
InSight: RIVIER ACADEMIC JOURNAL, VOLUME 19, NUMBER 1, SUMMER 2024

* corresponding author: jglossner@rivier.edu
1 https://github.com/Rivier-Computer-Science/Adaptive-Learning
Copyright © 2024 by authors. Published by Rivier University, with permission. 1

ISSN 1559-9388 (online version), ISSN 1559-9396 (CD-ROM version).

ABSTRACT

We present a prototype adaptive learning framework using multiple large language model agents using

OpenAI’s GPT-4o model. Each agent is specialized to a specific aspect of adaptive learning. The agents

communicate with each other using the autogen multi-agent framework. Group communications are

implemented in an unconstrained, semi-constrained, and fully constrained manner. The unconstrained

agent communications allowed the autogen GroupChatManager to select the next agent to

"speak" based only on the description of what the agents were specialized in. The semi-constrained

agent selection used both allowed and disallowed transitions. The constrained agent communications

used a state machine to select the next agent. Using constrained communications allowed predictability

in the sequencing of tasks but is less flexible in handling arbitrary student input. Unconstrained

communications occasionally experienced agent role confusion. Our prototype system using constrained

communications teaches a learner new material and tests them on mastery. The code implementing the

experiments is open-source and available on github1.

Keywords: Adaptive Learning, Multi-Agent Systems, Large Language Models, Artificial Intelligence

1 Introduction

Brusilovsky and Peylo (2003) define Adaptive Learning as "building a model of the goals, preferences

and knowledge of each individual student and using this model throughout the interaction with the

student in order to adapt to the needs of that student. They also attempt to be more intelligent by

incorporating and performing some activities traditionally executed by a human teacher - such as

coaching students or diagnosing their misconceptions."

Van Schoors et al. (2021) describe the decisions that can be made in adaptive learning. The

variables include when, what, and how to adapt as well as adapt to what. When to adapt can be static or

dynamic. What to adapt can be content, presentation, or support. How to adapt can be learner-controlled

or program-controlled (or both). And adapt to what can be learner parameters or learner-system

parameters.

1.1 Cognitive Skills Taxonomy

Many adaptive learning systems have started from Bloom’s foundational cognitive skills taxonomy

(Bloom et al., 1956). They arranged levels hierarchically ranging from simple to more complex thinking.

Anderson and Krathwohl (2001) revised the taxonomy changing nouns to verbs. Table 1 shows both

Bloom’s original taxonomy and the revisions.

More recently, Sun et al. (2023) developed a cognitive model specifically for Mathematics. Starting

from the Trends in International Mathematics and Science Study (TIMSS) cognitive framework (Mullis

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty, Ruthvik Thimmarayappa,

Jai Paul Yeruva, and John Glossner*

Department of Mathematics and Computer Science, Rivier University

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty,

Ruthvik Thimmarayappa, Jai Paul Yeruva, and John Glossner

2

et al., 2020), they surveyed experts which led to the model shown in Figure 1. The authors verified this

model by testing it on randomly selected fourth-grade students.

Table 1: Comparison of Bloom’s Taxonomy with Anderson’s Revision (Anderson and Krathwohl, 2001)

Figure 1: Mathematics Cognitive Model (Sun et al., 2023)

1.2 Knowledge Tracing

Knowledge tracing (KT) powers intelligent tutoring systems (ITSs), tailoring content sequencing,

feedback, and practice based on individual student needs (Pavlik et al., 2009). Knowledge Tracing is a

fundamental technique in educational data mining (EDM) that tracks a learner’s evolving knowledge

state over time (Anderson et al., 1986). It is "the ability to effectively track the learning progress of a

student through their online interaction with teaching materials. The aim is to observe, represent, and
quantify a student’s knowledge state, e.g., the mastery level of skills underlying the teaching materials"

(Abdelrahman et al., 2023). KT represents a learner’s knowledge state in terms of mastery of distinct

3

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS

skills or concepts within a domain. Knowledge states are usually modeled as discrete (mastered/not

mastered) or continuous (proficiency levels) (Corbett and Anderson, 1994).

