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Abstract 

The Lorenz system will be examined by students as a simple model of chaotic behavior (also known as 

strange attractor). MATLAB code has been created to find the numerical solutions of the Lorenz’ system of 

nonlinear ordinary differential equations using various parameters, as well as to display the knotted periodic 

orbits, a saddle-node bifurcation effect, and sensitivity of the solutions to slightly different initial conditions. 

To demonstrate the system’s chaotic behavior, a waterwheel model animation will be simulated with Java 
code. The samples of students’ modeling projects are reviewed. 

In the Memory of Edward Norton Lorenz 

 
 

Edward Norton Lorenz (May 23, 1917 – April 16, 2008) was an American mathematician and 
meteorologist [R1] who established the theoretical basis of weather and climate predictability, as well as 

the basis for computer-aided atmospheric physics and meteorology [R2, R3]. He is best known as the 

founder of modern chaos theory [R4, R5], a branch of mathematics focusing on the behavior of 

dynamical systems that are highly sensitive to initial conditions. 

His discovery of deterministic chaos "profoundly influenced a wide range of basic sciences and 

brought about one of the most dramatic changes in mankind's view of nature since Sir Isaac Newton," 

according to the committee that awarded him the 1991 Kyoto Prize for basic sciences in the field of 

earth and planetary sciences [R1]. 

STATEMENT 

Part I: The Lorenz Attractor Model 

This case study is designed to introduce students to numerical modeling of the attractors in chaotic 

dynamical systems observed in weather forecast, turbulence, and socio-economic system development 

[1-4]. Students will study bifurcations of a simplified system of nonlinear ordinary differential equations 
modeling atmospheric dynamics (the Lorenz attractor) that was first studied by E. N. Lorenz in [5]. It 
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was derived from a simplified model of convection in the Earth’s atmosphere originally described as a 

system of twelve equations that E. N. Lorenz [5] and B. Saltzman [R6] had developed to model complex 

atmospheric processes. It also arises naturally in models of lasers and dynamos [2]. The solutions of this 

system of twelve equations exhibited what Lorenz described as the “butterfly effect” [1, 5], later 

interpreted as the “sensitive dependence on initial conditions” [6-9] (see Figure 1, below). While the 

simpler system of three equations was not intended to model any natural phenomenon, it was later found 

to accurately describe a simplified model of atmospheric convection. In this model, a torus-shaped tube 

forming a closed loop is filled with a fluid and heated from below, causing the heated fluid to rotate to 
the top of the tube. The rate of heating and the rate of cooling can be adjusted so that the fluid will 

occasionally change direction, never exhibiting any predictable pattern. This motion is accurately 

modeled by the Lorenz equations (see (1), (2), and (3) below) that can be solved numerically (see the 

MATLAB code in Appendix A).  

E. N. Lorenz [5] started with an overview of the system of the equations [R6] governing finite-

amplitude convection in a 3D incompressible liquid. The liquid is considered to be of height H, with a 

rigid lower boundary and a free or rigid upper boundary, between which a temperature contrast ∆T = 

T(0) – T(H) is maintained externally. To simplify the problem, the assumption is made that the 

convective motions are developed only in the form of two-dimensional “rolls” in the X-Z plane. This 

approximation allows to define a stream function ψ and the departure of temperature θ from that 

occurring in the state of no convection, formulate the vorticity equation [R6], and, after introducing non-

dimensional variables, transform the original equations into a system of two non-dimensional partial 

differential equations (that include functions ψ and θ and their derivatives) [5, R6] with two general 

similarity parameters, the Prandtl number σ = ν/κ and the Rayleigh number Ra = gεH2∆T/(κν), where ν is 

kinematic viscosity, κ – coefficient of thermal diffusivity, g – acceleration of gravity, and ε – coefficient 

of thermal diffusivity. 

L. Rayleigh [R7] found that fields of bi-harmonic motion (“rolls”) (with d as a parameter) in the X-
Z plane would develop if the Rayleigh number quantity Ra exceeded a critical value Rc = π4d-2(1+d2)3, 

and the minimum value of Rc,min , namely 27π4/4 ≈ 657.51, occurs when d2 = ½. 

