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Abstract 

Efficient implementation of parallel algorithms for matrix transposition requires careful consideration 

of data distribution, synchronization, communication overheads, and load balancing to achieve optimal 

performance in-memory parallel processing. We propose an algorithm and its implementation for 

execution on a p-cell parallel in-memory cellular processor (CP). Two versions of CP are considered, 

one with size in O(p) and another with size in O(p×log p). 
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1  Introduction 

The transpose of an m×m matrix is performed with the help of a single-core computing system using a 

very simple algorithm that is executed in O(m2) time. Accelerating the execution in a heterogeneous 

computing system (HOST & ACCELERATOR) makes sense theoretically only if the matrix is already 

loaded in the accelerator as a result of a previous calculation or it is there for a calculation which 

follows. Otherwise, a gain in execution time cannot be achieved if it is necessary to transfer the matrix 

from the HOST memory to the ACCELERATOR and transfer the result back to the HOST memory. The 

transfer process is carried out in O(m2) time as well as the transpose under the direct control of the 

HOST. Even if the transpose operation is accelerated very strongly in the ACCELERATOR, we are 

dealing with a parallel algorithm that requires a very low operational intensity (I = W/Q is the ratio 

between the work W, the number of operations performed by a given application, and the memory traffic 

Q, the number of bytes of memory transfers incurred during the execution of the application). For this 

reason, our approach does not refer to distributed systems, and in the case of parallel systems, we restrict 

the investigation for the application of the transpose on the matrices already loaded in the (one-chip) 

accelerator system. 

The next section is a short presentation of work already published in literature. The third section 

introduces the structure and the architecture of the in-memory system we use. The algorithm we propose 

is presented in the 4-th section. The next section refers to the implementation. The last section provides 
evaluations and final comments.   

2  State of the Art 

In [1] is introduced a recursive algorithm which is very elegant, but needs work in O(m2log m) for a 

m×m matrix. The recursive algorithm involves dividing an m×m matrix into four m/2×m/2 matrices 

and switching the upper right matrix by the lower left one. The process is repeated with all the m/2×m/2 

matrices, and so on until 2×2 matrices are reached. This algorithm involves moving each of the matrix 
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components several times. More precisely, log-times half of the number of components of the matrix are 

moved. This fact leads to the parallel execution time which is higher than that executed sequentially by a 

single-core system which is in O(m2). 

The same algorithm is used in [4] with emphasis on optimizing the communication cost between 

processors. In [5] is solved the problem of communication in the specific interconnection networks of 

distributed systems. In [6] the problem is solved on parallel distributed systems, where the 

communication between processors is the main issue to be addressed. The mesh parallel organization is 

investigated in [7]. The implementation of the multi-core system is investigated in [8]. A multi-thread 
approach is used in [10]. 

A linear time execution algorithm is presented in [9]. The algorithm uses operations on pseudo 

diagonals and rotation operations performed in constant time. This algorithm is similar to the one we 

propose. It is applicable in a general-purpose multi-core system but with specific hardware resources. 

3  Our In-Memory Parallel Computing System 

Four The von Neumann bottleneck effect can be mitigated by a tighter interleaving between the memory 

and processing units. The increasingly frequent projects of in-memory computing systems are based on 

this observation. The structure and architecture of our system will be briefly described below, but only 

as much as it is necessary to understand how the implementation of the matrix transpose algorithm that 

we propose works (more details in [11] [14] [13] [15].  

3.1 Structure 

The structure on which in-memory processing is based assumes a data memory organized as a matrix M 

of m lines and p columns, of scalars s[ij], which is subject to processing by an array of p execution 

elements. Each execution element operates on the data formed in a column of m elements from M 

 
M[j] = [s[1j] s[2j] ... s[ij] ... s[mj]] for j = 1,2, ..., p. 

 

M is seen by the entire array of execution elements as a memory of m vectors 

 
V[i] = [s[i1] s[i2] ... s[ij] ... s[ip]] for i = 1,2, ..., m. 

 

Thus, the considered system is a cellular one in which each cell, Ci for i = 0.1, ..., p-1, contains an 

execution element and the associated memory, the vector M[j]. The system works like a cellular 

automaton, let’s call it a cellular processor, CP. The functions that are executed in each clock cycle are 

issued by a controller called CONTR. 
In this paper we will consider two versions for the array of execution units. Version 1 assumes only 

direct bidirectional connections between adjacent cells. Version 2 is additionally connected with a 

Benes-Waxman type permute network that receives from the execution units a vector of p components 

and returns another vector of p components that represents a permutation of the received vector. The 

permutation is specified by a scalar vector stored in M. 

