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ABSTRACT 

We present a prototype adaptive learning framework using multiple large language model agents using 

OpenAI’s GPT-4o model. Each agent is specialized to a specific aspect of adaptive learning. The agents 

communicate with each other using the autogen multi-agent framework. Group communications are 

implemented in an unconstrained, semi-constrained, and fully constrained manner. The unconstrained 

agent communications allowed the autogen GroupChatManager to select the next agent to 

"speak" based only on the description of what the agents were specialized in. The semi-constrained 

agent selection used both allowed and disallowed transitions. The constrained agent communications 

used a state machine to select the next agent. Using constrained communications allowed predictability 

in the sequencing of tasks but is less flexible in handling arbitrary student input. Unconstrained 

communications occasionally experienced agent role confusion. Our prototype system using constrained 

communications teaches a learner new material and tests them on mastery. The code implementing the 

experiments is open-source and available on github1. 

 

Keywords: Adaptive Learning, Multi-Agent Systems, Large Language Models, Artificial Intelligence 

1 Introduction 

Brusilovsky and Peylo (2003) define Adaptive Learning as "building a model of the goals, preferences 

and knowledge of each individual student and using this model throughout the interaction with the 

student in order to adapt to the needs of that student. They also attempt to be more intelligent by 

incorporating and performing some activities traditionally executed by a human teacher - such as 

coaching students or diagnosing their misconceptions." 

Van Schoors et al. (2021) describe the decisions that can be made in adaptive learning. The 

variables include when, what, and how to adapt as well as adapt to what. When to adapt can be static or 

dynamic. What to adapt can be content, presentation, or support. How to adapt can be learner-controlled 

or program-controlled (or both). And adapt to what can be learner parameters or learner-system 

parameters. 

1.1 Cognitive Skills Taxonomy 

Many adaptive learning systems have started from Bloom’s foundational cognitive skills taxonomy 

(Bloom et al., 1956). They arranged levels hierarchically ranging from simple to more complex thinking. 

Anderson and Krathwohl (2001) revised the taxonomy changing nouns to verbs. Table 1 shows both 

Bloom’s original taxonomy and the revisions. 

More recently, Sun et al. (2023) developed a cognitive model specifically for Mathematics. Starting 

from the Trends in International Mathematics and Science Study (TIMSS) cognitive framework (Mullis 

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS 
 

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty, Ruthvik Thimmarayappa, 

Jai Paul Yeruva, and John Glossner* 

Department of Mathematics and Computer Science, Rivier University 



Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty, 

Ruthvik Thimmarayappa, Jai Paul Yeruva, and John Glossner   

 

                        

2  

et al., 2020), they surveyed experts which led to the model shown in Figure 1. The authors verified this 

model by testing it on randomly selected fourth-grade students. 

 
Table 1: Comparison of Bloom’s Taxonomy with Anderson’s Revision (Anderson and Krathwohl, 2001) 

 
 

 
Figure 1: Mathematics Cognitive Model (Sun et al., 2023) 

1.2 Knowledge Tracing 

Knowledge tracing (KT) powers intelligent tutoring systems (ITSs), tailoring content sequencing, 

feedback, and practice based on individual student needs (Pavlik et al., 2009). Knowledge Tracing is a 

fundamental technique in educational data mining (EDM) that tracks a learner’s evolving knowledge 

state over time (Anderson et al., 1986). It is "the ability to effectively track the learning progress of a 

student through their online interaction with teaching materials. The aim is to observe, represent, and 
quantify a student’s knowledge state, e.g., the mastery level of skills underlying the teaching materials" 

(Abdelrahman et al., 2023). KT represents a learner’s knowledge state in terms of mastery of distinct 
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skills or concepts within a domain. Knowledge states are usually modeled as discrete (mastered/not 

mastered) or continuous (proficiency levels) (Corbett and Anderson, 1994). 

Beck and Gong (2013) show that KT supports mastery learning approaches, allowing students to 

progress only when they have demonstrated proficiency in prerequisite skills. KT aids in the 

development of adaptive tests that dynamically adjust difficulty based on student performance, ensuring 

a more accurate evaluation of their ability. 

1.3 Paper Organization 

This paper is organized as follows: in Section 2 we discuss the use of Large Language Models in 

adaptive learning systems, in Section 3 we discuss the methodology of our prototype system and ethical 

considerations for their use, in Section 4 we present the results of our experiments, in Section 5 we 

discuss our results, in Section 6 we discuss future enhancements to our prototype system, and in Section 

7 we present conclusions. 

