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Abstract 

People like solving puzzles. Most people prefer those puzzles to have visual clues that can lead to the 
solution. This paper describes a pair of easily implemented ciphers that can be used to teach the basics 
of cryptanalysis using character frequency analysis. Each cipher builds from the previous and the 
implementer can choose to keep contextual clues such as spacing and capitalization. These ciphers are 
designed to both hide letter frequencies and to be broken easily. The pitfalls of developing one's own 
ciphers are described along the way. The hope is that this approach could be used to excite students 
about the field of cryptanalysis and steer them toward open standards of encryption. 

1  General Introduction  
In 1919 Gilbert Vernam received a patent for a “Secret Signaling System” (US Patent 1,310,719) that 
combined characters from a paper tape with that of a plaintext message using the exclusive or (XOR) 
operation for use in telegraph systems of the day [1, 2]. If two users have access to the same key (in this 
case the paper tape) they can encrypt or decrypt a message using the same technique which makes this a 
symmetrical encryption algorithm. As of October 18, 2011, fifteen other US patents reference Vernam's 
original work [3]. 

After creating a set of algorithms for the purposes of doing basic character frequency obfuscation, I 
presented my initial results to my advisor, Professor Vladimir Riabov. He liked the approach I was 
taking and asked if I had done any research regarding similar algorithms.  Since then I have searched the 
descriptions of several types of ciphers and found that the Vernam cipher was the most similar to my 
work. The character encoding of the time is different but the basic methodology is the same.  

It should be noted that this type of cipher is still used in an age of modern computing. For example, 
RC4 is a relatively strong stream cipher created by Ron Rivest of RSA and is more advanced than the 
ciphers I created herein [6]. However, RC4 has been shown to be very weak if used improperly. Bruce 
Schneier in his “Schneier on Security” blog entry dated January 18, 2005 describes the following 
regarding a flaw in the way that Microsoft implemented RC4 for its Office products: “One of the most 
important rules of stream ciphers is to never use the same keystream to encrypt two different documents. 
If someone does, you can break the encryption by XORing the two ciphertext streams together. The 
keystream drops out, and you end up with plaintext XORed with plaintext -- and you can easily recover 
the two plaintexts using letter frequency analysis and other basic techniques” [4].  
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2  Early Attempts at Obscuring Letter Frequency 
In my first attempts at studying letter frequency, I was interested in directly modifying a monoalphabetic 
cipher. I wanted to include a larger set of characters in the frequency distribution hoping that I could 
obscure frequencies by manipulation of letter combinations. I decided to experiment with adding a 
subset of additional characters (numbers 0-9, space, comma, period, end of line). Figure 1 below shows 
the character frequencies of “The Declaration of Independence”. We should note the similarity of the 
standard letter frequencies for the English language. E and T are the most frequent and are located at the 
beginning. X, Q and Z are infrequent and located toward the end. The frequency of space denoted by 
<SP> is the most common. A simple incorporation of space <SP> into the cipher would not throw off a 
trial and error iterative attack for very long.  

 

Figure 1: Letter Frequency of The Declaration of Independence including punctuation 
 
Next I decided to check the frequency of double letter combinations to see if that in itself would 

change the playing field and result in a reasonable method of hiding.  After reminding myself that 
having double letters would result in a very large substitution set (26*26= 676 pairs not including 
punctuation), I decided to be more selective about pairing. Figure 2 shows one attempt at this. I wanted 
to use space <SP> to help obscure E but found in Figure 1 that it is considerably more frequent than E. I 
decided to try making digraphs from space and all the combinations of letters and punctuation and 
numbers – see Figure 2.  Note: It makes E really obvious and just stretches out the remainder of the 
frequencies but does nothing to change the overall shape of the graph. Rather than prepending space I 
probably would have had a better result by adding it to the last letter of words as E is one of the most 
common last letters. This might bring <SP>, E and “E<SP>“ into better obscurity. However, I did not 
want to peek ahead for every letter in my algorithm.  It also became apparent that any sorts of tricks 
using this type of method would still leave large portions of the frequency graph completely intact. This 
would snowball into having to make several tweaks to any algorithm. For example, I also tried encoding 
the word “The” as it is the most common word and is a large contributor to the frequency of T and E. If I 
flattened <SP>, T and E then the next letters would still be open to attack if the algorithm was ever made 
known. My hope was to find a simple solution and a simple algorithm.  
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Figure 2: Letter Frequency when trying to eliminate the spike created by Space <SP> by adding 

categories for letter combinations of <SP>A, <SP>B, etc. 