Beck and Gong (2013) show that KT supports mastery learning approaches, allowing students to

progress only when they have demonstrated proficiency in prerequisite skills. KT aids in the

development of adaptive tests that dynamically adjust difficulty based on student performance, ensuring

a more accurate evaluation of their ability.

1.3 Paper Organization

This paper is organized as follows: in Section 2 we discuss the use of Large Language Models in

adaptive learning systems, in Section 3 we discuss the methodology of our prototype system and ethical

considerations for their use, in Section 4 we present the results of our experiments, in Section 5 we

discuss our results, in Section 6 we discuss future enhancements to our prototype system, and in Section

7 we present conclusions.

2 Related Work

2.1 Large Language Models

Naveed et al. (2024) present an extensive review of the development, architectures, training

methodologies, and diverse applications of large language models (LLMs). They detail the evolution

and significance in applications such as natural language processing (NLP), text generation, machine

translation, summarization, and question answering. They discuss key architectures used in LLMs such

as Bidirectional Encoder Representation from Transformers (BERT), Generative Pretrained Transformer

(GPT), and the Text-to-Text (T5) transformer. Both BERT and T5 are open-source.

The integration of Large Language Models (LLMs) and Artificial Intelligence Conversational

Agents (AICs) in education, particularly as tutors in Intelligent Tutoring Systems (ITS), is a topic

gaining considerable interest (Abedi et al., 2023). The ability of these technologies to engage learners,

provide personalized responses, and support self-directed learning presents a significant potential for

enhancing the learning experience. Virvou and Tsihrintzis (2023) present a framework for evaluating

LLMs in an ITS where both hard (technical) skills and soft skills such as critical thinking, ethical

reasoning, and effective communication are considered.

The Khan Academy introduced a ChatGPT4-based tutor (Singer, 2023) and recently announced a

partnership with Microsoft (Microsoft, 2024b). The AI tutor generates python code to solve complex

mathematics problems. OpenAI also has a custom-built GPT specifically for mathematics using the

same technique (ChatGPT, 2024). Recognizing that LLMs are not well suited for directly solving math

problems, they created an OpenAI Assistants API to enhance functionality (OpenAI, 2024a). Other

companies also have similar tutoring chatbots (Kuykendall, 2024).

Abedi et al. (2023) explores the integration of LLMs and chatbots into graduate engineering

education highlighting their potential to enhance teaching methodologies by facilitating self-paced

learning, providing instant feedback, and reducing faculty workload.

Santos and Cury (2023) use ChatGPT as a virtual peer tutor for computer programming. They

found ChatGPT outperforms traditionally instructed groups. However, when abstract problems were

involved, difficulties emerged. Wang et al. (2023) found that across multiple undergraduate computer

science courses, only 60% of the questions could be solved by ChatGPT-3.5. Liang et al. (2023) found

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty,

Ruthvik Thimmarayappa, Jai Paul Yeruva, and John Glossner

4

that professional developers use LLMs to recall syntax, reduce typing, or finish programming tasks

quickly. They were hesitant to use them to brainstorm potential solutions.

Lee et al. (2023) developed a difficulty-centered contrastive learning technique for Knowledge

Tracing (KT). KT models can fail to predict the difficulty level of unseen data. They enhanced a KT

model with an LLM. Working primarily on Korean data, they found that LLMs can predict difficulty

and their proposed LLM-based difficulty prediction framework works effectively on real (unseen) data.

Boulay (2016) performed a meta-review of published papers in Artificial Intelligence in EDucation

(AIED) systems. Data from mostly STEM courses found AIEDs perform better than both Computer

Aided Instruction (CAI) systems and human teachers working in large classes. They perform slightly

worse than one-on-one human tutors.

2.2 Results Correctness

An area of concern for LLMs is the correctness of results. LLMs are known to hallucinate and fabricate

plausible answers (Alkaissi and McFarlane, 2023). A signal processing class at Clarkson also found

simple mathematical computations were solved incorrectly Banavar et al. (2023).