2 Related Work 

2.1 Large Language Models 

Naveed et al. (2024) present an extensive review of the development, architectures, training 

methodologies, and diverse applications of large language models (LLMs). They detail the evolution 

and significance in applications such as natural language processing (NLP), text generation, machine 

translation, summarization, and question answering. They discuss key architectures used in LLMs such 

as Bidirectional Encoder Representation from Transformers (BERT), Generative Pretrained Transformer 

(GPT), and the Text-to-Text (T5) transformer. Both BERT and T5 are open-source. 

The integration of Large Language Models (LLMs) and Artificial Intelligence Conversational 

Agents (AICs) in education, particularly as tutors in Intelligent Tutoring Systems (ITS), is a topic 

gaining considerable interest (Abedi et al., 2023). The ability of these technologies to engage learners, 

provide personalized responses, and support self-directed learning presents a significant potential for 

enhancing the learning experience. Virvou and Tsihrintzis (2023) present a framework for evaluating 

LLMs in an ITS where both hard (technical) skills and soft skills such as critical thinking, ethical 

reasoning, and effective communication are considered. 

The Khan Academy introduced a ChatGPT4-based tutor (Singer, 2023) and recently announced a 

partnership with Microsoft (Microsoft, 2024b). The AI tutor generates python code to solve complex 

mathematics problems. OpenAI also has a custom-built GPT specifically for mathematics using the 

same technique (ChatGPT, 2024). Recognizing that LLMs are not well suited for directly solving math 

problems, they created an OpenAI Assistants API to enhance functionality (OpenAI, 2024a). Other 

companies also have similar tutoring chatbots (Kuykendall, 2024). 

Abedi et al. (2023) explores the integration of LLMs and chatbots into graduate engineering 

education highlighting their potential to enhance teaching methodologies by facilitating self-paced 

learning, providing instant feedback, and reducing faculty workload. 

Santos and Cury (2023) use ChatGPT as a virtual peer tutor for computer programming. They 

found ChatGPT outperforms traditionally instructed groups. However, when abstract problems were 

involved, difficulties emerged. Wang et al. (2023) found that across multiple undergraduate computer 

science courses, only 60% of the questions could be solved by ChatGPT-3.5. Liang et al. (2023) found 
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that professional developers use LLMs to recall syntax, reduce typing, or finish programming tasks 

quickly. They were hesitant to use them to brainstorm potential solutions. 

Lee et al. (2023) developed a difficulty-centered contrastive learning technique for Knowledge 

Tracing (KT). KT models can fail to predict the difficulty level of unseen data. They enhanced a KT 

model with an LLM. Working primarily on Korean data, they found that LLMs can predict difficulty 

and their proposed LLM-based difficulty prediction framework works effectively on real (unseen) data. 

Boulay (2016) performed a meta-review of published papers in Artificial Intelligence in EDucation 

(AIED) systems. Data from mostly STEM courses found AIEDs perform better than both Computer 

Aided Instruction (CAI) systems and human teachers working in large classes. They perform slightly 

worse than one-on-one human tutors. 

2.2 Results Correctness 

An area of concern for LLMs is the correctness of results. LLMs are known to hallucinate and fabricate 

plausible answers (Alkaissi and McFarlane, 2023). A signal processing class at Clarkson also found 

simple mathematical computations were solved incorrectly Banavar et al. (2023). 

2.3 Multiple Agents 

Du et al. (2023) propose a multiagent debate system to enhance LLMs’ reasoning abilities and factual 

accuracy. Unlike single-model methods, this approach involves multiple models debating and refining 

their responses to improve quality and reliability. This collaborative process simulates human group 

discussions, with models engaging in tasks like arithmetic reasoning and strategic decision-making. 

Mixture of Experts (MoE) is a technique for specializing neural network layers to specific functions 

(Shazeer et al., 2017). Inspired by MoE, Wang et al. (2024) show that Mixture of Agents (MoA) can 

outperform GPT-4o on multiple benchmark datasets. 
 

 
Figure 2: Six examples of diverse applications built using AutoGen. Their conversation patterns show AutoGen’s 

flexibility and power from (Wu et al., 2023) 
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Autogen is a framework for multiple agent communication (Wu et al., 2023). As shown in Figure 2, 

they envisioned using multiple agents for mathematics problem solving. They show that autogen with 

multiple agents using ChatGPT-4 outperforms just using ChatGPT-4 on the MATH (Hendrycks et al., 

2021) dataset. 

2.4 Gap Analysis 

Based on published papers we could identify, there is a strong interest in using LLMs as tutors. While it 

is difficult to know how commercial chatbots are constructed, it appears to be a single unified model 

with multiple capabilities. In this paper, we extend the the number of agents proposed by Wu et al. 