3 Studies of ASCII and UTF-8 Character Sets  
I overcame the limitations I had previously encountered by looking at the ASCII and UTF-8 tables to 
determine what was actually being encoded for characters. I thought I remembered from ASCII 
encoding that there was an offset between upper case and lower case letters such that simply changing 
one bit could change any letter from upper case to lower case and vice versa. 

Here is an example using the letter B showing this feature: 
 

 's' in binary 01110011 
 'S' in binary 01010011 
 

Note how the least significant 5 bits are the same. With 5 bits you can define 32 values and ASCII 
and UTF-8 use this type of encoding for 4 distinct groups. The 3 high bits determine the group as you 
can see in Figure 3: 

• 000 are all control characters 
• 001 are mostly numbers and punctuation 
• 010 are mostly upper case letters 
• 011 are mostly lower case letters. 

  
Since we want a cipher that can convert plain text to human readable cipher text we can only 

modify characters 32 to 127. We will have to avoid altering the control characters to keep characteristics 
of a text file. Furthermore, since the characters we are most interested in dealing with (a-z and A-Z) are 
defined by the low 5 bits we will not try to do anything tricky to use more than 5 bits.  

Our requirements for the simple cipher are now as follows: 
• Plaintext should be convertible to readable ciphertext 
• Ciphertext should keep capitalization 
• Ciphertext should have the option to keep spacing in tact. 
• We can manipulate the low 5 bits of characters 32 to 127. 
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Figure 3: ASCII/UTF-8 binary values for the encoding of the first 128 characters 

4 Development of the Simple Cipher for ASCII and UTF-8 character sets 
Based on the knowledge that the low 5 bits represented letter and the upper three bits of each character 
represented the 32 character subset, I took the approach that some simple math using XORs for 
substitution would be the best approach since performing an XOR twice results in the original value. 
Thus you get encrypt and decrypt with the same simple algorithm. It will also allow you to preserve 
control characters such as CR LF and capitalization. It will slightly obscure spaces and nearly 
completely obscure letters if you perform a different XOR on each character that is read in. Since there 
are 32 items per set I have chosen to have 32 XOR values and a 32 character cycle. After every 32 
characters the cycle begins again using mod 32. For the XOR key values you can cycle through values 
between 0 (no change) and 31 (11111 flip all bits) for each character in the text (or distribute them 
randomly). Figure 4 below shows what I was able to achieve when using a perfect randomly generated 
key. A perfect key in this case consists of an array of 32 values from 0 to 31(11111) dispersed randomly 
in the key. Here is an example key. 
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int[] key= {18,14,25,6,9,24,7,3,0,16,8,11,22,29,26,1, 30,15,20,5,2,21,17,31,12,23,4,28,13,10, 19,27}; 
 

If you look at the key, you will see that each value from 0 to 31 is represented in the key. Since 
each value in the key is 5 bits the entire key could be represented by 160 bits or 20 bytes. However, we 
will consider it to have 32 bytes. The key is used in the following pseudocode algorithm the blue lines 
does all the encrypting/decrypting. 
 