2.3 Multiple Agents

Du et al. (2023) propose a multiagent debate system to enhance LLMs’ reasoning abilities and factual

accuracy. Unlike single-model methods, this approach involves multiple models debating and refining

their responses to improve quality and reliability. This collaborative process simulates human group

discussions, with models engaging in tasks like arithmetic reasoning and strategic decision-making.

Mixture of Experts (MoE) is a technique for specializing neural network layers to specific functions

(Shazeer et al., 2017). Inspired by MoE, Wang et al. (2024) show that Mixture of Agents (MoA) can

outperform GPT-4o on multiple benchmark datasets.

Figure 2: Six examples of diverse applications built using AutoGen. Their conversation patterns show AutoGen’s

flexibility and power from (Wu et al., 2023)

5

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS

Autogen is a framework for multiple agent communication (Wu et al., 2023). As shown in Figure 2,

they envisioned using multiple agents for mathematics problem solving. They show that autogen with

multiple agents using ChatGPT-4 outperforms just using ChatGPT-4 on the MATH (Hendrycks et al.,

2021) dataset.

2.4 Gap Analysis

Based on published papers we could identify, there is a strong interest in using LLMs as tutors. While it

is difficult to know how commercial chatbots are constructed, it appears to be a single unified model

with multiple capabilities. In this paper, we extend the the number of agents proposed by Wu et al.

(2023) with each LLM agent specialized to specific adaptive learning functions.

3 Methodology

In this section, we describe our methodology starting first with a removed ChatGPT plugin feature. We

then describe our methodology using Microsoft’s autogen multi-agent framework.

3.1 ChatGPT with Plugins

Our first experiment, conducted in 2023, initialized a single ChatGPT chatbot with math tutoring

prompts. A plugin was enabled that allowed ChatGPT to ingest pdf files. ChatGPT ingested the Algebra

textbook (Turner and McKeague, 2021) used in Rivier University’s math curriculum. The chatbot was

then asked to start testing the user on content knowledge. We found the chatbot quite capable, but it

made mistakes when factoring equations. When asked to verify its answers using Wolfram’s Alpha

plugin, the chatbot apologized and corrected the mistake. Plugins have the disadvantage that they are not

available through OpenAI’s API, and they were removed from ChatGPT in March of 2024 in favor of

custom GPTs (OpenAI, 2024b).

3.2 Microsoft’s Autogen

After the initial experiment and knowing that our goal is an adaptive learning application and not just a

tutor, we chose a multi-agent LLM approach where specific roles and functions can be specialized and

sent to alternative LLMs. Microsoft’s autogen framework was chosen for this purpose (Wu et al., 2023).

Autogen simplifies multi-agent programming by orchestrating communications between agents.

Autogen provides three types of agents: 1) Conversable Agent that can pass messages to other agents, 2)

Assistant Agents that are a subclass of Conversable Agents designed to solve a specific task by setting

the system_message attribute to the role of the agent, and 3) User Proxy Agents that are a subclass

of Conversable Agents configured as a proxy for the human user (Microsoft, 2024a). An important class,

the autogen.GroupChatManager, receives a list of agents that want to participate in a group chat.

The autogen documentation (Microsoft, 2024a) defines the system_message as a string

intended as a message for autogen.ChatCompletion inference. It sets the Agent’s role and

constraints on behavior and responses. The description field is defined as a string providing a short

description of the agent. This description is used by the autogen.GroupChatManager to decide

when to call upon this agent. By default, it is set to the system_message.

The agents that need to converse with each other are assigned to an autogen GroupChat class.

That class is used to initialize an autogen GroupChatManager.

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty,

Ruthvik Thimmarayappa, Jai Paul Yeruva, and John Glossner

6

3.3 Adaptive Learning Agents

We have extended the concept presented by Wu et al. (2023) in Figure 2. From that concept, we

developed custom agents for adaptive learning of mathematics. Table 2 shows our agents and their roles.

As shown in Table 2, a Student agent is a proxy for a human student who wants to learn. A Student

agent must always receive input from the human student. A Knowledge Tracer agent assesses the

Student’s capability along with a Learner Model agent that keeps track of the Student’s capabilities. A

Teacher agent introduces new topics to the Student agent. A Tutor agent helps the Student agent learn

the material by asking the Problem Generator agent to create questions for the Student agent to answer.

