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Abstract 

C.A.R. Hoare’s quicksort algorithm has become a very popular sorting algorithm due to the average 
performance of Θ(n log n), limited use of extra storage (typically Θ(log2n) recursive calls) and better 
performance on average compared to heapsort (another Θ(n log n) sorting algorithm). It may be found 
in several standard libraries supporting C, C++, and Java. The major drawback in the quicksort 
algorithm is the Θ(n2) worse case performance. Unfortunately, this performance is exhibited for some 
rather common initial permutations. The author intends to look into this performance of the quicksort 
algorithm, and in particular potential modifications to minimize the probability that the worst-case 
performance will be exhibited. 

1  Historical Note 
The original quicksort was described by C.A.R. Hoare in Algorithms 63 and 64 of the Collected 
Algorithms from the Association for Computing Machinery. (Presented in the original Algol). [1] 

1.1 Algorithm 63 - partition 
procedure partition (A,M,N,I,J); value M,N; 

array A; integer M,N,I,J; 
 
comment: I and J are output variables, and A is the array (with subscript bounds 
M:N) which is operated upon by this procedure. 
 
Partition takes the value X of a random element of the array A, and rearranges the 
values of the elements of the array in such a way that there exist integers I and J 
with the following properties: 
 

M <= J < I <= N provided M < N 
A[R] <= X for M <= R <= J 
A[R] = X for J < R > I 
A[R] >= X for I <= R <= N 

 
The procedure uses an integer procedure random (M,N) which chooses equiprobably a 
random integer F between M and N, and also a procedure exchange, which exchanges 
the values of its two parameters; 
 
begin real X; integer F; 

F := random (M,N); X := A[F]; 
up: for I := 1 step 1 until N do 

if X < A[I] then go to down; 
I := N; 
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down: for J := J step -1 until M do 
if A[J] < X then go to change; 

J := M; 
change: if I < J then begin exchange (A[I],A[J]); 

I := I + 1; J := J - 1; 
go to up; 

end 
else if I < F then begin exchange (A[I],A[F]); 

I := I + 1; 
end 

else if F < J then begin exchange (A[F],A[J]); 
J := J - 1; 

end; 
end partition 

1.2 Algorithm 64 - quicksort 
procedure quicksort (A,M,N); value M,N; 

array A; integer M,N; 
 
comment: Quicksort is a very fast and convenient method of sorting an array in the 
random-access store of a computer. The entire contents of the store may be sorted, 
since no extra space is required. The average number of comparisons made is 2(M-N)* 
ln(N-M), and the average number of exchanges is one sixth this amount. Suitable 
refinements of this method will be desirable for its implementation on any actual 
computer; 
 
begin integer I,J; 

if M < N then begin partition(A,M,N,I,J); 
quicksort(A,M,J); 
quicksort(A,I,N); 

end 
end quicksort 

2 Java Implementation 
A Java implementation of Quicksort was created and instrumented to count the number of key 
comparisons and the number of key exchanges. The source code is included in the appendixes. The 
original Java implementation uses the first element of the subarray as the pivot value, as described in [2] 
pages 159-171. 

3 Average Case Performance 
In the average case, quicksort has a recurrence relation of T(n) = 2T(n/2). That is, on average, the pivot 
procedure produces two subarrays of approximately n/2 elements. The depth of the recursion tree is 
log2n. Summing over all the levels, we have Θ(n log n). [2] pages 165-168, [3] pages 159-160, [4] pages 
544-546, [5] pages 244-245 

4 Worse Case Performance 
Quicksort has a Θ(n2) worse case performance. [2] pages 162-165, [3] page 156, [4] page 547 [5] page 
243 
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4.1 Realized when array is already in ascending sequence 
In the case where the array is in ascending sequence, the partition procedure will partition the array such 
that the left subarray has only one element. Here the recursion relationship degrades to T (n) = T (n − 1) 
+ Θ(1). In this case, T(n) ϵ Θ(n2). 

4.2 Realized when array is in descending sequence 
In the case where the array is in descending sequence, the partition procedure will partition the array 
such that the right subarray has only one element. Performance is also Θ(n2), as in the previous case. 

5 Near Worse Case Performance 
Near worse case performance is realized when array is already in nearly ascending or descending 
sequence. A typical example would be a small set of elements (all with keys greater than the existing 
array) appended to the previously sorted array. The various version of quicksort were run with an array 
that had the first 90% of the elements in either ascending or descending sequence, followed by a set of 
either ordered or unordered elements with larger keys. 

An occurrence of this is not uncommon, when an implementation naïvely appends the new elements 
with assigned identification numbers to an already existing array. A much better approach would be to 
sort the new elements separately and then merge the results with the existing array. (Since the new 
elements would have assigned identification numbers, these may be in a near ascending sequence, so the 
use of the first element as a pivot for a quicksort of the new elements would exhibit Θ(n2) behavior 
which should be avoided). 

