B1(I)*EB 

      IF (I.EQ.1) DU(I)=AA1*A1(I)+BB1*B1(I) 

      CONTINUE 

 25 CONTINUE 

C------------------  END OF THE DU-SOLUTION ------------------------- 

C--------  CONVERGENCE ESTIMATION -------------------------------- 

      XMAX = C0 

      DO 12 I = 1, N 

      XMAX=XMAX + DABS(U(I)-U0(I)) 

 12 CONTINUE 

      IF (ITER. EQ. ITSTOP) GO TO 2 

      CONTINUE 

      IF (XMAX. GE. 1.0D-4) GO TO 1 

  2 CONTINUE 

      WRITE (9, 905) ITER, EPS, DYL 

      DO 800 I = 1, N 

      I1 = I 
      WRITE (9, 905) I, Y(I), U(I), DU(I) 

800 CONTINUE 

      REWIND 9 

905 FORMAT (I3, 3(D11.4)) 

      STOP 

      END 

C**************** END OF THE PROGRAM RPMEB ************************ 

      SUBROUTINE TRI(N,A,D,C,B,X) 

C++++++++++ FOR SOLVING THE TRIDIAGONAL SYSTEMS +++++++++++++++ 

      DOUBLE PRECISION A(N), D(N), C(N), B(N), X(N), XMULT 

      DO 2 I = 2, N 

      I1 = I-1 

      XMULT = A(I1)/D(I1) 

      D(I) = D(I) - XMULT*C(I1) 

      B(I) = B(I) - XMULT*B(I1) 

  2  CONTINUE 
      X(N) = B(N)/D(N) 

      DO 3 I = N-1,1,-1 

      X(I) = (B(I) - C(I)*X(I+1))/D(I) 

  3  CONTINUE 
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      RETURN 

      END  

C+++++++++++++++++++++ END OF THE SUBROUTINE TRI +++++++++++++++ 

Appendix-B: FORTRAN Program RPEBOX3 for Solving the Boundary Layer Problem with Gas 

Injection 

               PROGRAM RPEBOX3 

C**************************************************************************** 

C****** PROGRAM 'RPEBOX3' IS FOR SOLVING BOUNDARY-LAYER PROBLEMS *** 
C****** WITH GAS INJECTION USING A THREE-POINT BOX-SCHEME                  ***  

C****************************************************************************  

               DOUBLE PRECISION A(229),D(229),C(229),B(229),YPR(32), DY1, 

             *C0,C1,C5, SIM, BETA, PR, FW, TW, SW, YN, Y0, DYL, DY12,XMAX,  

             *Y(229),U(229),F(229),S(229),U0(229),F0(229),S0(229), 

             *A1(229),B1(229),FI1(229),DU(229),DS(229), 

             *DY(229),YLOG(229), 

             *F15, U15, S15, T1, R1, S1, T2, R2, S2, EA, EB, AA1, BB1, SU 

C------- MAJOR CONSTANTS -------------------------------------------- 

 N = 229 

 N1 = N - 1 

 NL = 11 

 C0 = 0.0D0 

 C1 = 1.0D0 

 C5 = 0.5D0 

 SIM = C1 

 BETA = C1/(C1 + SIM) 
 YN = 2.0D0 

 Y0 = - 1.0D0 

 DYL = (C0 - Y0)/20 

 DY12 = C1/12.0D0 

C-------      DY12 = C0 ------ AS AN OPTION 

 ITER = 0 

 ITSTOP = 500 

 Y(1) = C0 

 YLOG(1) = C0 

 DY1 = 10**Y0/(NL-1) 

 DO 14 I = 2, NL-1 

 Y(I) = Y(1) + DY1*(I-1) 

 YLOG(I) = DLOG10(Y(I)) 

      14  CONTINUE 

 DO 15 I = NL, 31 

 YLOG(I) = Y0 + DYL*(I-NL) 
 Y(I) = Y(1) + (10.0D0)**YLOG(I) 

      15  CONTINUE 

 DO 16 I = 32, N 



Vladimir V. Riabov  

 