(2023) with each LLM agent specialized to specific adaptive learning functions. 

3 Methodology 

In this section, we describe our methodology starting first with a removed ChatGPT plugin feature. We 

then describe our methodology using Microsoft’s autogen multi-agent framework. 

3.1 ChatGPT with Plugins 

Our first experiment, conducted in 2023, initialized a single ChatGPT chatbot with math tutoring 

prompts. A plugin was enabled that allowed ChatGPT to ingest pdf files. ChatGPT ingested the Algebra 

textbook (Turner and McKeague, 2021) used in Rivier University’s math curriculum. The chatbot was 

then asked to start testing the user on content knowledge. We found the chatbot quite capable, but it 

made mistakes when factoring equations. When asked to verify its answers using Wolfram’s Alpha 

plugin, the chatbot apologized and corrected the mistake. Plugins have the disadvantage that they are not 

available through OpenAI’s API, and they were removed from ChatGPT in March of 2024 in favor of 

custom GPTs (OpenAI, 2024b). 

3.2 Microsoft’s Autogen 

After the initial experiment and knowing that our goal is an adaptive learning application and not just a 

tutor, we chose a multi-agent LLM approach where specific roles and functions can be specialized and 

sent to alternative LLMs. Microsoft’s autogen framework was chosen for this purpose (Wu et al., 2023). 

Autogen simplifies multi-agent programming by orchestrating communications between agents. 

Autogen provides three types of agents: 1) Conversable Agent that can pass messages to other agents, 2) 

Assistant Agents that are a subclass of Conversable Agents designed to solve a specific task by setting 

the system_message attribute to the role of the agent, and 3) User Proxy Agents that are a subclass 

of Conversable Agents configured as a proxy for the human user (Microsoft, 2024a). An important class, 

the autogen.GroupChatManager, receives a list of agents that want to participate in a group chat. 

The autogen documentation (Microsoft, 2024a) defines the system_message as a string 

intended as a message for autogen.ChatCompletion inference. It sets the Agent’s role and 

constraints on behavior and responses. The description field is defined as a string providing a short 

description of the agent. This description is used by the autogen.GroupChatManager to decide 

when to call upon this agent. By default, it is set to the system_message. 

The agents that need to converse with each other are assigned to an autogen GroupChat class. 

That class is used to initialize an autogen GroupChatManager. 
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3.3 Adaptive Learning Agents 

We have extended the concept presented by Wu et al. (2023) in Figure 2. From that concept, we 

developed custom agents for adaptive learning of mathematics. Table 2 shows our agents and their roles. 

As shown in Table 2, a Student agent is a proxy for a human student who wants to learn. A Student 

agent must always receive input from the human student. A Knowledge Tracer agent assesses the 

Student’s capability along with a Learner Model agent that keeps track of the Student’s capabilities. A 

Teacher agent introduces new topics to the Student agent. A Tutor agent helps the Student agent learn 

the material by asking the Problem Generator agent to create questions for the Student agent to answer. 

A Level Adapter agent consults with the Learner Model agent to increase or decrease the level of 

difficulty for Student agent questions. The Student agent is then asked to input the solution to the 

question. The Verifier agent checks the Student agent’s answer and provides feedback to the Tutor 

agent. A Programmer agent is then asked to write code to visualize and check the solution. The code is 

executed by the Code Runner agent. The Learner Model and Level Adapter agents are given the Student 

agent’s results (e.g., correct answer) and the Learner Model agent is updated. The Motivator agent then 

provides positive feedback to the Student. 
 

Table 2: Agent Roles 

 

3.4 Group Chats 

The GroupChatManager selects agents to speak in one of three ways: 1) Unconstrained where the 

GroupChatManager selects agents based on their description field and the problem being 

solved by the LLM, 2) semi-constrained where an agent is either allowed or disallowed to "speak" with 

other agents, and 3) a state machine approach where a programmed function specified in the 

autogen.GroupChat class chooses the next agent to speak. 

3.5 Ethical Considerations 

The use of large language models (LLMs) for adaptive learning of mathematics presents several ethical 

considerations. Primarily, there is a concern about the potential for bias within the models, as they are 
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trained on data that may contain inherent biases. This could lead to unfair or discriminatory outcomes 

for certain groups of learners. Additionally, the reliance on proprietary cloud-based LLMs for 

personalized learning raises questions about data privacy and security. Furthermore, the opacity of LLM 

decision-making processes, often referred to as the "black box" problem, raises concerns about 

accountability and the ability to explain why certain learning pathways are chosen. 

