
InSight: RIVIER ACADEMIC JOURNAL, VOLUME 7, NUMBER 1, SPRIING 2011

Copyright © 2011 by Robert R. Marceau. Published by Rivier College, with permission. 1
ISSN 1559-9388 (online version), ISSN 1559-9396 (CD-ROM version).

Abstract

C.A.R. Hoare’s quicksort algorithm has become a very popular sorting algorithm due to the average
performance of Θ(n log n), limited use of extra storage (typically Θ(log2n) recursive calls) and better
performance on average compared to heapsort (another Θ(n log n) sorting algorithm). It may be found
in several standard libraries supporting C, C++, and Java. The major drawback in the quicksort
algorithm is the Θ(n2) worse case performance. Unfortunately, this performance is exhibited for some
rather common initial permutations. The author intends to look into this performance of the quicksort
algorithm, and in particular potential modifications to minimize the probability that the worst-case
performance will be exhibited.

1 Historical Note
The original quicksort was described by C.A.R. Hoare in Algorithms 63 and 64 of the Collected
Algorithms from the Association for Computing Machinery. (Presented in the original Algol). [1]

1.1 Algorithm 63 - partition
procedure partition (A,M,N,I,J); value M,N;

array A; integer M,N,I,J;

comment: I and J are output variables, and A is the array (with subscript bounds
M:N) which is operated upon by this procedure.

Partition takes the value X of a random element of the array A, and rearranges the
values of the elements of the array in such a way that there exist integers I and J
with the following properties:

M <= J < I <= N provided M < N
A[R] <= X for M <= R <= J
A[R] = X for J < R > I
A[R] >= X for I <= R <= N

The procedure uses an integer procedure random (M,N) which chooses equiprobably a
random integer F between M and N, and also a procedure exchange, which exchanges
the values of its two parameters;

begin real X; integer F;

F := random (M,N); X := A[F];
up: for I := 1 step 1 until N do

if X < A[I] then go to down;
I := N;

AN ANALYSIS OF THE WORST-CASE PERFORMANCE OF
QUICKSORT

Robert R. Marceau*

M.S. Program in Computer Science, Rivier College

Robert R. Marceau

 2

down: for J := J step -1 until M do
if A[J] < X then go to change;

J := M;
change: if I < J then begin exchange (A[I],A[J]);

I := I + 1; J := J - 1;
go to up;

end
else if I < F then begin exchange (A[I],A[F]);

I := I + 1;
end

else if F < J then begin exchange (A[F],A[J]);
J := J - 1;

end;
end partition

1.2 Algorithm 64 - quicksort
procedure quicksort (A,M,N); value M,N;

array A; integer M,N;

comment: Quicksort is a very fast and convenient method of sorting an array in the
random-access store of a computer. The entire contents of the store may be sorted,
since no extra space is required. The average number of comparisons made is 2(M-N)*
ln(N-M), and the average number of exchanges is one sixth this amount. Suitable
refinements of this method will be desirable for its implementation on any actual
computer;

begin integer I,J;

if M < N then begin partition(A,M,N,I,J);
quicksort(A,M,J);
quicksort(A,I,N);

end
end quicksort

2 Java Implementation
A Java implementation of Quicksort was created and instrumented to count the number of key
comparisons and the number of key exchanges. The source code is included in the appendixes. The
original Java implementation uses the first element of the subarray as the pivot value, as described in [2]
pages 159-171.

3 Average Case Performance
In the average case, quicksort has a recurrence relation of T(n) = 2T(n/2). That is, on average, the pivot
procedure produces two subarrays of approximately n/2 elements. The depth of the recursion tree is
log2n. Summing over all the levels, we have Θ(n log n). [2] pages 165-168, [3] pages 159-160, [4] pages
544-546, [5] pages 244-245

4 Worse Case Performance
Quicksort has a Θ(n2) worse case performance. [2] pages 162-165, [3] page 156, [4] page 547 [5] page
243

 3

AN ANALYSIS OF THE WORST-CASE PERFORMANCE OF QUICKSORT

4.1 Realized when array is already in ascending sequence
In the case where the array is in ascending sequence, the partition procedure will partition the array such
that the left subarray has only one element. Here the recursion relationship degrades to T (n) = T (n − 1)
+ Θ(1). In this case, T(n) ϵ Θ(n2).