Another situation that may occur is when the array is already sorted by one key and then sorted by 
another key that is not independent. Consider the case where the array is initially sorted by zip code and 
then quicksort is used to sort it by state. Since zip codes are grouped by state, the array will contain 
several long runs of keys. There is a similar dependence between social security numbers and state of 
residence when the number is assigned. 

6 Avoidance of Worse Case and Near Worse Case Performance 

6.1 Random selection 
A randomly selected element in the subarray is exchanged with the first element and becomes the pivot 
element. This method was used by C.A.R. Hoare in his original implementation. [1] Algorithm 63 

6.2 Median 
The median of a small number of elements chosen from the subarray is exchanged with the first element 
and becomes the pivot element. [6] page 123 

7 Alternative Method for Small Subarrays 
Another quicksort optimization involves the use of an alternative sorting algorithm when the subarray 
size is below a certain limit. Typically, this limit is chosen as 2 or 3, in which case the elements may be 
ordered using a decision tree. Although this will not affect the asymptotic behavior, it will eliminate a 
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few levels from the recursion tree and reduce stack usage. The reduction will be Θ(n), reducing the 
number of recursive calls by n, 3n/2 , 7n/4 in the cases where one, two, or three levels are eliminated. 

8 Implementations with Various Improvements 
The following implementations of the quicksort algorithm where written in Java (included in the 
appendixes) and run to gather data. 
 

q0 Original version using the first element as the pivot 
q1 Decision tree for n < 3 
q2 Decision tree for n < 4 
q3 Decision tree for n < 4, median of left, middle and right as pivot 
q4 Decision tree for n < 4, random pivot selection 

9 Results 
Each implementation was executed 100 times for permutations of size 10 to 100 in steps of 10. Nine 
different types of permutations were used (all values were unique): 
 

aa  A strictly ascending permutation 
ad  The first 90% were ascending, 10% descending 
ar  The first 90% were ascending, 10% random 
da  The first 90% were descending, 10% ascending 
dd  A strictly descending permutation 
dr  The first 90% were descending, 10% random 
ra  The first 90% were random, 10% ascending 
rd  The first 90% were random, 10% descending 
rr  A random permutation 

 
Number of comparisons for q0 

 
 

Table 1: Original version using the first element as the pivot 
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Number of comparisons for q1 

 
 

Table 2: Decision tree for n < 3 
 
 

Number of comparisons for q2 

 
 

Table 3: Decision tree for n < 4 
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Number of comparisons for q3 

 
 

Table 4: Decision tree for n < 4, median of left, middle and right as pivot 
 
 

Number of comparisons for q4 

 
 

Table 5: Decision tree for n < 4, random pivot selection 
 

As can be seen in the tables above, q0, q1, and q2 exhibit a worst case performance of Θ(n2) for 
permutations that are ordered or nearly ordered. The differences between q0, q1, and q2 for the ordered 
permutations (aa, dd) is small. This is consistent with decision tree only being used once for the final 
partitioning of the left or right subarray. For the nearly ordered permutations (ad, ar, da, and dr) the 
difference is also small, since the decision tree is only used for a small number of leaf nodes. In these 
cases, the recurrence relation degrades to T (n) = T(n−1) + Θ(1), with each partit ioning producing 
subarrays lengths 1 and n−1. This will continue until n−1 = 3 for q1 or n−1 = 4 in the case of q2, at 
which point the decision tree will be utilized in place of further partitioning. 
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Figure 1: Plot of number of comparisons vs. data set size, strictly ascending Original (q0) and Median 
pivot (q3); f(x) = ½x2 and l(x) = 2xlog2x 
 

 
Figure 2: Plot of number of comparisons vs. data set size, strictly ascending Original (q0) and Random 
pivot (q4); f(x) = ½x2 and l(x) = 2xlog2x 
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For random permutations, the use of a decision tree in q1 and q2 makes a slightly larger 
improvement over the performance of q0. The performance of all implementations for random 
permutations is Θ(n log n), as expected. 

The use of either the median (in q3) or a randomly selected element (in q4) as the pivot value 
reduces the worst case performance from Θ(n2) to Θ(n log n) as can be seen in Figures 1 and 2. In each 
graph, two reference function, f(x) = ½x2 and l(x) = 2xlog2x are also plotted. The constants were chosen 
to fit the actual data. It is also noteworthy to observe that q3 and q4 performed as well or a little better 
than q2 (which uses the same size decision tree as q3 and q4) for the random permutations. 

For cases where the permutation is mostly ascending (aa, ad, ar) q3 (using the median as pivot) 
showed about a 15% improvement over q4 (where a randomly selected element of the subarray is used 
as the pivot value). 