A Level Adapter agent consults with the Learner Model agent to increase or decrease the level of

difficulty for Student agent questions. The Student agent is then asked to input the solution to the

question. The Verifier agent checks the Student agent’s answer and provides feedback to the Tutor

agent. A Programmer agent is then asked to write code to visualize and check the solution. The code is

executed by the Code Runner agent. The Learner Model and Level Adapter agents are given the Student

agent’s results (e.g., correct answer) and the Learner Model agent is updated. The Motivator agent then

provides positive feedback to the Student.

Table 2: Agent Roles

3.4 Group Chats

The GroupChatManager selects agents to speak in one of three ways: 1) Unconstrained where the

GroupChatManager selects agents based on their description field and the problem being

solved by the LLM, 2) semi-constrained where an agent is either allowed or disallowed to "speak" with

other agents, and 3) a state machine approach where a programmed function specified in the

autogen.GroupChat class chooses the next agent to speak.

3.5 Ethical Considerations

The use of large language models (LLMs) for adaptive learning of mathematics presents several ethical

considerations. Primarily, there is a concern about the potential for bias within the models, as they are

7

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS

trained on data that may contain inherent biases. This could lead to unfair or discriminatory outcomes

for certain groups of learners. Additionally, the reliance on proprietary cloud-based LLMs for

personalized learning raises questions about data privacy and security. Furthermore, the opacity of LLM

decision-making processes, often referred to as the "black box" problem, raises concerns about

accountability and the ability to explain why certain learning pathways are chosen.

4 Results

As noted in Section 3.1, the method of using ChatGPT with plugins is no longer available. In this

section, we describe using autogen’s GroupChatManager in three different modes: unconstrained,

semi-constrained, and a function call implementing a state machine.

4.1 Unconstrained Group Chats

Our first unconstrained experiment allowed autogen to handle all communications between agents. Our

implementation inherits from autogen.ConversableAgent rather than autogen.AssistantAgent.

However, we override both the system_message and description fields providing similar capabilities

as autogen.AssistantAgent.

Tables 3 and 4 in Appendix B show the agent initialization strings.

We first set the description field to match the system_message field. We found that agent

speaker selection at times seemed random and agents took on roles not assigned to them. For example, a

Solution Verifier agent would sometimes provide a question to the Student agent and sometimes directly

answer the Tutor agent. Additional prompt engineering to restrict speaker transitions improved speaker

selection but not in a reliable manner.

Our second unconstrained experiment separated the description field and the system_message.

The system_message used initialization prompts such as "You are TutorAgent, a helpful

mathematics tutor...". The description field was set using the agent’s name with the personal

pronoun "I". For example, "I am TutorAgent ...". We found this worked slightly better. We also

found that shorter initialization prompts worked better than the verbose initialization prompts shown in

Appendix B.

In both unconstrained cases we found that by naming an agent with agent appended to the name

provided better sequencing than just using a name. For example, the Teacher agent, when named

TeacherAgent, seemed to help the GroupChatManager with agent selection.

4.2 Semi-Constrained Group Chats

The semi-constrained experiments used separate system_message and description as described

in Section 4.1. autogen’s GroupChat allows next speaker selection to be restricted by either allowing

transitions between specific agents or disallowing specific agent transitions.

Figure 3 shows an example of allowed transitions between agents. Line 2 shows a Student agent

can only transition to a Tutor agent. Line 3 shows that a Tutor agent can transition to any of a Student,

Teacher, Problem Generator, Solution Verifier, or Motivator agent.

The allowed transitions are then used to initialize a GroupChat. The GroupChatManager

selects the appropriate next agent to speak.

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty,

Ruthvik Thimmarayappa, Jai Paul Yeruva, and John Glossner

8

In our testing, we found that this approach worked better than unconstrained agent transitions.

However, semi-constrained agent selection like unconstrained agent selection was not found to be

repeatable for different prompt inputs.