Recommended Preliminary Readings 

Students are encouraged to read a few articles before starting the analysis of the Lorenz System of 

Differential Equations: 

[5] Lorenz, Edward N. Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences. 1963, 

20(2): 130–141. DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. Freely available 

from: https://journals.ametsoc.org/view/journals/atsc/20/2/1520-
0469_1963_020_0130_dnf_2_0_co_2.xml. 

o Formulation of finite systems of deterministic ordinary nonlinear differential equations 

that represent a forced dissipative hydrodynamic flow. 

o Study general properties of solutions of these equations that can be identified with 

trajectories in phase space. 

o Understanding why the simplified version of the equation system that represents the 

cellular convection has been selected for the numerical analysis. 

[R8] Chaos Theory. [Online] https://en.wikipedia.org/wiki/Chaos_theory. 

o Chaos theory is a branch of mathematics focusing on the study of chaos — dynamical 

systems whose apparently random states of disorder and irregularities are actually 

governed by underlying patterns and deterministic laws that are highly sensitive to initial 

conditions. 

https://journals.ametsoc.org/view/journals/atsc/20/2/1520-0469_1963_020_0130_dnf_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/atsc/20/2/1520-0469_1963_020_0130_dnf_2_0_co_2.xml
https://en.wikipedia.org/wiki/Chaos_theory
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o The butterfly effect, an underlying principle of chaos, describes how a small change in 

one state of a deterministic nonlinear system (due to errors in measurements or due to 

rounding errors in numerical computation) can result in large differences in a later state 

(meaning that there is sensitive dependence on initial conditions). 

o The deterministic nature of these systems (with the behavior that follows a unique 

evolution and is fully determined by their initial conditions) does not make them 

predictable. This behavior is known as deterministic chaos, or simply chaos. 

The Lorenz System of Differential Equations 

The Lorenz system is most commonly expressed as the following three coupled nonlinear ordinary 

differential equations [5]: 
     

dx / dt = a (y - x)             (1) 

dy / dt = x (b - z) – y            (2) 

dz / dt = xy - c z             (3) 
 

These equations relate the properties of a two-dimensional fluid layer uniformly warmed from 

below and cooled from above. In particular, the equations describe the rate of change of three quantities 

with respect to time: x is proportional to the rate of convection, y to the horizontal temperature variation, 

and z to the vertical temperature variation. 

In (1)-(3) the non-dimensional variables x, y, and z are functions of time alone and they are the 

same as Saltzman’s variables A, D, and G [R6]; “t” is the dimensionless time variable using the 
normalization parameter π2H-2(1+d2)κ; "a" is the Prandtl number σ; "b" is the normalized Rayleigh 

number Ra/Rc, and “c” is the system parameter 4(1+d2)-1 that represents physical dimensions of the 

layer itself. 

As mentioned in [5], in these convection equations (1), (2), and (3), the function x is proportional to 

the intensity of the convective motion, while y is proportional to the temperature difference between the 

ascending and descending currents (similar signs of x and y denoting that warm fluid is rising, and cold 

fluid is descending). The variable z is proportional to the distortion of the vertical temperature profile 

from linearity, a positive value indicating that the strongest gradients occur near the boundaries [5]. E. 

N. Lorenz noted [5] that equations (1), (2), and (3) may give realistic results when the Rayleigh number 

is slightly supercritical, b > 1. 

Analyzing Some Important Features of the Lorenz System of Differential Equations 

Students are asked to identify some important basic features of the Lorenz system (1), (2), and (3), 

including the following ones: 
 

o Is this system autonomous? (“Autonomous” means that time does not explicitly appear on 

the right-hand side of the equations). 

o Does the system evolution depend only on the values of x, y, and z at the time? HINT: The 

equations involve only first order time derivatives. 

o Is the system of equations linear or non-linear? HINT: Consider the terms xz and xy in (2) 

and (3), correspondingly. 

o Is the system dissipative or not?  

HINTS: By definition, the system is dissipative when the following inequality holds: 
 

divf = ∂ẋ/∂x + ∂ẏ/∂y + ∂ż/∂z < 0 



Vladimir V. Riabov  

 

                       4  

Here a dot denotes a derivative with respect to the time. Also, the parameters a, b, and c in (1) – (3), 

denoting the physical characteristics of the air flow, are positive. The solutions of a dissipative system 

are bounded. 

o Is the system symmetric with respect to the z axis? HINT: Check if the system is invariant 

for the coordinate transformation: (x, y, z) → (-x, -y, z). 

 

Read more about the features of the Lorenz system in: 

[R9] Moghtadaei, M., and Hashemi Golpayegani, M. R. “Complex Dynamic Behaviors of the 
Complex Lorenz System”, Scientia Iranica, 2012, 19(3): 733-738. DOI: 

10.1016/j.scient.2010.11.001. 

https://www.sciencedirect.com/science/article/pii/S1026309811002513.  