4.2 Realized when array is in descending sequence
In the case where the array is in descending sequence, the partition procedure will partition the array
such that the right subarray has only one element. Performance is also Θ(n2), as in the previous case.

5 Near Worse Case Performance
Near worse case performance is realized when array is already in nearly ascending or descending
sequence. A typical example would be a small set of elements (all with keys greater than the existing
array) appended to the previously sorted array. The various version of quicksort were run with an array
that had the first 90% of the elements in either ascending or descending sequence, followed by a set of
either ordered or unordered elements with larger keys.

An occurrence of this is not uncommon, when an implementation naïvely appends the new elements
with assigned identification numbers to an already existing array. A much better approach would be to
sort the new elements separately and then merge the results with the existing array. (Since the new
elements would have assigned identification numbers, these may be in a near ascending sequence, so the
use of the first element as a pivot for a quicksort of the new elements would exhibit Θ(n2) behavior
which should be avoided).

Another situation that may occur is when the array is already sorted by one key and then sorted by
another key that is not independent. Consider the case where the array is initially sorted by zip code and
then quicksort is used to sort it by state. Since zip codes are grouped by state, the array will contain
several long runs of keys. There is a similar dependence between social security numbers and state of
residence when the number is assigned.

6 Avoidance of Worse Case and Near Worse Case Performance

6.1 Random selection
A randomly selected element in the subarray is exchanged with the first element and becomes the pivot
element. This method was used by C.A.R. Hoare in his original implementation. [1] Algorithm 63

6.2 Median
The median of a small number of elements chosen from the subarray is exchanged with the first element
and becomes the pivot element. [6] page 123

7 Alternative Method for Small Subarrays
Another quicksort optimization involves the use of an alternative sorting algorithm when the subarray
size is below a certain limit. Typically, this limit is chosen as 2 or 3, in which case the elements may be
ordered using a decision tree. Although this will not affect the asymptotic behavior, it will eliminate a

Robert R. Marceau

 4

few levels from the recursion tree and reduce stack usage. The reduction will be Θ(n), reducing the
number of recursive calls by n, 3n/2 , 7n/4 in the cases where one, two, or three levels are eliminated.

8 Implementations with Various Improvements
The following implementations of the quicksort algorithm where written in Java (included in the
appendixes) and run to gather data.

q0 Original version using the first element as the pivot
q1 Decision tree for n < 3
q2 Decision tree for n < 4
q3 Decision tree for n < 4, median of left, middle and right as pivot
q4 Decision tree for n < 4, random pivot selection

9 Results
Each implementation was executed 100 times for permutations of size 10 to 100 in steps of 10. Nine
different types of permutations were used (all values were unique):

aa A strictly ascending permutation
ad The first 90% were ascending, 10% descending
ar The first 90% were ascending, 10% random
da The first 90% were descending, 10% ascending
dd A strictly descending permutation
dr The first 90% were descending, 10% random
ra The first 90% were random, 10% ascending
rd The first 90% were random, 10% descending
rr A random permutation

Number of comparisons for q0

Table 1: Original version using the first element as the pivot

 5

AN ANALYSIS OF THE WORST-CASE PERFORMANCE OF QUICKSORT

Number of comparisons for q1

Table 2: Decision tree for n < 3

Number of comparisons for q2

Table 3: Decision tree for n < 4

Robert R. Marceau

 6

Number of comparisons for q3

Table 4: Decision tree for n < 4, median of left, middle and right as pivot

Number of comparisons for q4

Table 5: Decision tree for n < 4, random pivot selection

As can be seen in the tables above, q0, q1, and q2 exhibit a worst case performance of Θ(n2) for
permutations that are ordered or nearly ordered. The differences between q0, q1, and q2 for the ordered
permutations (aa, dd) is small. This is consistent with decision tree only being used once for the final
partitioning of the left or right subarray. For the nearly ordered permutations (ad, ar, da, and dr) the
difference is also small, since the decision tree is only used for a small number of leaf nodes. In these
cases, the recurrence relation degrades to T (n) = T(n−1) + Θ(1), with each partit ioning producing
subarrays lengths 1 and n−1. This will continue until n−1 = 3 for q1 or n−1 = 4 in the case of q2, at
which point the decision tree will be utilized in place of further partitioning.