4 Results 

As noted in Section 3.1, the method of using ChatGPT with plugins is no longer available. In this 

section, we describe using autogen’s GroupChatManager in three different modes: unconstrained, 

semi-constrained, and a function call implementing a state machine. 

4.1 Unconstrained Group Chats 

Our first unconstrained experiment allowed autogen to handle all communications between agents. Our 

implementation inherits from autogen.ConversableAgent rather than autogen.AssistantAgent. 

However, we override both the system_message and description fields providing similar capabilities 

as autogen.AssistantAgent. 

Tables 3 and 4 in Appendix B show the agent initialization strings. 

We first set the description field to match the system_message field. We found that agent 

speaker selection at times seemed random and agents took on roles not assigned to them. For example, a 

Solution Verifier agent would sometimes provide a question to the Student agent and sometimes directly 

answer the Tutor agent. Additional prompt engineering to restrict speaker transitions improved speaker 

selection but not in a reliable manner. 

Our second unconstrained experiment separated the description field and the system_message. 

The system_message used initialization prompts such as "You are TutorAgent, a helpful 

mathematics tutor...". The description field was set using the agent’s name with the personal 

pronoun "I". For example, "I am TutorAgent ...". We found this worked slightly better. We also 

found that shorter initialization prompts worked better than the verbose initialization prompts shown in 

Appendix B. 

In both unconstrained cases we found that by naming an agent with agent appended to the name 

provided better sequencing than just using a name. For example, the Teacher agent, when named 

TeacherAgent, seemed to help the GroupChatManager with agent selection. 

4.2 Semi-Constrained Group Chats 

The semi-constrained experiments used separate system_message and description as described 

in Section 4.1. autogen’s GroupChat allows next speaker selection to be restricted by either allowing 

transitions between specific agents or disallowing specific agent transitions. 

Figure 3 shows an example of allowed transitions between agents. Line 2 shows a Student agent 

can only transition to a Tutor agent. Line 3 shows that a Tutor agent can transition to any of a Student, 

Teacher, Problem Generator, Solution Verifier, or Motivator agent. 

The allowed transitions are then used to initialize a GroupChat. The GroupChatManager 

selects the appropriate next agent to speak. 
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In our testing, we found that this approach worked better than unconstrained agent transitions. 

However, semi-constrained agent selection like unconstrained agent selection was not found to be 

repeatable for different prompt inputs. 

4.3 State Machine Agent Selection 

Based on the expectation of more fine-grained control, we developed a state machine and used autogen’s 

GroupChat speaker_selection_method to return the next speaker agent. The agents are 

initialized with the system_message shown in Appendix B. A separate description field is 

initialized similar to but not always exactly equal to the system_message parameter except using the 

personal pronoun I, as discussed in Section 4.1. 
 

 
 

Figure 3: Code listing example with allowed agent transitions. 

 

 
 

Figure 4: State Machine with Agent Sequence and States for Learning New Material. 
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Our state machine design for learning new material is shown in Figure 4. It starts with the 

AwaitingTopic state. When a user chooses a topic, a transition is made to the 

PresentingLesson state. After a lesson is presented, the AwaitingProblem state waits for the 

Problem Generator agent to generate a question based on the material in the lesson. The 

AwaitingAnswer state then prompts the Student agent for an answer. After the Student agent 

answers, the VerifyingAnswer state is entered. The Solution Verifier agent both checks the Student 

agent’s answer and then transitions to the VisualizingAnswer state where the Programmer agent 

writes code that will both visualize the solution and provide a third check of the answer. After the code 

is generated, the RunningCode state is entered where the Code Runner agent executes the code. After 

all answers have been checked, the UpdatingModel state updates the Learner Model agent and 

transitions to the AdaptingLevel state where the level of difficulty of questions is adapted up or 

down. The MotivatingStudent state is then entered where the Motivator agent encourages the 

Student agent. From this state the system returns to the AwaitingProblem state. 

Note that this is not a complete state machine for adaptive learning. It is designed to present a 

reasonable scenario to test agent selection and interactions. This worked as anticipated and all states and 

transitions in the state machine are traversed. Figure 5 in Appendix A shows the entire chat session and 

Appendix C provides the detailed console output for all the agents and states. The user interface is the 

panel library from HoloViz (Rudiger, 2024). 

5 Discussion 

In our experiments, we found unconstrained and semi-constrained agent selection using the 

GroupChatManager to be unpredictable. Even after refining both the system_message and 

description parameters, agents would take on roles not assigned to them. At times, 

GroupChatManager agent selection could even appear random. The only solution we could find was 

to implement our own state machines. This, however, is not ideal because it reduces the flexibility of the 

adaptive tootoring application and restricts use cases to what is programmed in the state machine. 