Apply the Linear Theory to Study the Stability of a Solution of the Lorenz System 

Following the analysis in [5] (pp. 135-136), students are encouraged to study the stability of a solution 

(x(t), y(t), and z(t)) of the Lorenz System (1)-(3) by using the linear transformation: 
 

x' = x, y’ = y, z’ = z – b – a 
 

Find the linearized equations (in the matrix form) [5] (p. 135) for small, superposed perturbations 

x0(t), y0(t), and z0(t), which can be used for the analysis of the stability of a solution (x(t), y(t), and z(t)). 

Estimate the diagonal sum of the matrix coefficients. Compare it with the calculated value of the 

divergence: 

divf = ∂ẋ/∂x + ∂ẏ/∂y + ∂ż/∂z = - (a + c + 1) < 0. 
 

Note that equations (1) – (3) possess the steady-state solution x = y = z = 0, representing the state of 

no convection [5]. With this basic solution, prove that the characteristic equation of the matrix of the 

linearized equations is in the following form [5]: 
 

[λ + c][λ2 + (a + 1)λ + a(1 – b)] = 0. 
 

Study the three real roots of this characteristic equation when b > 0, and prove that the criterion for 

the onset of convection is b = 1 or Ra = Rc, in agreement with Rayleigh’s fundamental result [5, R7]. 

When b > 1, prove that (1)-(3) possess two additional steady-state solutions x = y = ±[c(b-1)]½, z = b 

– 1. For either of these solutions, the characteristic equation of the matrix of the linearized equations can 

be written in the following form [5]: 
 

λ3 + (a + c + 1)λ2 + (b + a)cλ + 2ac(b – 1) = 0. 
 

This equation possesses one real negative root and two complex conjugate roots when b > 1. The 

complex conjugate roots are pure imaginary if the product of the coefficients of λ2 and λ equals the 

constant term [5], or 
 

b = a(a + c + 3)/(a – c – 1). 
 

And this is the criterion (see above) for estimating the critical value of b for the instability of steady 

convection. Prove that if a < c + 1, no positive value of r satisfies this criterion, and steady convection is 

always stable, but if a > c + 1, steady convection is unstable for sufficiently high Rayleigh numbers 

characterized by the parameter b. Lorenz mentioned [5] that the presence of complex roots (see the 

criterion above) shows that if unstable steady convection is disturbed, the motion will oscillate in 
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intensity. The linear theory is not applied for studies when the disturbances become large. To investigate 

the finite-amplitude convection, the numerical integration of the Lorenz system (1) – (3) should be 

performed. 

Optionally, the advanced analytical studies [6] can be performed:  

The general assumption is that a, b, c > 0; a = 10, and b is varied [5]. The system exhibits chaotic 

behavior for b = 28, but displays knotted periodic orbits for other values of b. A saddle-node bifurcation 

occurs at c(b – 1) = 0. When a ≠ 0 and c(b – 1) ≥ 0, the equations generate three critical points. The 

critical points at (0,0,0) correspond to no convection, and the critical points at (±[c(b – 1)]½, ±[c(b – 

1)]½, b – 1) correspond to steady convection. This pair is stable only if b < a(a + c + 3)/(a – c – 1). When 

a = 10, b = 28, c = 8/3, the Lorenz system has chaotic solutions, but not all solutions are chaotic [6]. 

Numerical Solutions of the Lorenz System for Different Values of b 

There were numerous attempts to create computer codes using MATLAB (see Appendix A), 
Mathematica simulation [6], Python [6], and other programming languages. 

Watching the Video “Simulating the Lorenz System in MATLAB” 

The students are encouraged to watch the video (length=00:15.08) [R10] available from YouTube: 

[R10] Brunton, Steve. “Simulating the Lorenz System in MATLAB”. June 12, 2018, YouTube 

video. https://www.youtube.com/watch?v=EnsB1wP3LFM.   

 

This video shows how simple it is to simulate dynamical systems, such as the Lorenz system, in 

MATLAB, using ode45 subroutine. The similar approach was used by the author of this case study (see 

Appendix A). 
Optionally, the students can watch the video (length=00:21:20) [R11] also available from YouTube: 

[R11] Shiffman, Daniel. “Coding Challenge #12: The Lorenz Attractor in Processing”. May 6, 

2016, YouTube video. https://www.youtube.com/watch?v=f0lkz2gSsIk.  