 7

AN ANALYSIS OF THE WORST-CASE PERFORMANCE OF QUICKSORT

Figure 1: Plot of number of comparisons vs. data set size, strictly ascending Original (q0) and Median
pivot (q3); f(x) = ½x2 and l(x) = 2xlog2x

Figure 2: Plot of number of comparisons vs. data set size, strictly ascending Original (q0) and Random
pivot (q4); f(x) = ½x2 and l(x) = 2xlog2x

Robert R. Marceau

 8

For random permutations, the use of a decision tree in q1 and q2 makes a slightly larger
improvement over the performance of q0. The performance of all implementations for random
permutations is Θ(n log n), as expected.

The use of either the median (in q3) or a randomly selected element (in q4) as the pivot value
reduces the worst case performance from Θ(n2) to Θ(n log n) as can be seen in Figures 1 and 2. In each
graph, two reference function, f(x) = ½x2 and l(x) = 2xlog2x are also plotted. The constants were chosen
to fit the actual data. It is also noteworthy to observe that q3 and q4 performed as well or a little better
than q2 (which uses the same size decision tree as q3 and q4) for the random permutations.

For cases where the permutation is mostly ascending (aa, ad, ar) q3 (using the median as pivot)
showed about a 15% improvement over q4 (where a randomly selected element of the subarray is used
as the pivot value).

In conclusion, it is apparent that using the median value for the pivot produces the best
performance. For the random permutations, the median pivot performs within a few percent of the
random pivot implementation. For ordered permutations, the median value pivot implementation
performs best. Both q3 and q4 are Θ(n log n) for all of the permutations examined, while q0, q1, and q2
were Θ(n log n) only for the random permutations and had Θ(n2) behavior for the permutations that were
either ordered or nearly ordered. ■

References
[1] ACM. Conference Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing: Papers

Presented at the Symposium, Los Angeles, California, April 28-30, 1980. Association for Computing
Machinery, 1998.

[2] Sara Baase and Allen Van Gelder. Computer Algorithms: Introduction to Design and Analysis (3rd Edition).
Addison Wesley, 1999.

[3] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms (MIT Electrical
Engineering and Computer Science). The MIT Press, 1990.

[4] Thomas A. Standish. Data Structures, Algorithms, and Software Principles in C. Addison Wesley, 1994.
[5] Mark A. Weiss. Data Structures and Algorithm Analysis in C (2nd Edition). Addison Wesley, 1996.
[6] Donald E. Knuth. The Art of Computer Programming: Sorting and Searching. Volume 3 (Addison Wesley

Series in Computer Science and Information Processing). Addison-Wesley, 1973.

Appendix A: Original version using first element as pivot
//
// Plain version
//
import java.util.Scanner;
public class q0
{

static int n_cmp = 0;
static int n_xch = 0;

static boolean isGreater (int x, int y)
{

n_cmp++;

return x > y;

 9

AN ANALYSIS OF THE WORST-CASE PERFORMANCE OF QUICKSORT

}

static boolean isLess (int x, int y)
{

n_cmp++;

return x < y;
}

static void xchg (int [] x, int i, int j)
{

int t = x[i];
n_xch++;

x[i] = x[j];
x[j] = t;

}

public static void quicksort (int[] x)
{

quicksort(x, 0, x.length - 1);
}

public static void quicksort (int[] x, int p, int r)
{

if (r <= p)
return;

int q = partition (x, p, r);
quicksort (x, p, q);
quicksort (x, q+1, r);

return;