Int keyIndex = key[0]; // You can start the key index at any value in this case 18 
Int sourceChar = 0;    // source character 
Int outputChar;    // ciphertext if plaintext is the input 
       // plaintext if ciphertext is the input 
while ( sourceChar != EndOfFile ){ 
 sourceChar = readNextCharacterFromSource(); 
  
 // if sourceChar is one of first 32 control characters or EOF 
// if you want retain spaces as spaces set this value to 64 
 if ( sourceChar < 64 || sourceChar == EndOfFile)  
 { 
  outputChar = sourceChar; 
 } 
 else //encrypt/decrypt character by XORing it with one of the keys  
 {  
  keyIndex = (keyIndex +1)%32; // cycle through the key 
  outputChar = sourceChar XOR key[keyIndex]; 
 }  
 writeToOutput(outputChar);  
} 
 

When the ciphertext for “The Declaration of Independence” is generated, the frequencies of the 
letters in the cipher text all have nearly equivalent values. So this algorithm meets the initially desired 
conditions – simplicity and obscured letter frequency. Here is an example of the first paragraph as it is 
translated. 
 

Ciphertext working on characters 64-127 Plaintext 
@mg Dqmymqb�` Vkzjhjfwi�f 
y{ uvj Qj|ckirj Xdzowj U}ysfs gm \wdlfwd 
... 
@a ee�� zqcz} wre|ce nn mq qp}y-rruio}o, mnhl bl| 
fss  
�}q agt~xr` h{fz~, rays txmr |hd jzambt{ u} ybvr`  
E{}fwob |�ir }jfqc|� yyepdo}zpb| {q`ktc, bu{u nyjlr  
x�aoh riw uoo}, lyjndic �ap v}t |bvoxcg }h 
nhhwjnu{x...   

The Unanimous Declaration 
of the Thirteen United States of America 
... 
We hold these truths to be self-evident, that all 
men  
are created equal, that they are endowed by their  
Creator with certain unalienable rights, that among  
these are life, liberty and the pursuit of 
happiness...  
 

Ciphertext working on characters 32-127 Plaintext 
@mg5Dqmymqb�`;Vkzjhjfwi�f 
y{:uvj4Qj|ckirj<Xdzowj9U}ysfs0gm6\wdlfwd 
;?1 
@a<ee��2zqcz}'wre|ce=nn>mq%qp}y!rruio}o>.mnhl'bl|( 
fss: 
�}q%agt~xr`<h{fz~"9rays#txmr6|hd>jzambt{,u}<ybvr`. 
E{}fwob(|�ir!}jfqc|�?yyepdo}zpb|&{q`ktc$+bu{u> 
nyjlr1 
x�aoh*riw.uoo}+#lyjndic!�ap%v}t?|bvoxcg;}h9 
nhhwjnu{x834 

The Unanimous Declaration 
of the Thirteen United States of America 
... 
We hold these truths to be self-evident, that all 
men  
are created equal, that they are endowed by their  
Creator with certain unalienable rights, that among  
these are life, liberty and the pursuit of 
happiness...  

Figures 4a and 4b: Translation of The Declaration of Independence 
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Figure 5: Plaintext and Ciphertext frequencies of characters 96 through 127 within  
The Declaration of Independence (compared to letter frequencies of the English language) 

 
On first look this is a better cipher than a monoalphabetic cipher as it obscures character 

frequencies.  The algorithm preserves control characters such as carriage return line feed (CR LF) and 
end of file (EOF). This makes the algorithm very good at preserving overall layout of plain text while 
obscuring frequencies within each set of 32 characters. However, the contextual clues will allow it to be 
broken easily. 

4 Breaking the Simple Cipher by Exploiting Contextual Clues 
The major contextual issue with this cipher can be seen in Figure 6 below. Figure 6 shows the 
frequencies of all the ASCII/UTF-8 characters and their frequencies for “A Christmas Carol” by Charles 
Dickens. The total number of spaces is off the chart at 25503 occurrences. The three plateaus are the 
three sets of characters 32 to 63 space, numbers and punctuation, 64 to 95 mostly upper case, 96 to 127 
mostly lower case. The right side of the chart is similar to the subset of characters shown in Figure 5. 
  