4.3 State Machine Agent Selection

Based on the expectation of more fine-grained control, we developed a state machine and used autogen’s

GroupChat speaker_selection_method to return the next speaker agent. The agents are

initialized with the system_message shown in Appendix B. A separate description field is

initialized similar to but not always exactly equal to the system_message parameter except using the

personal pronoun I, as discussed in Section 4.1.

Figure 3: Code listing example with allowed agent transitions.

Figure 4: State Machine with Agent Sequence and States for Learning New Material.

9

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS

Our state machine design for learning new material is shown in Figure 4. It starts with the

AwaitingTopic state. When a user chooses a topic, a transition is made to the

PresentingLesson state. After a lesson is presented, the AwaitingProblem state waits for the

Problem Generator agent to generate a question based on the material in the lesson. The

AwaitingAnswer state then prompts the Student agent for an answer. After the Student agent

answers, the VerifyingAnswer state is entered. The Solution Verifier agent both checks the Student

agent’s answer and then transitions to the VisualizingAnswer state where the Programmer agent

writes code that will both visualize the solution and provide a third check of the answer. After the code

is generated, the RunningCode state is entered where the Code Runner agent executes the code. After

all answers have been checked, the UpdatingModel state updates the Learner Model agent and

transitions to the AdaptingLevel state where the level of difficulty of questions is adapted up or

down. The MotivatingStudent state is then entered where the Motivator agent encourages the

Student agent. From this state the system returns to the AwaitingProblem state.

Note that this is not a complete state machine for adaptive learning. It is designed to present a

reasonable scenario to test agent selection and interactions. This worked as anticipated and all states and

transitions in the state machine are traversed. Figure 5 in Appendix A shows the entire chat session and

Appendix C provides the detailed console output for all the agents and states. The user interface is the

panel library from HoloViz (Rudiger, 2024).

5 Discussion

In our experiments, we found unconstrained and semi-constrained agent selection using the

GroupChatManager to be unpredictable. Even after refining both the system_message and

description parameters, agents would take on roles not assigned to them. At times,

GroupChatManager agent selection could even appear random. The only solution we could find was

to implement our own state machines. This, however, is not ideal because it reduces the flexibility of the

adaptive tootoring application and restricts use cases to what is programmed in the state machine.

6 Future Work

Our prototype system has many improvements that can be implemented. To improve agent selection,

other frameworks such as CrewAI may better be able to focus on process-based agent selection without

the need for additional programming. Our agents use ChatGPT-4o. Due to ethical considerations, a local

LLM may be more appropriate such as Llemma. All data in a local LLM stays private to the user. A

simple state machine was implemented for constrained agent communications. More sophisticated state

machines with multiple workflows may provide better alternatives. Mathematics has a reasonably

scaffolded nature in learning difficulty. A knowledge graph of mathematics based on level-of-difficulty

can be implemented to guide both the Teacher and the Knowledge Tracer agents. A known problem

with LLMs is questionable performance on math questions. Agents can be equipped with skills that do

not need to come from the LLM itself. For example, the Solution Verifier agent could use Wolfram’s

Alpha to verify the correctness of solutions. Wolfram’s Alpha also provides explanations of solutions.

An important aspect of any adaptive learning system is measuring how well it works. One aspect is

correctly answering questions. However, a more important aspect is measuring the learning impact on

the student.

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty,

Ruthvik Thimmarayappa, Jai Paul Yeruva, and John Glossner

10

7 Conclusions

We have presented a prototype adaptive learning system for mathematics that uses multiple ChatGPT-4o

LLM agents. The agents are specialized to a specific aspect of adaptive learning with each agent taking a

specific role. The agents communicate with each other using the autogen multi-agent framework. The

prototype system is able to interact with a student learner and answer questions interactively. The code

is open-source and available on github.

8 Acknowledgements

This work was supported in part by a grant awarded to Rivier University by the Davis Educational

Foundation on July 1st, 2021.

References

Abdelrahman, G., Wang, Q., and Nunes, B. (2023). Knowledge Tracing: A Survey. ACM Computing Surveys, 55(11):1–37.

00-02.

Abedi, M., Alshybani, I., Shahadat, M. R. B., and Murillo, M. S. (2023). Beyond Traditional Teaching: The Potential of

Large Language Models and Chatbots in Graduate Engineering Education. arXiv:2309.13059 [cs].