}

public static int partition (int[] x, int p, int r)
{

int xx = x[p];
int i = p - 1;
int j = r + 1;

for (;;) {

do {
j--;

} while (isGreater(x[j], xx));
do {

i++;
} while (isGreater(xx, x[i]));
if (i < j) {

xchg (x, i, j);
} else

return j;
}

}

Robert R. Marceau

 10

public static void print_array (int[] x)
{

final int n = x.length;

for (int i = 0; i < n; i++)
System.out.printf ("%5d%c",

x[i], ((i+1)%10) == 0 ? ’\n’: ’ ’);
System.out.printf ("\n");

}

public static void main (String[] args)
{

Scanner input = new Scanner(System.in);

int n = Integer.parseInt(args[0]);
int [] x = new int [n];
int t = 0;

while (input.hasNext()) {

for (int i = 0; i < n; i++)

x[i] = input.nextInt();

quicksort (x);
t++;

}
if (t != 0)

System.out.printf ("%d", n_cmp/t);
}

}

Appendix B: Decision tree for less than three elements
//
// Less than 3 by decision tree
//
import java.util.Scanner;
public class q1
{

//
// Code identical to q0 omitted
//
public static void quicksort (int[] x, int p, int r)
{

if (r <= p)
return;

if (r - p < 2) {

if (isGreater(x[p], x[r]))
xchg (x, p, r);

return;
}

 11

AN ANALYSIS OF THE WORST-CASE PERFORMANCE OF QUICKSORT

int q = partition (x, p, r);
quicksort (x, p, q);
quicksort (x, q+1, r);

return;

}

public static int partition (int[] x, int p, int r)
{

int xx = x[p];
int i = p - 1;
int j = r + 1;

for (;;) {

do {
j--;

} while (isGreater(x[j], xx));
do {

i++;
} while (isGreater(xx, x[i]));
if (i < j) {

xchg (x, i, j);
} else

return j;
}

}
//
// Code identical to q0 omitted
//

}

Appendix C: Decision tree for less than four elements
//
// Less than 4 by decision tree
//
import java.util.Scanner;
public class q2
{

//
// Code identical to q0 omitted
//
public static void quicksort (int[] x, int p, int r)
{

if (r <= p)
return;

if (r - p == 2) {

if (isLess(x[p], x[p+1])) {
if (isLess(x[p+1], x[r]))

return;
if (isLess(x[p], x[r])) {

xchg (x, p+1, r);

Robert R. Marceau

 12

} else {
xchg (x, p+1, r);
xchg (x, p, p+1);

}
} else {

if (isLess(x[p], x[r])) {
xchg (x, p, p+1);

} else {
if (isLess(x[p+1], x[r])) {

xchg (x, p, r);
xchg (x, p, p+1);

} else {
xchg (x, p, r);

}
}

}
return;

}

if (r - p < 2) {
if (isGreater(x[p], x[r]))

xchg (x, p, r);
return;

}

int q = partition (x, p, r);
quicksort (x, p, q);
quicksort (x, q+1, r);

return;

}

public static int partition (int[] x, int p, int r)
{

int xx = x[p];
int i = p - 1;
int j = r + 1;

for (;;) {

do {
j--;

} while (isGreater (x[j], xx));
do {

i++;
} while (isGreater(xx, x[i]));
if (i < j) {

xchg (x, i, j);
} else

return j;
}

}
//
// Code identical to q0 omitted

 13

AN ANALYSIS OF THE WORST-CASE PERFORMANCE OF QUICKSORT

//
}

Appendix D: Less than 4 by decision tree, median pivot
//
// Less than 4 by decision tree, median(1, p/2, p) pivot
//
import java.util.Scanner;
public class q3
{

//
// Code identical to q0 omitted
//
static int median (int [] x, int p, int q, int r)
{

if (isLess(x[p], x[q])) {
if (isLess(x[q], x[r]))

return q;
if (isLess(x[p], x[r])) {

return r;
} else {

return p;
}

} else {
if (isLess(x[p], x[r])) {

return p;
} else {

if (isLess(x[q], x[r])) {
return r;