Figure 6: A Christmas Carol – Original frequencies versus Ciphertext frequencies 
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Looking back at Figure 4b you can see all the spaces highlighted in yellow. Each one has a different 
value and for this reason along with Figure 6 you could programmatically crack this cipher by looking at 
the distribution of likely space values to determine the 32 byte key. You have over an 80% chance of 
correctly back calculating any particular key value based on the character count mod 32 if you think that 
you have a space.  For example, the 4th character in figure 4b is '5' which puts it in the group of 
characters that contains possible spaces. '5' maps to a value of 00010101. If you look back at the key on 
page 5 you will see that: key[0] + characterCount - 1 = 18  + 4 – 1 = key[21]. 

By coincidence key[21] also happens to have a value of 21. 10101 in binary = 21 in decimal. 
Repeating this process for each of the 32 indexes will result in recovering the full key. The sample 
shown in Figure 4b contains a minimum of 17 unique space values which gives the user more than one 
half of the bytes in the key.  

5 Breaking the Simple Cipher by Exploiting Letter Frequency Weaknesses 
If you remove the first group of characters (32 to 63) to avoid the issue noted in the previous section 
regarding spaces you get rid of one set of issues but you are not hiding any of those 32 characters which 
include numbers. Knowing that the cycle is only 32 characters you can quickly expose the typical 
English language letter frequencies by examining every 32 characters offset by N characters to start the 
count. This will occur if you had a significant number of characters. We can see from “The Declaration 
of Independence” that it has a sufficient number of characters for the analysis by looking for the highest 
frequency character at  N 2+18  'g' = 17.62% and N 5+18 'z' = 10.04%. This case is slightly more 
complicated in that with the space previously all we had to do was match the number. In this case we 
need to figure out what value XORed with our ciphered character equals the encoding for 'e' in plaintext. 
The low 5 bits of 'e' = 00101. The low 5 bits of 'g' = 00111. The difference is 00010 or 2 which does in 
fact fall at index 20 in the key. The low 5 bits of 'z' = 11010. The difference is 11111 or 31 which does 
in fact fall at index 23 in the key. Again you can programmatically crack this cipher by this method. 

6 Creating a Slightly Better Cipher by Applying the Key More Randomly 
Since the first cipher is just too easy to solve, I wanted to make it a bit more difficult. To do so we will 
extend the feature from the first cipher that uses the key values to change the start position for each set 
of 32 characters. This means that the pattern will repeat every 32*32 = 1024 = 103 characters instead of 
every 32 characters. This is still extremely weak. As a comparison the RC4 cipher has a period greater 
than 10100 according to the RSA website [5]. Our new algorithm is similar to the following pseudocode 
where changes from the original are shown in blue: 
 

Int block = 0;  // Each block is 32 characters. This is the block count 
Int count = 0;  // This is the count of characters within a block 
bool newBlock = false;  
Int keyIndex = key[0]; // You can start the key index at any value in this case 18 
Int sourceChar = 0;    // source character 
Int outputChar;    // ciphertext if plaintext is the input 
       // plaintext if ciphertext is the input 
while ( sourceChar != EndOfFile ){ 
 sourceChar = readNextCharacterFromSource(); 
 // if sourceChar is one of first 32 control characters or EOF 
// if you want retain spaces as spaces set this value to 64 
 if ( sourceChar < 64 || sourceChar == EndOfFile)  
 { 
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  outputChar = sourceChar; 
 } 
 else //encrypt/decrypt character by XORing it with one of the keys  
 {  
  if ( newBlock ) { 
   keyIndex = key[block]; // change the starting index at every new block 
   newBlock = false; 
  } 
  outputChar = sourceChar XOR key[keyIndex]; 
 } 
if(count == 32) //increment block and reset count 
{ 
  block = (block + 1)%32; 
  count = 0; 
  newBlock = true; 
} 
count++; 
keyIndex = (keyIndex +1)%32; // cycle through the key    
 writeToOutput(outputChar);  
} 
 

When this is used you receive the following ciphertext from “The Declaration of Independence”: 
  

Ciphertext working on characters 64 - 127 Plaintext 
@mg Dqmymqb�` Vkzjhjfwi�f 
y{ uvj Niw}``g{ Jb~pyi @osz|u wa A}my�~v 
... 
Lw qie| whu{n ihtjgg vz }i tflv-n`t~dp{, v}pk vhp 
gvu  
xtl sznwi�e jepcy, x�eh ~{~k xtl bmhxsyi qb zqc`j  
Cbmjbrh if`m vtmwayf cs{mwjzd`yt ~~ctyy, ffxr yjig�  
txmxs {s{ xldp, `~fy�~j s`} ff| ymupuy|  y{ 
i��dllpbl...  