Alkaissi, H. and McFarlane, S. I. (2023). Artificial Hallucinations in ChatGPT: Implications in Scientific Writing. Cureus,

15(2):e35179.

Anderson, J. R., Boyle, C. F., Corbett, A. T., and Lewis, M. W. (1986). Cognitive Modelling and Intelligent Tutoring.

Technical report, Defense Technical Information Center, Fort Belvoir, VA.

Anderson, L. W. & Krathwohl, D. R. (Eds.) (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s

taxonomy of educational objectives. New York: Addison Wesley Longman.

Banavar, M. K., Shri, L., Sparks, N., and Cohen, A. (2023). Being brave in a new world: Leveraging chatgpt in signal

processing classes. In 2023 IEEE Frontiers in Education Conference (FIE), pages 1–5, Los Alamitos, CA, USA. IEEE

Computer Society.

Beck, J. E. and Gong, Y. (2013). Wheel-spinning: Students who fail to master a skill. In International Conference on

Artificial Intelligence in Education, pages 431–440. Springer, Berlin, Heidelberg.

Bloom, B. S., Engelhart, M. D., Furst, E., Hill, W. H., and Krathwohl, D. R. (1956). Handbook i: cognitive domain. New

York: David McKay.

Boulay, B. d. (2016). Artificial Intelligence as an Effective Classroom Assistant. IEEE Intelligent Systems, 31(06):76–81.

Publisher: IEEE Computer Society.

Brusilovsky, P. and Peylo, C. (2003). Adaptive and Intelligent Web-based Educational Systems. International Journal of

Artificial Intelligence in Education, 13(2-4):159–172.

ChatGPT (2024). ChatGPT - math tutor. https://chatgpt.com/g/g-JgBfAxs3G-math-tutor accessed on 2024-05-25.

Corbett, A. T. and Anderson, J. R. (1994). Knowledge tracing: Modeling the acquisition of procedural knowledge. User

Modeling and User-Adapted Interaction, 4(4):253–278.

Du, Y., Li, S., Torralba, A., Tenenbaum, J. B., and Mordatch, I. (2023). Improving factuality and reasoning in language

models through multiagent debate. arXiv preprint, arXiv:2305.14325.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt, J. (2021). Measuring

mathematical problem solving with the MATH dataset.

Kuykendall (2024). GotIt unveils MathGPT platform custom option for math education providers.
https://thejournal.com/Articles/2023/03/15/PhotoStudy-Parent-GotIt-Unveils-MathGPT-

Platform-Custom-Offering-for-Math-Education-Providers.aspx accessed on 2024-05-25.

Lee, U., Yoon, S., Yun, J. S., Park, K., Jung, Y., Stratton, D., and Kim, H. (2023). Difficulty-Focused Contrastive Learning

for Knowledge Tracing with a Large Language Model-Based Difficulty Prediction. arXiv:2312.11890 [cs].

Liang, J. T., Yang, C., and Myers, B. A. (2023). A large-scale survey on the usability of AI programming assistants:

Successes and challenges.

Microsoft (2024a). Autogen documentation. https://microsoft.github.io/autogen/docs/reference/

agentchat/conversable_agent accessed on 2024-05-25.

Microsoft (2024b). Enhancing the future of education with khan academy. https://educationblog.microsoft.com/

11

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS

en-us/2024/05/enhancing-the-future-of-education-with-khan-academy accessed on 05-24-2024.

Mullis, I. V. S., Martin, M. O., Foy, P., Kelly, D. L., and Fishbein, B. (2020). Timss 2019 international results in mathematics

and science. Retrieved on 4/2/2024.

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Akhtar, N., Barnes, N., and Mian, A. (2024). A

comprehensive overview of large language models.

OpenAI (2024a). Doing math with OpenAI models | OpenAI help center.
https://help.openai.com/en/articles/6681258-doing-math-with-openai-models.

https://help.openai.com/en/articles/6681258-doing-math-with-openai-models accessed on 2024-

05-25.