 

The video shows how to create a visualization of the Lorenz Attractor using the Java code 

processing. 

Exploring properties of numerical solutions of the Lorenz system 

Using the MATLAB code (see Appendix A) or creating their own code programs (in any programming 
language), students are encouraged to explore the properties of numerical solutions of the Lorenz system 

for different values of key parameters a, b, and c. See Figure 1, as an example. 
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A) b=12, a=10, c=8/3 B) b=16, a=10, c=8/3 C) b=28, a=10, c=8/3 

Figure 1. Solutions of the Lorenz system ((1), (2), and (3)) for different values of b with fixed a and c  [9]. 

 

The MATLAB calculations show the system evolution for different values of b (see Figure 1 [9]). 

For small values of b, the system is stable and evolves to one of two fixed point attractors. When b is 

larger than 24.28, the fixed points become repulsors and the trajectory is repelled by them in a very 
complex way, evolving without ever crossing itself [8]. 

Run numerical simulations by fixing two parameters, a = 10, c = 8/3, and varying the third parameter, b, 

with the values of 1, 23.9, 69.8, 71.5, 92.2, and 100. Use the same initial conditions in all these 

simulations: x0 = 0.1, y0 = 0.3, and z0 = 1. For every parameter b, determine the principle behavior of the 

Lorenz system: Fixed point, Transition chaos, Chaotic, or Periodic. Compare your findings with the 

results found in [R9].  

The Lorenz System: Sensitive dependence on the initial condition 

   

   

a) Time t=1 b) Time t=2 c) Time t=3 

Figure 2. Sensitive dependence of the solution on initial condition at a=10, b=28, c=8/3 [6, 7]. 

 
Three time segments (taken from the Java animation [7] and shown in Figure 2 [6]) illustrate the 3-D 

evolution of two trajectories (one in blue and the other in yellow) in the Lorenz attractor starting at two 

initial points that differ only by 10-5 in the x-coordinate. Initially, these two trajectories seem coincident 
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(only the yellow one can be seen, as it is drawn over the blue one) but, after some time, the divergence is 

obvious [6]. 

Experimenting with Different Initial Conditions 

Students can study the sensitive dependence of the solutions on the initial condition: 

Run numerical simulations by fixing two parameters, a = 10, c = 8/3, and varying the third 

parameter, b, with the values of 1, 23.9, 69.8, and 100. Use the new initial conditions in all these 

simulations: x0 = 0.15, y0 = 0.3, and z0 = 1. Compare the results with the data previously calculated 

at the same parameters a, c, and b, but with “old” initial conditions: x0 = 0.1, y0 = 0.3, and z0 = 1. 

Part II: Physical Model Simulating the Lorenz System 

There were several attempts to create physical models to simulate the behavior of the Lorenz system. 

Modeling the Lorenz System Behavior with an Analog Circuit 

Students are invited to watch Prof. Paul Horowitz’s video presentation [R12] on a design of an analog 

circuit that behaves exactly like the Lorenz system attractor. 
  

 
 

Figure 3. A fragment of Prof. Paul Horowitz’s video presentation [R12] on a design of an analog circuit 

that behaves like the Lorenz system attractor. 
 

Students should confirm that the deterministic chaotic trajectories found in these experiments with 

the analog circuit match the results of the numerical simulations discussed in previous section. 

[R12] Horowitz, Paul. “An analog circuit that behaves like an attractor”. M4V video [Size=64.5 
MB, length=00:08:59]. Available from 
https://drive.google.com/file/d/1Gn2EfTQIAYLOCsPFgwH5_zbf1mZtb1tR/view?usp=sharing (it 

will redirect you to 

https://drive.google.com/file/d/1Gn2EfTQIAYLOCsPFgwH5_zbf1mZtb1tR/view, and 

LorenzAttractor-PaulHorowitz.m4v file can be downloaded). 

“The Waterwheel Model” of Simulating the Lorenz System 

A physical model for simulating the Lorenz equations has been attributed to Willem Malkus and Lou 

Howard around 1970 [6, 8]. The model replaces the circular tube with a waterwheel (see Figure 4 

below) in the following setting: cups are arranged around the wheel and are filled with water when they 

pass under a faucet located above the wheel (which corresponds to the heating of the fluid at the bottom 

of the tube). The water leaks from the cups as they move around the wheel (which corresponds to the 

cooling of the fluid). The heavier cups will rotate to the bottom of the wheel, just as the heated fluid 
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rises to the top of the tube. Under different input flow rates, you should be able to convince yourself that 

under just the right flow rate the wheel will spin one way and then the other chaotically [8]. 
 