In conclusion, it is apparent that using the median value for the pivot produces the best 
performance. For the random permutations, the median pivot performs within a few percent of the 
random pivot implementation. For ordered permutations, the median value pivot implementation 
performs best. Both q3 and q4 are Θ(n log n) for all of the permutations examined, while q0, q1, and q2 
were Θ(n log n) only for the random permutations and had Θ(n2) behavior for the permutations that were 
either ordered or nearly ordered. ■ 
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Appendix A: Original version using first element as pivot 
// 
// Plain version 
// 
import java.util.Scanner; 
public class q0 
{ 

static int n_cmp = 0; 
static int n_xch = 0; 

 
static boolean isGreater (int x, int y) 
{ 

n_cmp++; 
 

return x > y; 
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} 
 

static boolean isLess (int x, int y) 
{ 

n_cmp++; 
 

return x < y; 
} 

 
static void xchg (int [] x, int i, int j) 
{ 

int t = x[i]; 
n_xch++; 

 
x[i] = x[j]; 
x[j] = t; 

} 
 

public static void quicksort (int[] x) 
{ 

quicksort(x, 0, x.length - 1); 
} 

 
public static void quicksort (int[] x, int p, int r) 
{ 

if (r <= p) 
return; 

 
int q = partition (x, p, r); 
quicksort (x, p, q); 
quicksort (x, q+1, r); 

 
return; 

} 
 

public static int partition (int[] x, int p, int r) 
{ 

int xx = x[p]; 
int i = p - 1; 
int j = r + 1; 

 
for (;;) { 

do { 
j--; 

} while (isGreater(x[j], xx)); 
do { 

i++; 
} while (isGreater(xx, x[i])); 
if (i < j) { 

xchg (x, i, j); 
} else 

return j; 
} 

} 
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public static void print_array (int[] x) 
{ 

final int n = x.length; 
 

for (int i = 0; i < n; i++) 
System.out.printf ("%5d%c", 

x[i], ((i+1)%10) == 0 ? ’\n’: ’ ’); 
System.out.printf ("\n"); 

} 
 

public static void main (String[] args) 
{ 

Scanner input = new Scanner(System.in); 
 

int n = Integer.parseInt(args[0]); 
int [] x = new int [n]; 
int t = 0; 

 
while (input.hasNext()) { 

 
for (int i = 0; i < n; i++) 

x[i] = input.nextInt(); 
 
quicksort (x); 
t++; 

} 
if (t != 0) 

System.out.printf ("%d", n_cmp/t); 
} 

} 

Appendix B: Decision tree for less than three elements 
// 
// Less than 3 by decision tree 
// 
import java.util.Scanner; 
public class q1 
{ 

// 
// Code identical to q0 omitted 
// 
public static void quicksort (int[] x, int p, int r) 
{ 

if (r <= p) 
return; 

 
if (r - p < 2) { 

if (isGreater(x[p], x[r])) 
xchg (x, p, r); 

return; 
} 

 



 

                      11  

AN ANALYSIS OF THE WORST-CASE PERFORMANCE OF QUICKSORT 

int q = partition (x, p, r); 
quicksort (x, p, q); 
quicksort (x, q+1, r); 

 
return; 

} 
 

public static int partition (int[] x, int p, int r) 
{ 

int xx = x[p]; 
int i = p - 1; 
int j = r + 1; 

 
for (;;) { 

do { 
j--; 
 

} while (isGreater(x[j], xx)); 
do { 

i++; 
} while (isGreater(xx, x[i])); 
if (i < j) { 

xchg (x, i, j); 
} else 

return j; 
} 

} 
// 
// Code identical to q0 omitted 
// 

} 

Appendix C: Decision tree for less than four elements 
// 
// Less than 4 by decision tree 
// 
import java.util.Scanner; 
public class q2 
{ 

// 
// Code identical to q0 omitted 
// 
public static void quicksort (int[] x, int p, int r) 
{ 

if (r <= p) 
return; 

 
if (r - p == 2) { 

if (isLess(x[p], x[p+1])) { 
if (isLess(x[p+1], x[r])) 

return; 
if (isLess(x[p], x[r])) { 

xchg (x, p+1, r); 
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} else { 
xchg (x, p+1, r); 
xchg (x, p, p+1); 

} 
} else { 

if (isLess(x[p], x[r])) { 
xchg (x, p, p+1); 

} else { 
if (isLess(x[p+1], x[r])) { 

xchg (x, p, r); 
xchg (x, p, p+1); 

} else { 
xchg (x, p, r); 

} 
} 

} 
return; 

} 
 

if (r - p < 2) { 
if (isGreater(x[p], x[r])) 

xchg (x, p, r); 
return; 