OpenAI (2024b). Winding down the ChatGPT plugins beta | OpenAI help center.

https://help.openai.com/en/articles/8988022-winding-down-the-chatgpt-plugins-beta accessed

on 2024-05-25.

Pavlik, P. I., Cen, H., and Koedinger, K. R. (2009). Performance Factors Analysis – A New Alternative to Knowledge

Tracing. In Proceedings of the 2009 conference on Artificial Intelligence in Education: Building Learning Systems that

Care: From Knowledge Representation to Affective Modelling, pages 531–538, NLD. IOS Press.

Rudiger, P. (2024). HoloViz blog - panel 1.4.0 release. https://blog.holoviz.org/posts/panel_release_1.4/

index.html accessed on 2024-05-27.

Santos, O. D. and Cury, D. (2023). Challenging the confirmation bias: Using chatgpt as a virtual peer for peer instruction in

computer programming education. In 2023 IEEE Frontiers in Education Conference (FIE), pages 1–7, Los Alamitos,

CA, USA. IEEE Computer Society.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J. (2017). Outrageously large neural

networks: The sparsely-gated mixture-of-experts layer.

A Appendix - Chat Figures

Figure 5: Chat Initiation

Figure 5 shows the initiation of the system using the state machine agent selection described in Section

4.3. The User (proxied by a StudentAgent) initiates a chat. The TutorAgent then begins to coordinate

learning by asking the TeacherAgent to help the StudentAgent learn algebra. The TeacherAgent

prepares a text lesson that is continued in Figure 6.

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty,

Ruthvik Thimmarayappa, Jai Paul Yeruva, and John Glossner

12

Figure 6: TeacherAgent provides a lesson.

Figure 6 shows the continuation of the conversation. The TeacherAgent continues with algebra topics.

Figure 7: TutorAgent coordinates problem solving.

Figure 7 shows the TutorAgent picking up from the TeacherAgent. This happens when at the end of the

PresentingLesson state where the TutorAgent is returned.

13

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS

Figure 8: ProblemGeneratorAgent asks StudentAgent to solve problem.

Figure 8 shows the system then enters the AwaitingProblem state where the ProblemGeneratorAgent generates a

question for the StudentAgent to answer. The system then transitions to the AwaitingAnswer state. The

StudentAgent provides an answer (x=5) and the system transitions to the VerifyingAnswer state.

Figure 9: SolutionVerifierAgent checks the StudentAgent’s answer.

Figure 9 shows the SolutionVerifierAgent checks the StudentAgent’s answer and finds it to be correct. The state

then transitions to VisualizingAnswer. However, this state does more than graph answers. It verifies in Python

code that the SolutionVerifierAgent solved the problem correctly.

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty,

Ruthvik Thimmarayappa, Jai Paul Yeruva, and John Glossner

14

Figure 10: ProgrammerAgent writes a Python program. CodeRunnerAgent executes the program.

Figure 10 shows the Python code written by the LLM. Note that it uses symbolic libraries to verify the correctness

of the StudentAgent’s answer. The CodeRunnerAgent executes the program and prints the results validating the

StudentAgent’s answer. The system then transitions to the UpdatingModel state.

Figure 11: LearnerModelAgent updates the model of the StudentAgent’s capabilities. LevelAdapterAgent is

consulted to increase/decrease difficulty of problems.

Figure 11 shows the LearnerModelAgent comparing the Python code output to the SolutionVerifierAgent’s

answer and concludes the StudentAgent’s answer is correct. The AdaptingLevel state is then entered. The

LevelAdapter suggests more difficult questions should be asked.

15

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS

Figure 12: MotivatorAgent provides positive reinforcement.

Figure 12 shows the MotivatorAgent providing positive reinforcement and encouragement. After this state, the

TutorAgent is returned, and the system returns to the AwaitingProblem state. A new problem is generated and the

AwaitingAnswer state is entered.

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty,

Ruthvik Thimmarayappa, Jai Paul Yeruva, and John Glossner

16

B Appendix - Agent Initialization

Appendix B contains the system_message initialization used in the state machine driven results of Section

4.3. The description parameter is initialized with a similar but not necessarily identical description except

with the personal pronoun replaced with I.