 
 

Figure 4. A waterwheel model simulating the Lorenz system [6, 8]. 

 

 
 

Figure 5. The waterwheel demo [6]. 
 

The waterwheel (see Figure 5 [6]) was actually built by Planeten Paultje for the Dutch Annual 

Physics Teacher Conference "Woudschotenconferentie Natuurkunde 2005" in December 2005. 

The chaotic behavior of the Malkus–Lorenz waterwheel system was analyzed in [R13] and [R14]. 

The Harvard Natural Sciences Lecture Demonstrations site [R15] posts a video that demonstrates a 

waterwheel with leaky buckets that undergoes chaotic motion (Figure 6). 
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Figure 6. The Chaotic Waterwheel settings made by the Harvard Natural Sciences Lecture Demonstrations 

group [R15]. 

Examining the Chaotic Behavior of the Leaking Waterwheel System 

Students are invited to observe the experiments with the Chaotic Waterwheel settings (see Figure 6) 

performed by the Harvard Natural Sciences Lecture Demonstrations group [R15]. 
[R15] “Chaotic Waterwheel”. Harvard Natural Sciences Lecture Demonstrations. YouTube Demo 

(length=00:05:19), May 13, 2020. https://www.youtube.com/watch?v=Lx8gMBJBlP8. 
 

A vertical waterwheel with eight leaky buckets (started operating in neutral equilibrium and free to 

rotate in either direction) undergoes chaotic motion. The wheel is about 1 meter in diameter and was 

fabricated with wood in the Harvard University shop. The little buckets are citronella candle holders 

with ¼” holes drilled out of the bottom. Fixed directly above the center of the wheel is a faucet 

connected to a pump. The sump pump was purchased from the local hardware store. A ball valve at the 

faucet regulates the water flow. The wheel and pump both sit in a concrete mixing tub. In nature, chaotic 

behavior readily occurs in turbulent flows and in large-scale weather patterns, but scaling these systems 

to a laboratory or classroom setting is far from trivial. The idea of building a waterwheel as a discrete, 
mechanical example of a chaotic system was proposed and realized by Willem Malkus, Louis Howard, 

and Ruby Krishnamurti in the early 1970s. According to Edward Lorenz, their original design “was a 

precision instrument, suitable for controlled laboratory experiments.” The Harvard design is simpler and 

geared more towards pedagogical impact than experimental fidelity, but it is considered as charming and 

instructive nonetheless. For more details on the setup, including links to download some of the video 

clips of the wheel in motion, see https://sciencedemonstrations.fas.harvard.edu/presentations/chaotic-

waterwheel and a video (length=00:05:19) on YouTube https://youtu.be/Lx8gMBJBlP8. 

When the pump is turned on, a stream of water flows downwards from the faucet, with some of it 

inundating the buckets, filling them faster than they can drain out. Eventually the entire wheel will 

become unbalanced and start to rotate accordingly: the side with the fuller, heavier buckets will get 

pulled down, and the relatively empty buckets on the other side will swing up so that they can get 

refilled under the faucet. The situation is further complicated by buckets taking water from the ones 

directly above them, either via the drainage holes or because of spillage over the top. 

https://sciencedemonstrations.fas.harvard.edu/presentations/chaotic-waterwheel
https://sciencedemonstrations.fas.harvard.edu/presentations/chaotic-waterwheel
https://youtu.be/Lx8gMBJBlP8
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As you could observe, after several seconds of the wheel spinning steadily in one direction, it may 

suddenly speed up; it may slow down and start to rotate in the opposite direction; it may sometimes 

oscillate between clockwise and counterclockwise rotation; it may go through periods when motion in 

either direction is barely noticeable. Whatever the state of motion, it never survives for long. The motion 

is clearly non-periodic and unpredictable. 

Another puzzling feature of the water wheel is observed when the demonstrator pauses the pump 

and allows all the buckets to drain completely. With the wheel in very nearly the same angular 

orientation as before, the water flow was resumed. What you can find is that, over the course of a minute 
or two, the complete motion of the wheel will be dramatically different than during the previous run. 

This apparent sensitivity to the initial conditions of the system, along with the wheel’s non-periodic 

motion, are hallmarks of chaotic behavior [6]. 