} else {
return q;

}
}

}
}
public static void quicksort (int[] x)
{

quicksort(x, 0, x.length - 1);
}

public static void quicksort (int[] x, int p, int r)
{

if (r <= p)
return;

if (r - p == 2) {

if (isLess(x[p], x[p+1])) {
if (isLess(x[p+1], x[r]))

return;
if (isLess(x[p], x[r])) {

xchg (x, p+1, r);
} else {

xchg (x, p+1, r);

Robert R. Marceau

 14

xchg (x, p, p+1);
}

} else {
if (isLess(x[p], x[r])) {

xchg (x, p, p+1);
} else {

if (isLess(x[p+1], x[r])) {
xchg (x, p, r);
xchg (x, p, p+1);

} else {
xchg (x, p, r);

}
}

}
return;

}

if (r - p < 2) {

if (isGreater(x[p], x[r]))
xchg (x, p, r);

return;
}

int q = partition (x, p, r);
quicksort (x, p, q);
quicksort (x, q+1, r);

return;

}

public static int partition (int[] x, int p, int r)
{

int xx;
int i = p - 1;
int j = r + 1;

if (r - p >= 4) {

int m = median (x, p, p+(r-p)/2, r);

if (m != p)
xchg (x, p, m);

}

xx = x[p];

for (;;) {
do {

j--;

} while (isGreater(x[j], xx));
do {

i++;
} while (isGreater(xx, x[i]));

 15

AN ANALYSIS OF THE WORST-CASE PERFORMANCE OF QUICKSORT

if (i < j) {
xchg (x, i, j);

} else
return j;

}
}
//
// Code identical to q0 omitted
//

}

Appendix E: Less than 4 by decision tree, random pivot
//
// Less than 4 by decision tree, random pivot
//
import java.util.Scanner;
public class q4
{

//
// Code identical to q0 omitted
//

public static void quicksort (int[] x, int p, int r)
{

if (r <= p)
return;

if (r - p == 2) {

if (isLess(x[p], x[p+1])) {
if (isLess(x[p+1], x[r]))

return;
if (isLess(x[p], x[r])) {

xchg (x, p+1, r);
} else {

xchg (x, p+1, r);
xchg (x, p, p+1);

}
} else {

if (isLess(x[p], x[r])) {
xchg (x, p, p+1);

} else {
if (isLess(x[p+1], x[r])) {

xchg (x, p, r);
xchg (x, p, p+1);

} else {
xchg (x, p, r);

}
}

}
return;

}

if (r - p < 2) {

Robert R. Marceau

 16

if (isGreater(x[p], x[r]))

xchg (x, p, r);
return;

}

int q = partition (x, p, r);
quicksort (x, p, q);
quicksort (x, q+1, r);

return;

}

public static int partition (int[] x, int p, int r)
{

int xx;
int i = p - 1;
int j = r + 1;

int m = (int) ((r-p+1)* Math.random()) + p;

if (m != p)

xchg (x, p, m);

xx = x[p];

for (;;) {
do {

j--;

} while (isGreater(x[j], xx));
do {

i++;
} while (isGreater(xx, x[i]));
if (i < j) {

xchg (x, i, j);
} else

return j;
}

}
//
// Code identical to q0 omitted
//

}

* ROBERT MARCEAU wrote his first computer program in October, 1969 on a DEC PDP-8/I running TSS/8. Since that

time, he has earned a BS in Mathematics from the University of Massachusetts-Lowell in 1977. After spending the next
thirty years in the software industry, he has returned to the University of Massachusetts-Lowell to complete his MS in
Mathematics (expected May, 2011) and has started the MS in Computer Science program at Rivier College in Nashua,
NH. He is currently an Adjunct Faculty member at Nashua Community College and teaching Fundamentals of Operating
Systems and Object Oriented Programming with C++.