The Unanimous Declaration 
of the Thirteen United States of America 
... 
We hold these truths to be self-evident, that all 
men  
are created equal, that they are endowed by their  
Creator with certain unalienable rights, that among  
these are life, liberty and the pursuit  
of happiness...  

Figure 7: Translation of The Declaration of Independence using the slightly improved cipher 

 

Figure 8: Plaintext vs. Ciphertext frequencies for characters 96-127 in The Declaration of Independence 
using the slightly improved cipher 
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The outcome of this modification is that the pattern becomes more difficult to see on reasonably 
sized texts. “The Declaration of Independence” is too small to get decent character frequency 
obfuscation when looking at every 32 characters. A larger text such as “A Christmas Carol” will result 
in a more even distribution for the character frequency of every 32nd character. The range is 2.56% to 
3.68% for “A Christmas Carol” vs. 1.32% to 5.28% for “The Declaration of Independence”. Prior to this 
modification however the range was 0% to 17.62% when looking at every 32 characters starting with an 
offset of 2. Although we could look at every 1024th character and find similar results as the previous it 
would be an exercise that depended heavily on the size of the text. 
  

Figure 9: Known plaintext used to try to uncover key by searching out patterns in the ciphertext 
 

As mentioned in the introduction, a stream cipher must use a new key for every encryption. The 
only way it is safe is if you use a one-time pad (matching the length of the message). The examples here 
have used a repeated key. The second cipher used a method to break up the 32 byte key but you can see 
in Figure 9 that the pattern is still mostly intact from one line to the next. If you use the same key you 
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allow for quick discovery of the key and or algorithm. Another way to break a cipher can occur if you 
can see a pattern form by looking using a known plaintext. The plaintext in this case is just the character 
'A' repeated 31 times per line. It produces a repeated output every 32 lines with obvious patterns forming 
throughout as can be seen in Figure 9. Even if you tried to hide your algorithm from the users in this 
case allowing any sort of encryption by the person you are trying to hide it from would quickly lead to 
the discovery of the algorithm.  

Assuming that a user can be trained to treat a stream cipher as a one-time pad, the main weakness 
with this cipher is still in the key generation. In order to make it more secure we would need to do a 
much better job at randomly repeating the 32 available bytes. Someone attempting to improve the 
ciphers described here could easily use a passphrase to create a random set of bytes and then use a 
rotating transposition cipher to better hide the characters. For an even better approach the RC4 method 
should be explored even though it was outside the scope of this paper. The RC4 method is clearly 
described on the web. 

7 Conclusions and Remarks 
In this discussion we have covered some very basic principles of cryptanalysis. It is very unlikely that an 
untrained individual would produce a cipher that would be difficult for an expert to crack. I am not an 
expert in this field. I developed these ciphers rapidly and cracked them myself almost as quickly. 
Following this pattern of creating your own cipher and exploiting its weakness is the educational 
message herein. By keeping the ciphers here in readable characters with contextual clues, I hope you 
found the ciphered messages fairly well hidden to the naked eye while the exploits should have also 
been easy to see.   

Open standards/algorithms have been tested thoroughly by many experts in the field to uncover 
their weaknesses. Often these algorithms will stand for years as accepted practice until someone 
discovers a flaw or the compute power increases sufficiently that a brute force attack becomes practical. 
Although there is a risk with standard algorithms that someone will discover a flaw and does not 
disclose it, their generally accepted strength is known and established as are the best practices for using 
them. While it is enjoyable to learn through experimentation, those of us who like to play with these 
principles should know when to experiment and know when to use generally accepted algorithms.   
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