To make the demo a little more quantitative, students may try to keep count of revolutions and 

oscillations in sequential order to verify the non-periodic behavior. Four video clips of the wheel in 

action have been made available from 

https://drive.google.com/drive/folders/1vFTQEL04PfAW5nAQi3nBGsDSYIxgkfKq so that students 

may download them and use motion-tracking software to analyze the wheel’s motion. 

Numerical Simulation of the Waterwheel System Behavior 

Exploring the Waterwheel System Behavior with the Java code 

The students could use the Java code [10] (see Appendix B) to confirm the deterministic chaotic 

behavior of the Waterwheel System briefly described in the article [10]. For example, they could follow 

these exercises: 

By using the Java program [10] (see Appendix B) that simulates the waterwheel performance, the 

angular acceleration of the wheel is calculated according to the laws of physics based on the changing 

mass of each cup, and this acceleration modifies the angular velocity on each iteration of the code. 

The angular velocity of the simulated waterwheel over time is shown in Figure 7 below. 
 

 
Figure 7.  Angular velocity as a function of time [10]. 

https://drive.google.com/drive/folders/1vFTQEL04PfAW5nAQi3nBGsDSYIxgkfKq
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In Figure 7, positive values of angular velocity represent rotation of the wheel in the positive 

direction, while negative values represent rotation in the negative direction. Consequently, changes 

between positive and negative values represent changes in the direction of the wheel’s rotation. 
 

 
Figure 8.  Variable y of the Lorenz system as a function of time [10]. 

 
The graph in Figure 8 shows variable y of the Lorenz system as it changes over time t. Figure 9 (see 

below) shows the same process as the one in Figure 8 with y on the horizontal axis and z on the vertical 

axis. 

 
 

Figure 9. Relation between y and z coordinates in the Lorenz system [10]. 
 

Positive values of y in Figure 8 correspond to the right attractor shown in Figure 9, while negative 

values of y in Figure 8 correspond to the left attractor (see Figure 9). Changes between positive and 
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negative values of y in Figure 8 represent transfers between the two attractors. Thus, the two attractors 

shown in Figure 9 correspond to the two directions of rotation of the waterwheel. The chaotic nature of 

the Lorenz system makes the transfers between the two attractors, and, consequently, the changes in the 

rotational direction of the waterwheel it models, unpredictable. This animation demonstrates the chaotic 

behavior of the numerical solution of the Lorenz’ system of nonlinear ordinary differential equations. 

Supplements 

The case-study supplementary materials (computer codes and files listed in Appendix C) will be 

available for students and instructors from the website: https://www.simiode.org/resources/8749. 

Concluding Remarks on Students’ Involvement 

After in-class discussions of the considered case studies, each student can continue working on a 

selected case analyzing in-depth mathematical models, creating computer codes (in MATLAB, C/C++, 

Java, or FORTRAN), running the codes with various parameters, comparing computations with 

experimental data, and presenting the findings to classmates.  

Final Comments: 

In the previous course evaluations, students stated that they became deeply engaged in course activities 

through examining the challenging problems with the advanced mathematical concepts and numerical 

algorithms. 

The author has described the advanced case studies here, offered algorithms, and provided 

experiences of developing numerical methods that better prepare undergraduate students (especially, 

Mathematics & Computer Science seniors) to meet the challenges of modern scientific and engineering 

problems. 

The experience has been in general a very positive one, while at the same time providing useful 

lessons learned. 

The author believes that the algorithm-exploration and project-based approach with developing the 

numerical methods and computing codes can be effectively applied to courses of a similar nature in 

academia, and the approach can be extended to other areas of applied mathematics. 
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Appendix A: The Source Code to Simulate the Lorenz System with MATLAB 

% A simple Lorenz Solver in MATLAB code 

function dxdt=fLorenz(t,x) 

% The RHS of the Lorenz attractor 

% Save this function in a separate file ‘fLorenz.m‘ 

a = 10; 

b = 28; 

c = 8/3; 
dxdt=[a*(x(2)-x(1)); 

b*x(1)-x(2)-x(1)*x(3); 

x(1)*x(2)-c*x(3)]; 

end 

%% Main program: Save the program in a separate .m file 

%% and run it. 

clear all; % clear all variables 

t=linspace(0,50,3000)'; % specified time variables 

y0=[-1;3;4]; % Initial conditions should be specified 

[t,Y] = ode45(@fLorenz,t,y0); %Invoking the solver 'ode45' 

plot3(Y(:,1),Y(:,2),Y(:,3)); % Plot results 

grid on; 

Appendix B: Java Code for Waterwheel Animation [10] 