                       16  

 Y(I) = Y(31) + 0.5D0*(I-31) 

 YLOG(I) = DLOG10(Y(I)) 

      16  CONTINUE 

 DY1 = (YN-Y0)/30 

 DO 17 J = 1, 31 

 YPR(J) = 10**(DY1*(J-1)) 

      17  CONTINUE 

 YPR(32) = 200.0D0 
C------- INITIAL FIELD OF PARAMETERS/FUNCTIONS ------------ 

 OPEN (UNIT = 8, FILE = 'REXPON10') 

 REWIND 8 

 READ (8,905) ITER, BETA, PR, FW, TW  

 PR = 0.72D0 

 FW = -10.0D0 

 TW = 0.1D0 

 SW = TW - C1 

 DO 810 I = 1, N 

 READ (8,905) IP, Y(I), YLOG(I), U(I), DU(I), F(I), S(I), DS(I) 

   810  CONTINUE 

 REWIND 8 

 DO 10 I = 1, N 

 S(I) = C1 + S(I) 

 DS(I) = C0 

      10  CONTINUE 

C---------------- BOUNDARY CONDITIONS AT THE WALL --------- 
 U(1) = C0 

 F(1) = FW 

 S(1) = TW 

 OPEN (UNIT = 9, FILE = 'REXP1001') 

 REWIND 9 

C++++++++++++++++++ GLOBAL ITERATIONS ++++++++++++++++++++ 

        1  CONTINUE 

 ITER = ITER + 1 

 DO 11 I = 1, N 

 U0(I) = U(I) 

 F0(I) = F(I) 

 S0(I) = S(I) 

           11  CONTINUE 

C---------------- U-SOLUTION ------------------------------------------- 

 DO 20 I = 2, N 

 IM = I - 1 
 DY(IM) = Y(I) - Y(IM) 

 S15 = C5*(S(IM)+S(I)) 

 F15 = -C5*C5*(F(IM)+F(I)) 

 U15 = C5*(U(IM)+U(I))*BETA 
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 A1(IM) = F15 + DSQRT(F15*F15+U15) 

 B1(IM) = F15 - DSQRT(F15*F15+U15) 

 FI1(IM) = - BETA*S15/(A1(IM)*B1(IM)) 

     20  CONTINUE 

 DO 21 I = 2, N1 

 IM = I - 1 

 T1 = C1 - C1/DEXP((A1(IM)-B1(IM))*DY(IM)) 

 R1 = (A1(IM)-B1(IM))*DEXP(B1(IM)*DY(IM))/T1 
 S1 = (A1(IM) - (C1-T1)*B1(IM))/T1 

 T2 = C1 - C1/DEXP((A1(I)-B1(I))*DY(I)) 

 R2 = (A1(I)-B1(I))/DEXP(A1(I)*DY(I))/T2 

 S2 = (A1(I)*(C1-T2)-B1(I))/T2 

 A(IM) = R1 

 D(I) = -(S1+S2) 

 C(I) = R2 

 B(I) = (R1-S1)*FI1(IM) + (R2-S2)*FI1(I) 

      21  CONTINUE 

C------- U-BOUNDARY CONDITIONS -------------------------------- 

 D(1) = C1 

 C(1) = C0 

 B(1) = C0 

 A(N1) = C0 

 D(N) = C1 

 B(N) = C1 

 CALL TRI(N, A, D, C, B, U) 
C------------------- END OF THE U-SOLUTION ----------------------- 

C----------------------- F-SOLUTION -------------------------------------- 

 DO 25 I = 1, N1 

 I1 = I+1 

 EA = DEXP(DY(I)*A1(I)) 

 EB = DEXP(DY(I)*B1(I)) 

 AA1 = ((U(I1)-U(I)*EB)-FI1(I)*(C1-EB))/(EA-EB) 

 BB1 = ((U(I1)-U(I)*EA)-FI1(I)*(C1-EA))/(EB-EA) 

 DU(I1) = AA1*A1(I)*EA+BB1*B1(I)*EB 

 IF (I.EQ.1) DU(I)=AA1*A1(I)+BB1*B1(I) 