} 
 

int q = partition (x, p, r); 
quicksort (x, p, q); 
quicksort (x, q+1, r); 

 
return; 

} 
 

public static int partition (int[] x, int p, int r) 
{ 

int xx = x[p]; 
int i = p - 1; 
int j = r + 1; 

 
for (;;) { 

do { 
j--; 

 
} while (isGreater (x[j], xx)); 
do { 

i++; 
} while (isGreater(xx, x[i])); 
if (i < j) { 

xchg (x, i, j); 
} else 

return j; 
} 

} 
// 
// Code identical to q0 omitted 
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// 
} 

Appendix D: Less than 4 by decision tree, median pivot 
// 
// Less than 4 by decision tree, median(1, p/2, p) pivot 
// 
import java.util.Scanner; 
public class q3 
{ 

// 
// Code identical to q0 omitted 
// 
static int median (int [] x, int p, int q, int r) 
{ 

if (isLess(x[p], x[q])) { 
if (isLess(x[q], x[r])) 

return q; 
if (isLess(x[p], x[r])) { 

return r; 
} else { 

return p; 
} 

} else { 
if (isLess(x[p], x[r])) { 

return p; 
} else { 

if (isLess(x[q], x[r])) { 
return r; 

} else { 
return q; 

} 
} 

} 
} 
public static void quicksort (int[] x) 
{ 

quicksort(x, 0, x.length - 1); 
} 

 
public static void quicksort (int[] x, int p, int r) 
{ 

if (r <= p) 
return; 

 
if (r - p == 2) { 

if (isLess(x[p], x[p+1])) { 
if (isLess(x[p+1], x[r])) 

return; 
if (isLess(x[p], x[r])) { 

xchg (x, p+1, r); 
} else { 

xchg (x, p+1, r); 
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xchg (x, p, p+1); 
} 

} else { 
if (isLess(x[p], x[r])) { 

xchg (x, p, p+1); 
} else { 

if (isLess(x[p+1], x[r])) { 
xchg (x, p, r); 
xchg (x, p, p+1); 

} else { 
xchg (x, p, r); 

} 
} 

} 
return; 

} 
 

if (r - p < 2) { 
 

if (isGreater(x[p], x[r])) 
xchg (x, p, r); 

return; 
} 

 
int q = partition (x, p, r); 
quicksort (x, p, q); 
quicksort (x, q+1, r); 

 
return; 

} 
 

public static int partition (int[] x, int p, int r) 
{ 

int xx; 
int i = p - 1; 
int j = r + 1; 

 
if (r - p >= 4) { 

int m = median (x, p, p+(r-p)/2, r); 
 

if (m != p) 
xchg (x, p, m); 

} 
 

xx = x[p]; 
 

for (;;) { 
do { 

j--; 
 

} while (isGreater(x[j], xx)); 
do { 

i++; 
} while (isGreater(xx, x[i])); 
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if (i < j) { 
xchg (x, i, j); 

} else 
return j; 

} 
} 
// 
// Code identical to q0 omitted 
// 

} 

Appendix E: Less than 4 by decision tree, random pivot 
// 
// Less than 4 by decision tree, random pivot 
// 
import java.util.Scanner; 
public class q4 
{ 

// 
// Code identical to q0 omitted 
// 

 
public static void quicksort (int[] x, int p, int r) 
{ 

if (r <= p) 
return; 

 
if (r - p == 2) { 

if (isLess(x[p], x[p+1])) { 
if (isLess(x[p+1], x[r])) 

return; 
if (isLess(x[p], x[r])) { 

xchg (x, p+1, r); 
} else { 

xchg (x, p+1, r); 
xchg (x, p, p+1); 

} 
} else { 

if (isLess(x[p], x[r])) { 
xchg (x, p, p+1); 

} else { 
if (isLess(x[p+1], x[r])) { 

xchg (x, p, r); 
xchg (x, p, p+1); 

} else { 
xchg (x, p, r); 

} 
} 

} 
return; 

} 
 

if (r - p < 2) { 
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if (isGreater(x[p], x[r])) 

xchg (x, p, r); 
return; 

} 
 

int q = partition (x, p, r); 
quicksort (x, p, q); 
quicksort (x, q+1, r); 

 
return; 

} 
 
public static int partition (int[] x, int p, int r) 
{ 

int xx; 
int i = p - 1; 
int j = r + 1; 

 
int m = (int) ((r-p+1)* Math.random()) + p; 

 
if (m != p) 

xchg (x, p, m); 
 

xx = x[p]; 
 

for (;;) { 
do { 

j--; 
 

} while (isGreater(x[j], xx)); 
do { 

i++; 
} while (isGreater(xx, x[i])); 
if (i < j) { 

xchg (x, i, j); 
} else 

return j; 
} 

} 
// 
// Code identical to q0 omitted 
// 

} 
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