The size of the system in the case of version 1 is in O(p), while in the case of version 2 is in 

O(p×logp). The latency introduced by the permute network is (‒1+2×log2p). 

The minimal structure of registers in each execution unit Ci, which we consider is: 
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• a[i]: accumulator register as element in the vector A = [a[0] ... a[p-1]] distributed 

along the cellular system 
 

• addr[i]: address register as part of the vector ADDR = [addr[0] ... addr[-1]] 

distributed along the CP. 
 

The accumulator register can be loaded with a value generated by CONTR or loaded from M, its 

content can be stored in a location of M. Also, the contents of the accumulator can be processed 

logically or arithmetically with a value generated by CONTR or received from M. 

3.2 Architecture 

For the transpose operation we are investigating, we exemplify from Instruction Set Architecture of CP 

the following sub-set of instructions, issued in each clock cycle by CONTR and executed by CP: 
 

ADDRLD   : addr[i] <= a[i] 

IXLOAD   : a[i] <= i; IX = [0,1, ..., p-1] 

VLOAD(value)  : a[i] <= value 

LOAD(value)  : a[i] <= mem[value] 

RLOAD(value)  : a[i] <= mem[value+addr(i)] 

RILOAD(value) : a[i] <= mem[value+addr(i)]; addr[i] <= value+addr(i) 

STORE(value)  : mem[value] <= a[i] 

RSTORE(value) : mem[value+addr(i)] <= a[i] 

RISTORE(value) : mem[value+addr(i)] <= a[i]; addr[i] <= value+addr(i) 

REM(value)   : a[i] <= reminder(a[i]/value) 

SHIFTL   : if (i=p-1) ? a[i] <= 0 : a[i] <= a[i+1] 

SHIFTR   : if (i=0) ? a[i] <= 0 : a[i] <= a[i-1] 

RSEND(value)  : PERMUTE <= {A, mem[addr[i]+value]} = {vector, pattern} 

GET    : A $<$= PERMUTE 

WAIT(value)  : a[i] <= a[i] during (value) cycles 
 

In addition to these functions, there are the typical logic & arithmetic operations. The control of 

issuing the previously listed instructions by CONTROL to the CP is carried out by the specific functions 

of a mono-core processor. 

4  Algorithm 

To describe the proposed algorithm, we will define the concept of pseudo diagonal of a square matrix. 
 

Definition 1. Let be the square matrix 
 

 
where 

 
 

is the k-th pseudo-diagonal in the matrix M. (The 0-th pseudo-diagonal is the main diagonal.)   

◊ 
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Example 1. In the following 5×5 matrix, each pseudo diagonal is emphasized by the value it contains. 

The first pseudo diagonal is filled-up with 1s, the second with 2s, and so on. 
 

  
 

◊ 
 

The transpose algorithm for matrix V of components v(i,j), into the matrix W of components w(i,j), 

for i, j = 0,1, …, m− 1 is the following: 
 

 
 

Steps (1) and (3) in the main loop of the previous algorithm are performed in CP in one clock 

cycles. 

For the second step, there are two solutions: 
 

• the k position rotate can be performed using shift operations in a number of cycles belonging to O(k) 

• the k position rotate can be performed using a permute operation with a latency of (‒1+2×log2p) 

clock cycles. 
 

When m < p in CP ⌊p/m⌋ m×m matrices can be distributed stored in m vectors from M. 

 

Example 2. Let us consider the transpose of a 4×4 matrix: 
 

 
 

◊ 
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5  Implementations 

The algorithm for matrix transpose is translated into the program running on CP and developed in the 

assembly language previously sketched. 

For implementation, we will consider a number of ⌊p/m⌋ of m×m matrices stored in m horizontal 

vectors in memory M, as follows: 
 

 
 

A, of components a[ij], B, of components b[ij], C, of components c[ij], and so on, are stored 

in vectors V[1], ..., V[m] of the memory M. The program that runs on the CP does not depend on 

the number of matrices transposed in parallel, nor on the size m that defines them. 

Depending on the number of cells, p, and the size, m, of the matrices to be transposed, the two 

versions for performing the rotation operation (step 2) must be analyzed independently. 