 CONTINUE 

      25  CONTINUE 

C--- THE EULER-MACLAURIN SUMMATION FORMULA FOR INTEGRATION ----- 

 F(1) = FW 

 SU = C0 

 DO 30 I = 2, N 
 I1 = I - 1 

 SU = SU + DY(I1)*(C5*(U(I)+U(I1))-DY12*DY(I1)*(DU(I)-DU(I1))) 

 F(I) = F(1) + SU 

     30  CONTINUE 
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C------------------ END OF THE F-SOLUTION ------------------------ 

C-------------------------- S-SOLUTION ---------------------------------- 

 DO 40 I = 2, N  

 IM = I - 1 

 S15 = C5*(S(IM)+S(I)) 

 F15 = -C5*C5*(F(IM)+F(I))*PR 

 A1(IM) = F15 + DSQRT(F15*F15+S15) 

 B1(IM) = F15 - DSQRT(F15*F15+S15) 
 FI1(IM) = - S15*S15/(A1(IM)*B1(IM)) 

     40  CONTINUE 

 DO 41 I = 2, N1 

 IM = I - 1 

 T1 = C1 - C1/DEXP((A1(IM)-B1(IM))*DY(IM)) 

 R1 = (A1(IM)-B1(IM))*DEXP(B1(IM)*DY(IM))/T1 

 S1 = (A1(IM) - (C1-T1)*B1(IM))/T1 

 T2 = C1 - C1/DEXP((A1(I)-B1(I))*DY(I)) 

 R2 = (A1(I)-B1(I))/DEXP(A1(I)*DY(I))/T2 

 S2 = (A1(I)*(C1-T2)-B1(I))/T2 

 A(IM) = R1 

 D(I) = -(S1+S2) 

 C(I) = R2 

 B(I) = (R1-S1)*FI1(IM) + (R2-S2)*FI1(I) 

      41  CONTINUE 

C------- S-BOUNDARY CONDITIONS --------------------------------- 

 D(1) = C1 
 C(1) = C0 

 B(1) = TW 

 A(N1) = C0 

 D(N) = C1 

 B(N) = C1 

 CALL TRI(N, A, D, C, B, S) 

C------------------- END OF THE S-SOLUTION ------------------------ 

C------------------------- DS-SOLUTION ---------------------------------- 

 DO 45 I = 1, N1 

 I1 = I+1 

 EA = DEXP(DY(I)*A1(I)) 

 EB = DEXP(DY(I)*B1(I)) 

 AA1 = ((S(I1)-S(I)*EB)-FI1(I)*(C1-EB))/(EA-EB) 

 BB1 = ((S(I1)-S(I)*EA)-FI1(I)*(C1-EA))/(EB-EA) 

 DS(I1) = AA1*A1(I)*EA+BB1*B1(I)*EB 

 IF (I.EQ.1) DS(I)=AA1*A1(I)+BB1*B1(I) 
 CONTINUE 

      45  CONTINUE 

C-------- CONVERGENCE ESTIMATION ----------------------------------- 

 XMAX = C0 
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 DO 12 I = 1, N 

 XMAX=XMAX + DABS(U(I)-U0(I))+DABS(F(I)-F0(I))+DABS(S(I)-S0(I)) 

      12  CONTINUE 

 IF (ITER. EQ. ITSTOP) GO TO 2 

 CONTINUE 

 IF (XMAX. GE. 1.0D-4) GO TO 1 

        2  CONTINUE 

 WRITE (9, 905) ITER, BETA, PR, FW, TW 
C K = 2 

 DO 800 I = 1, N 

 S(I) = (S(I)-C1)/SW 

 DS(I) = DS(I)/SW 

 WRITE (9,905) I, Y(I), YLOG(I), U(I), DU(I), F(I), S(I), DS(I) 

    800  CONTINUE 

C DO 801 I = NL + 1, N 

C DYL = YPR(K) 

C IF (Y(I).GE.DYL) GO TO 805 

C GO TO 801 

C  805 WRITE (9,905) I, Y(I), YLOG(I), U(I), DU(I), F(I), S(I), DS(I) 