Table 3: Agent Definitions

Table 4: Agent Definitions Continued

17

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS

C Appendix - Console Output Messages

Appendix C contains the raw console output from running the state machine agent selection program.

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty,

Ruthvik Thimmarayappa, Jai Paul Yeruva, and John Glossner

18

19

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty,

Ruthvik Thimmarayappa, Jai Paul Yeruva, and John Glossner

20

21

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty,

Ruthvik Thimmarayappa, Jai Paul Yeruva, and John Glossner

22

23

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS

Srikanth Dokku, Anudeep Gumpula, Sanjana Gudati, Mahendra Nagisetty,

Ruthvik Thimmarayappa, Jai Paul Yeruva, and John Glossner

24

25

MULTI-AGENT ADAPTIVE LEARNING FOR MATHEMATICS

D Appendix - Authors

Srikanth Dokku is a graduate student at Rivier University studying Computer Science. He has three years of

professional experience working for a government agency. His bachelor’s degree is from Gudlavalleru Engineering

College.

Anudeep Gumpula is a graduate student at Rivier University studying Computer Science. He was previously an

Assistant System Engineer at Tata Consultancy Services. His research interests include distributed systems, data

management, and machine learning. He holds Microsoft Azure Fundamentals and Cisco Certified Network Associate

(CCNA) professional certifications.

Sanjana Gundati is a graduate student at Rivier University studying Computer Science. She completed an
undergraduate degree in Computer Science. Her current research interests include software development, networking,

and algorithms.

Mahendra Nagisetty is a graduate student at Rivier University studying Computer Science. He was previously a lead

infrastructure engineer in Pragma Edge Software PVLTD. His research interests include distributed systems, data
management, and machine learning. He holds Microsoft Azure Fundamentals and Cisco Certified Network Associate

(CCNA) professional certifications. He can be contacted at mnagisetty@rivier.edu.

Ruthvik Thimmarayappa is a graduate student at Rivier University studying Computer Science. He holds a

bachelor’s degree in Information Science from Visvesvaraya Technological University (VTU). His research focuses on
the Internet of Things (IoT) and smart technology applications. He has authored several publications, including "Design

and Implementation of IoT-Based Smart Shopping Dash Cart" published in the International Journal of Engineering

Technology and Management Sciences (IJETMS) in July 2021, and "Survey on Smart Shopping Cart" published in

Iconic Research and Engineering Journals (IRE Journals) in June 2021. He can be reached at
rthimmarayappa@rivier.edu or ruthvik.tk@gmail.com.

Jai Paul Reddy Yeruva is a graduate student at Rivier University studying Computer Science. He completed an

undergraduate degree in Computer Science and Engineering (CSE).

John Glossner is an Associate Professor and Director of Computer Science Programs at Rivier University. He teaches

graduate-level Programming, Computer Architecture, Operating Systems, Computer Security, Object-Oriented Design,

Reading and Research, and Professional Seminar.
Prior to Rivier, he was a Professor and Director of the Computer Architecture, Heterogeneous Computing, and AI

Lab at the University of Science and Technology in Beijing (USTB), where he supervised Ph.D. students. Prior to

USTB, he was the Chair of Computer Science at Daniel Webster College where he taught undergraduate students.

In addition to faculty positions, he has held multiple industry positions at IBM Microelectronics, IBM Research, and Bell Labs.

In 2001, he co-founded Sandbridge Technologies which raised $70M in venture funding. Before being acquired, the World Economic

Forum recognized the company for developing world-changing DSP technology widely used in today’s commercial cell phones.

After Sandbridge, he became CTO of China-based Huaxia General Processor Technologies (hxGPT) and CEO of its U.S.-based
subsidiary Optimum Semiconductor Technologies Inc. (OST), where he led embedded development of heterogeneous processor designs

including variable length vector processors and domain-specific AI accelerators.

Dr. Glossner has also served voluntarily as President of both the Heterogeneous System Architecture Foundation (HSAF) and the

Wireless Innovation Forum. He has more than 120 publications and 40 issued patents.