5.1 Shift-based rotation solution 

The matrix transpose algorithm is translated into the program developed in assembly language outlined 

in subsection 3.2. The macros use instructions of the type briefly presented in subsection 3.2. 
 

 
 

Example 3. In order to simplify the understanding of the simulation result, the same matrix (the one 

used in the previous example), is initially loaded ⌊p/m⌋ times into m vectors of M for m = 4 and p = 16, 

as follows: 
 

 
 

The program will calculate the transposes of the four initial matrices in parallel. 

The indexes of columns of the ⌊p/m⌋ matrices are computed starting from the index vector IX = [0 

1 ... p-1], with the following result: 
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The vector [15] is loaded as ADDR to be used for accessing pseudo diagonals in M. 

By copying the first m‒1 lines of each matrix immediately after the initial vectors (using the 

suggestion offered by Sarrus’ rule used in the calculation of determinants), the pseudo diagonals are 

easy emphasized to be read using RILOAD instructions with ADDR initialized with the content of 

vect[15]: 
 

 
 

The pseudo diagonals are selected from vect[0], ..., vect[6] and loaded in M as follows: 
 

 
 

Right rotate operations are applied k times according to the index of line: 
 

 
 

Vector vect[16] is rotated 0 times, vect[17] is rotated 3 times, vect[18] is rotated 2 times, and 

vect[19] is rotated once. The operation is performed based on SHIFTL and SHIFTR instructions in 

m2+21m‒20 ∈ O(m2) number of cycles. 

The lines are loaded as pseudo diagonals over a space of (2m‒1) vectors initialized with zeros: 
 

 
 

The final form is obtained by composing the resulting matrix by restoring the pseudo diagonals in 

their positions: 
 

 
 

◊ 
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The operation that consumes the largest number of cycles is the rotation, because it is performed by 

combining shifting operations in order to obtain rotations on sub-vectors of any size, depending on the side of the 

considered matrices. 

5.2 Permute-based rotation solution 

If the system contains a permute network (for details see [3] [2]), the section macro 4 of the previously 

described algorithm is executed faster. The program is designed and optimized in two steps. 

5.2.1 Permute-based rotation limited by the latency of the permute network 
The sequence of operations for rotation involving the permute network is the following: 
 

 
 

The execution time for a rotate operation results 3+2×log2p ∈ O(log p), the entire macro being executed in 

number of cycles in O(m×log p). The acceleration obtained using the permute network is limited by the latency it 

introduces. Indeed, for each permutation a number of (‒1+2×log2p) must be spent for waiting the result of the 

permutation operation. 

5.2.2 Permute-based rotation avoiding the latency of the permute network 
Instead of staying idle while waiting for the result of the permute network, we can choose to insert into the 

permute network a number equal to (‒1+2×log2p) lines from matrix M. Meanwhile, usually after one clock cycle, 

the result of the first permutation is accessible at the output of the permute network. Then, the results of the 

initiated permutations will be available rhythmically. This approach allows us to avoid the effect of the latency 

introduced by the permute network. The loop repeated ⌈m/(‒1+2×log2p)⌉ times is the following: 
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The execution time for rotate operations for all the m lines of matrices is 4m+const ∈ O(m). 

6  Evaluations 

We will evaluate the performances for the two implementations ‒ the one with and without the 

switching network ‒ and in two different situations, with the matrices in M or with the matrices in the 

system’s external memory. 

In the situation where the matrices to be transposed result from a calculation made in the 

accelerator, it is no longer necessary to load them from the system’s external memory. And if the 

transposition result is used in a subsequent immediate calculation, the transfer time in which the 

matrices are loaded from and after transposition stored in the system memory, outside the accelerator, 

will not be taken into account. 

For this case, the execution time when using shifting operation for rotate, expressed in number of 

clock cycles and confirmed by the running simulation, is: 
 

m2 + 37m + 8(log2p ‒ ⌊log2m⌋ − 1) ‒ 6 ∈ O(m2) 
 

(The number p is usually a power of 2.) Using the permute network for rotations, the execution 

time is: 

22m + 8(log2p ‒ ⌊log2m⌋) + 8 ∈ O(m) 
 

 
 

Figure 1: Acceleration for 16×16 matrices without the transfer time. 
 