C K = K + 1 

    801  CONTINUE 

 REWIND 9 

   905  FORMAT (I3, 7(D11.4)) 

 STOP 

 END 
C**************** END OF THE PROGRAM 'RPEBOX3' ********************* 

 SUBROUTINE TRI(N,A,D,C,B,X) 

C++++++++++ FOR SOLVING THE TRIDIAGONAL SYSTEMS ++++++++++ 

 DOUBLE PRECISION A(N), D(N), C(N), B(N), X(N), XMULT 

 DO 2 I = 2, N 

 I1 = I-1 

 XMULT = A(I1)/D(I1) 

 D(I) = D(I) - XMULT*C(I1) 

 B(I) = B(I) - XMULT*B(I1) 

        2  CONTINUE 

 X(N) = B(N)/D(N) 

 DO 3 I = N-1,1,-1 

 X(I) = (B(I) - C(I)*X(I+1))/D(I) 

        3  CONTINUE 

 RETURN 

 END 
C++++++++++++++++ END OF THE SUBROUTINE TRI ++++++++++++++++ 
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Appendix C: Supplements  

The following case-study supplementary materials (computer codes and PDF files) are available for 

students and instructors from the website: https://www.simiode.org/resources/8640: 
• FORTRAN code files: 

o RPMEB.FOR for Solving the Model Singular Ordinary Differential Equation. 

o RPEBOX3.FOR for Solving the Boundary Layer Problem with Gas Injection. 

• Maple code with annotated text: 

o Bo-Hua Sun_2020.pdf – The copy of [R16] Sun, Bo-Hua. “Solving Prandtl-Blasius Boundary 

Layer Equation Using Maple.” Preprint. Posted: 5 September 2020. 

DOI:10.20944/preprints202008.0296.v2. Available from https://pdfs.semanticscholar.org/. 

• MATLAB code with annotated text: 

o banihani-2018-ijca-916374.pdf – The copy of [R17] Bani-Hani, E.H., and Assad, M. E. H. 

“Boundary-Layer Theory of Fluid Flow past a Flat Plate: Numerical Solution Using MATLAB.” 

International Journal of Computer Applications, 2018, 180(18): 6-8. DOI: 

10.5120/ijca2018916374. [Online] 

https://www.researchgate.net/publication/323218834_Boundary-

Layer_Theory_of_Fluid_Flow_past_a_Flat-Plate_Numerical_Solution_using_MATLAB. 

• PDF files with texts from books and articles recommended for reading: 

o Blasius_1908.pdf – The copy of [R9] Blasius, P. R. Heinrich. “Grenzschichten in Flüssigkeiten 

mit kleiner Reibung.” Zeitschrift für Mattematik und Physik, 1908, 56(1): 1-37. (English 

translation is available: H. Blasius, "The Boundary Layers in Fluids with Little Friction," NACA 

Technical Memorandum 1256, Washington D.C., 1950. [Online] 

https://ntrs.nasa.gov/citations/20050028493). 

o Hager_2003.pdf – The copy of [R7] Hager, W.H., "Blasius: A life in research and education," 

Experiments in Fluids, 2003, 34: 566–571. DOI: 10.1007/s00348-002-0582-9. [Online] 

http://users.df.uba.ar/cobelli/Estructura_1/Blasius-Biography.pdf. 

o Schlichting - Boundary Layer Theory_7ed_1979.pdf – The copy of [1] Schlichting, H. Boundary-

layer theory, 7th edition. New York: McGraw-Hill, 1979. [Online} 

http://ae.sharif.edu/~viscousflow/Schlichting - Boundary Layer Theory.pdf. 

o Van-Dyke_1982_Album-Fluid-Motion.pdf – The copy of [R10] Van Dyke, Milton. An Album of 

Fluid Motion. Stanford, CA: Parabolic Press, 1982, 176 p. [Online] 

http://courses.washington.edu/me431/handouts/Album-Fluid-Motion-Van-Dyke.pdf.  
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