NOTE: This Java code [10] is an adaptation of the C code from [8]. 

import javax.swing.*; 

import java.awt.*; 

import java.io.*; 
 

class LorenzSimulation{ 

    public static void main(String[] args){ 

        JFrame frame = new JFrame("The Lorenz System"); 

        frame.setSize(600,760); 

        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        Panel pane = new Panel(); 

        pane.setBackground(Color.black); 

        frame.setContentPane(pane); 

        frame.setVisible(true); 

    } 

} 

 

class Panel extends JPanel{ 

    Waterwheel wheel; 

    protected Panel(){ 
        wheel = new Waterwheel(new Point(300,400), 200, 12); 

    } 



 

                       15  
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    protected void paintComponent(Graphics g){ 

        super.paintComponent(g); 

        g.setColor(Color.lightGray); 

        g.fillRect(0,20,285,30);      //horizontal pipe 

        g.fillRect(285,50,30,40);     //vertical pipe 

        g.fillArc(255,20,60,60,0,90); //curve in pipe 

        g.setColor(new Color(150,150,250)); 

        g.fillRect(295,90,10,110);    //stream of water 
        wheel.draw(g); 

        try{Thread.sleep(2);} 

        catch(InterruptedException e){} 

        wheel.calculate(); 

        repaint(); 

    } 

} 

 

class Waterwheel{ 

    final double FILL_SPEED = .4;  //.4 for chaotic motion; .9 for stable motion 

    final double DRAIN_SPEED = .02; 

    final double V_COEFFICIENT = 1/50.0;    //coefficient of rotational velocity  

    Point center;                             //added to angle in each iteration 

    int r; //radius 

    double a; //angle of shift from original position 

    double v; //velocity of rotation 

    int numCups; 
    Cup[] cups; 

    PrintWriter outFile; 

    public Waterwheel(Point c, int rIn, int n){ 

        center = c;                                     //Waterwheel constructor 

        r = rIn; 

        a = 0.0; 

        v = 0.01; 

        numCups = n; 

        cups = new Cup[numCups];                                 //array of Cups 

        for(int i=0; i<numCups; i++) cups[i] = new Cup(i*(2*Math.PI/numCups)); 

        try{outFile = new PrintWriter("Waterwheel_Output.txt");} 

        catch(IOException ignore){} 

        outFile.printf("%10s%10s%n","Angle","Velocity"); 

    } 

    public void calculate(){ //recalculate position and conditions of Waterwheel 

        double m = 0; 
        for(int i=0; i<numCups; i++){ 

            if(Math.abs(Math.cos(a+cups[i].a)) <.1 && Math.sin(a+cups[i].a) > 0 

               && cups[i].volume < 50) cups[i].volume += FILL_SPEED; 

            if(cups[i].volume > 0) cups[i].volume -= DRAIN_SPEED; 
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            v -= (cups[i].volume) * Math.cos(a+cups[i].a) * V_COEFFICIENT; 

            m += cups[i].volume; 

        } 

        v /= m; 

        a += v; 

        outFile.printf("%10.5f%10.5f;%n",a,v); 

    } 

    public void draw(Graphics g){                              //draw Waterwheel 
        g.setColor(Color.gray); 

        g.drawOval(center.x - r, center.y - r, 2*r, 2*r); //draw large circle 

        g.setColor(new Color(50,50,200));//new Color(0,0,100)); 

        for(int i=0; i<numCups; i++) cups[i].draw(center, a, g); //draw cups 

    } 

     

    private class Cup{                                      //internal Cup class 

        private double volume; //radius of cup circle 

        private double a;      //position on wheel 

        private Cup(double aIn){                               //Cup constructor 

            a = aIn; 

            volume = 0; 

        } 

        //draw individual cup: 

        private void draw(Point center, double aWheel, Graphics g){ 

            g.fillOval((int)(center.x + r*Math.cos(a+aWheel) - volume - 3), 

                       (int)(center.y - r*Math.sin(a+aWheel) - volume - 3), 
                       2*(int)volume + 6, 2*(int)volume + 6); 

        } 

    } 

} 

 

import java.io.*; 

class LorenzEquations{ 

    public static void main(String[] args) throws IOException{ 

        double h = .001; 

        double a = 10; 

        double b = 28; 

        double c = 8/3; 

        double x0 = 0.1; 

        double y0 = 0; 

        double z0 = 0; 

        double x1,y1,z1; 
        PrintWriter outFile = new PrintWriter("Equations_Output.txt"); 

        outFile.printf("%10c%10c%10c%n",'x','y','z'); 

        for(int i=0; i<50000; i++){ 

            x1 = x0 + h*a*(y0-x0); 
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            y1 = y0 + h*(x0*(b-z0) - y0); 

            z1 = z0 + h*(x0*y0 -c*z0); 

            x0 = x1; 

            y0 = y1; 

            z0 = z1; 

            outFile.printf("%10.5f%10.5f%10.5f;%n",x0,y0,z0); 

        } 

        outFile.close(); 
    } 

} 

 

NOTE: Figures 7, 8, and 9 [10] (see above) were generated from output of the Java programs using 

MATLAB. 