Because the execution time on a system with p cells, with size in O(p), without a permute network 

belongs to O(m2), the acceleration belongs to 
 

αp(m) ∈ O(⌊p/m⌋) = O(p/m) 
 

The execution time on a system with p cells, with size in O(p×log p), and permute network belongs 

to O(m), thus acceleration belongs to 
 

αp
permute(m) ∈ O(m×⌊p/m⌋) = O(p) 
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In Figure 1 we consider the acceleration for 16 ×16 matrices transposed in accelerators with p cells, 

p = 16, 32, …, 4096. The acceleration is evaluated using a program running on a mono-core x86. The 

number of cycles for each of the m × m elements of the matrix is 14 (according to Appendix A and B). 

If we have to take into consideration the transfer time to and from the accelerator, we will have to 

add to the execution time a number of m × p clock cycles, because the interface with the external system 

allows the transfer of two cycles per cycle. Because the operational intensity for the transposition 

operation is very low, the effect of the transfer time is significant. Figure 2 shows the result of the 

evaluations, confirmed by the measurements. 
 

 
 

Figure 2: Speedup for 16 ×16 matrix considering transfer time. 

 

The weight of the transfer time in the total calculation time becomes dominant for a sufficiently 

large p, so that the acceleration is limited to a constant value, making the effect of the accelerator 

unimportant above a certain limit. Also, the difference between the two implementations of the rotation 

operation defines insignificant. 
 

 
 

Figure 3: Acceleration for p × p matrices on p-cell accelerator without permute network. 
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After evaluating the transposition of many small size matrices, we will evaluate the transposition of 

the maximum size matrices, p × p, for accelerators defined by p = 16, 32, …, 4096. We will first 

consider the situation without transfer. In Figure 3 we have the results of the run in the version without 

the permutation network. The acceleration limitation for large matrices is observed due to the quadratic 

dependence on the matrix size. If we consider the contribution of the permutation network, then the 

acceleration represented in Figure 4 results. 
 

 
 

Figure 4: Acceleration for p × p matrices on p-cell accelerator with permute network. 

 

The difference introduced by the permutation network is major due to the linear dependence on the 

size of the matrix. The price paid is a hardware structure with size in O(p × log p), compared to the one 

without the permutation network which has size in O(p). 
 

 
 

Figure 5: Acceleration for p × p matrices on p-cell accelerator considering the data transfer time. 

 

If we take into account the effect introduced by the transfer time for the maximum size matrices, 

then the accelerations illustrated in Figure 5 result. The limitation of the performance is due to the 

acceleration of the computation beyond the limit at which the time allocated to it becomes insignificant 

compared to the transfer time. The twice higher performance when using the permutation network is 

obtained by increasing the size of the system from O(p) to O(p × log p). 



 

                       11  

IN-MEMORY PARALLEL PROCESSING FOR MATRIX TRANSPOSE 

7  Conclusion 

The conducted work aligns with the principles of “experimental algorithmics” as outlined in McGeoch’s 

work [12], incorporating an additional criterion that considers the size and complexity of the hardware 

employed. The proposed implementations of the algorithm for transposition assume specific hardware 

structures, necessitating consideration when selecting a solution in a broader context. 

While the purely theoretical assessment, employing orders of magnitude such as O(f (m)), deems 

the loading of certain matrices into the accelerator solely for transposition as inefficient, the evaluation 

based on precise cycle-level measurements indicates that transposing some matrices using the 
accelerator is justified. This is attributed to the substantial number of cycles, specifically 14, in the 

mono-core sequential solution. 

The following observations are required regarding the application of the matrix transposition 

function: 

• it is preferable that the function be applied to the matrices originating in M as a consequence of a 

calculation and not of a transfer from the external memory of the accelerator 

• the version that assumes the permutation function must be used only when, in the running 

application, only performance matters, and efficiency (price, energy) is not taken into account 

• when efficiency (price, energy) is taken into account, the solution without the exchange network 

is recommended 

• when the accelerator offers a function to the host from a heterogeneous computing system to 

perform the transposition of large matrices (beyond what the accelerator can offer), it is 

preferable to use the version without the permutation network, especially when the efficiency ‒ 

not only performance ‒ is important. 
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A. Program for Transpose on Mono-Core Architecture 
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B. Assembly Code on Mono-Core Architecture 

The code compiled from the program listed in Appendix A is: 

 

 
 

The main loop is labeled .L4. It is repeated m2 times. It has 17 instructions and is executed in ∼ 14 clock 

cycles taking into account that the number of instructions per cycle is around 1.2 for the x86 architecture. 
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