6 Future Work 

Our prototype system has many improvements that can be implemented. To improve agent selection, 

other frameworks such as CrewAI may better be able to focus on process-based agent selection without 

the need for additional programming. Our agents use ChatGPT-4o. Due to ethical considerations, a local 

LLM may be more appropriate such as Llemma. All data in a local LLM stays private to the user. A 

simple state machine was implemented for constrained agent communications. More sophisticated state 

machines with multiple workflows may provide better alternatives. Mathematics has a reasonably 

scaffolded nature in learning difficulty. A knowledge graph of mathematics based on level-of-difficulty 

can be implemented to guide both the Teacher and the Knowledge Tracer agents. A known problem 

with LLMs is questionable performance on math questions. Agents can be equipped with skills that do 

not need to come from the LLM itself. For example, the Solution Verifier agent could use Wolfram’s 

Alpha to verify the correctness of solutions. Wolfram’s Alpha also provides explanations of solutions. 

An important aspect of any adaptive learning system is measuring how well it works. One aspect is 

correctly answering questions. However, a more important aspect is measuring the learning impact on 

the student. 
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7 Conclusions 

We have presented a prototype adaptive learning system for mathematics that uses multiple ChatGPT-4o 

LLM agents. The agents are specialized to a specific aspect of adaptive learning with each agent taking a 

specific role. The agents communicate with each other using the autogen multi-agent framework. The 

prototype system is able to interact with a student learner and answer questions interactively. The code 

is open-source and available on github. 
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A Appendix - Chat Figures 

 
Figure 5: Chat Initiation 

 

Figure 5 shows the initiation of the system using the state machine agent selection described in Section 

4.3. The User (proxied by a StudentAgent) initiates a chat. The TutorAgent then begins to coordinate 

learning by asking the TeacherAgent to help the StudentAgent learn algebra. The TeacherAgent 

prepares a text lesson that is continued in Figure 6. 
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Figure 6: TeacherAgent provides a lesson. 

 

Figure 6 shows the continuation of the conversation. The TeacherAgent continues with algebra topics. 
 

 
Figure 7: TutorAgent coordinates problem solving. 

Figure 7 shows the TutorAgent picking up from the TeacherAgent. This happens when at the end of the 

PresentingLesson state where the TutorAgent is returned. 
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Figure 8: ProblemGeneratorAgent asks StudentAgent to solve problem. 

Figure 8 shows the system then enters the AwaitingProblem state where the ProblemGeneratorAgent generates a 

question for the StudentAgent to answer. The system then transitions to the AwaitingAnswer state. The 

StudentAgent provides an answer (x=5) and the system transitions to the VerifyingAnswer state. 

 

 
Figure 9: SolutionVerifierAgent checks the StudentAgent’s answer. 

Figure 9 shows the SolutionVerifierAgent checks the StudentAgent’s answer and finds it to be correct. The state 

then transitions to VisualizingAnswer. However, this state does more than graph answers. It verifies in Python 

code that the SolutionVerifierAgent solved the problem correctly. 
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Figure 10: ProgrammerAgent writes a Python program. CodeRunnerAgent executes the program. 

 

Figure 10 shows the Python code written by the LLM. Note that it uses symbolic libraries to verify the correctness 

of the StudentAgent’s answer. The CodeRunnerAgent executes the program and prints the results validating the 

StudentAgent’s answer. The system then transitions to the UpdatingModel state. 

 

 
Figure 11: LearnerModelAgent updates the model of the StudentAgent’s capabilities. LevelAdapterAgent is 

consulted to increase/decrease difficulty of problems. 
 

Figure 11 shows the LearnerModelAgent comparing the Python code output to the SolutionVerifierAgent’s 

answer and concludes the StudentAgent’s answer is correct. The AdaptingLevel state is then entered. The 

LevelAdapter suggests more difficult questions should be asked. 
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Figure 12: MotivatorAgent provides positive reinforcement. 

 

Figure 12 shows the MotivatorAgent providing positive reinforcement and encouragement. After this state, the 

TutorAgent is returned, and the system returns to the AwaitingProblem state. A new problem is generated and the 

AwaitingAnswer state is entered. 
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B Appendix - Agent Initialization 

Appendix B contains the system_message initialization used in the state machine driven results of Section 

4.3. The description parameter is initialized with a similar but not necessarily identical description except 

with the personal pronoun replaced with I. 
 

Table 3: Agent Definitions 

 
 

Table 4: Agent Definitions Continued 
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C Appendix - Console Output Messages 

Appendix C contains the raw console output from running the state machine agent selection program. 
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