Appendix C: Supplements 

The following case-study supplementary materials (computer codes and PDF files) will be available for 

students and instructors from the website: https://www.simiode.org/resources/8749: 

• MATLAB code files: 

o attrMain.m – Main program for solving the Lorenz System equations with MATLAB’s 

ode45 program; 

o fLorenz.m – MATLAB code for representation of the Lorenz System equations. 

• Java code files: 

o LorenzEquations.java – Java program (created by M. Sukharev-Chuyan [10]) for solving 

the Lorenz System equations; 

o Lorenz.java – Main Java source file (created by M. Sukharev-Chuyan [10]) for 

Waterwheel system simulation; 

o Lorenz.java – Secondary Java source file (created by M. Sukharev-Chuyan [10]) for 

visualization of the Waterwheel system simulation. 

• PDF files with texts from books and articles recommended for reading: 

o Lorenz_1963.pdf – The copy of [5] Lorenz, Edward N. Deterministic Nonperiodic Flow. 

Journal of Atmospheric Sciences. 1963, 20(2): 130–141. DOI: 10.1175/1520-

0469(1963)020<0130:DNF>2.0.CO;2. Free access is available from: 

https://journals.ametsoc.org/view/journals/atsc/20/2/1520-

0469_1963_020_0130_dnf_2_0_co_2.xml. 

o Lorenz_1993.pdf – The copy of [1] Lorenz, Edward N. The Essence of Chaos. Seattle, 

WA: University of Washington Press, 1993. 

o LorenzAttractor-PaulHorowitz.m4v – The M4V video file (size=64.5 MB, 

length=00:08:59) [R12] Horowitz, Paul. “An analog circuit that behaves like an 

attractor”. 

https://drive.google.com/file/d/1Gn2EfTQIAYLOCsPFgwH5_zbf1mZtb1tR/view?usp=

sharing (it will redirect to 

https://drive.google.com/file/d/1Gn2EfTQIAYLOCsPFgwH5_zbf1mZtb1tR/view, and 
LorenzAttractor-PaulHorowitz.m4v file can be downloaded). 
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o Dreyer_and_Hickey_1991.pdf – The copy of [R13] K. Dreyer K., and Hickey, F. R. “The 

Route to Chaos in a Dripping Water Faucet,” American Journal of Physics, 1991, 59(7): 

619–627. DOI: 10.1119/1.16783. 

o Illing_et_al_2012.pdf – The copy of [R14] Lucas Illing, Rachel F. Fordyce, Alison M. 

Saunders, and Robert Ormond, "Experiments with a Malkus–Lorenz Water Wheel: 

Chaos and Synchronization," American Journal of Physics, 2012, 80(3): 192-202. DOI: 

10.1119/1.3680533. 

o Moghtadaei_2012.pdf – The copy of [R9] Moghtadaei, M., and Hashemi Golpayegani, 
M.R. “Complex Dynamic Behaviors of the Complex Lorenz System”, Scientia Iranica, 

2012, 19(3): 733-738. DOI: 10.1016/j.scient.2010.11.001. (Freely available from 

https://www.sciencedirect.com/science/article/pii/S1026309811002513). 

o Rosser_1999.pdf – The copy of [4] Rosser, J. Barkley.  "On the Complexities of 

Complex Economic Dynamics." Journal of Economic Perspectives. 1999, 13 (4): 169-

192. DOI: 10.1257/jep.13.4.169. 

o Saltzman_1962.pdf – The copy of [R6] Saltzman, Barry. “Finite Amplitude Free 

Convection as an Initial Value Problem—I”, Journal of Atmospheric Sciences. 1962, 

19(4): 329-341. DOI: 10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2. Free 

access is available from: https://journals.ametsoc.org/view/journals/atsc/19/4/1520-

0469_1962_019_0329_fafcaa_2_0_co_2.xml.  
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